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Magnetization and static scaling of the high-T, disordered molecular-based
magnet V(tetracyanoethylene)„-y(CH3CN) with x —1.5 and y -2
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We report field (H) and temperature (T) -dependent magnetization (M) of a member of the new class of
high-T, molecular-based magnets V(tetracyanoethylene)„y(solvent) with T, in an accessible range (sol-
vent =CH3CN). The M(H) at low T saturates slowly with increasing H. The random magnetic anisot-
ropy model is applied to study the behavior of this disordered material, yielding values of anisotropy
strengths and exchange constant. The results of an equation-of-state and scaling analysis near T, are
given and compared to theoretical results.

Magnetic properties of a new class of molecular-based
magnets have been of recent interest, ' though the mag-
netic ordering temperature T, has been confined to less
than 10 K. An —50-fold increase in T, occurred with
the discovery of magnetism at room temperature in the
disordered molecular-based V(TCNE), y(CH2C12) (x -2,
y -0.5; TCNE—:tetracyanoethylene). Its estimated
T, -400 K exceeds the decomposition temperature of
350 K. An understanding of the magnetism of this sys-
tern is important in generating a broad class of
molecular-based materials displaying cooperative mag-
netic behavior at high temperature.

In this work, we report studies of a new related disor-
dered high-T, molecular-based magnetic compound,
V(TCNE) y(CH3CN), with T, in a readily accessible
range enabling quantitative study of its critical behavior.
The slow saturation of M (H) at low T is shown to be well
represented by the random magnetic anisotropy (RMA)
model. Detailed application of a RMA theory provides a
quantitative link between the magnetization and the lim-
ited structural correlation length caused by dilution with
spinless CH3CN. It is suggested from equation of state
and static scaling analyses that the RMA gives rise to a
strong orientational fluctuation of local magnetization.
We conclude that the dominance of RMA effects is due
to the structural and substitutional disorder caused by in-
corporation of spinless solvent. These results extend the
success of earlier applications of RMA concepts to site-
diluted and amorphous rare-earth and transition-metal
materials to p and d orbital-based spins.

Samples of V(TCNE) y(CH3CN) were prepared
in a manner similar to the previously reported
V[TCNE] .y(CH2Clz). Due to the extreme insolubility
of the precipitate and incorporation of the solvent, the
concentrations of TCNE and solvent are difficult to con-
trol and vary from sample to sample. For the material
discussed herein x —l. 5 and y -2 are obtained from ele-
mental analyses. X-ray diffraction shows' that structur-

0
al short-range order (R, —10 A) is smaller than that for
V(TCNE)„y(CH2Clz) (R, —25 A). Assuming that V~t

has three electrons in 3d orbitals (S =—,') and TCNE has
S =

—,
' with its unpaired electron in an orbital of p, char-

acter at each of the C and N sites, magnetocrystalline an-
isotropy and single-ion anisotropy should be present for
this disordered compound containing non-S-state ions.
Randomness in the anisotropy is introduced by dilution
of magnetic TCNE by nonmagnetic CH3CN, facilitated
by the ability of the —C =N groups of CH3CN to coor-
dinate with the V ions in a manner similar to the—C=—N of the TCNE anions. The effects of back bond-
ing due to the ~—m* bonding between V and CN can
give rise to a strong irregular ligand field" dependent on
the origin and location of the —C=N in this disordered
material, while weak electron hopping among V and
TCNE has been suggested to be the primary mechanism
for exchange interaction. ' ' ' The unusual magnetic
features of this disordered material reported below are in
agreement with application of the RMA model. As avail-
able theories of RMA are only valid either at T=O K or
near T„we first focus on the studies of magnetization at
low temperatures, and we then discuss our isothermal M
results near T, .

Most theoretical studies of RMA are based on the
Hamiltonian

H= —JgS; S —D„g(n; S;) —D,g(S )

—gpsgH S;,
l

where D„ is a measure of the random uniaxial anisotropy
strength, n, is a unit vector corresponding to a random
field that points in the direction of local anisotropy, D, is
the strength of the uniform anisotropy, and J is the ex-
change constant. In the framework of a weak RMA
(D„iJ« 1) real-space model, Chudnovsky and co-
workers'" ' have shown that the magnetic properties at
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M =M, B/(H—+H, )'~', (2)

and (3) for (H +H, ) & H, [correlated spin-glass (CSG)
phase], M =0. Here

H,„=2zJa Mo/(m M, R,2), (3)

g2H 1/2

B= (4)
120m

Q

R a

12D M' R

low temperature (T-0 K) are characterized by the corre-
lation function of local anisotropy directions C (r) defined
by C(r)=1 as r —+0 and C(r)=0 for r ))R, , relating
structural order to magnetic behavior. The approach of
M to saturation (M, ) along the direction of an applied
field is given by'

2K RHM=M — dre r C r303'
where RH= [A /Mo(H+H, )]'~, K =D„/a,
A =zJ/12a, H, is the uniaxial (constant) anisotropy field
(~D, ), and a is the mean distance between spin sites (z
nearest neighbors). For applied field far from the ex-
change field, the magnetization obeys three "universal"
laws ' (1) for (H +H, ) ))H,„(near collinear phase),
M =M, —

( M, /1 5)[2K/( H+H, )]; (2) for H, &H+H,
((H,„[ferromagnet with wandering axis (FWA) phase],
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FIG. 1. M vs T of V(TCNE) y(CH3CN) at 5000, 1000, 500,
and 100 Oe.

4500

line extrapolated from the low-field data gives a value of
M, =5100-5500 emuOe/mol in reasonable agreement
with the ferrimagnetic ordering noted above. Using Eq.
(2), the constant anisotropy field H, is determined by the
intercept with the H axis from the plot of (M, —M) vs
H. By choosing M, =5250 emu Oe/mol to plot the data,
we obtain H, =21 kOe and slope B = (4.8 X 10

H, =H„/H, „, H„=2nD„psMO/M, with spin density n,
M0 is the magnitude of M, M, is the full saturation of
magnetization at T =0 K, and 0 is the correlation
volume of anisotropy directions defined by

0= f 4vrC(r)r dr .
0

Magnetization measurements of powder samples of
mass -2 mg were carried out using a Faraday balance
rnagnetorneter' between 2.4 and 270 K at applied mag-
netic field up to 7.5 T. The correction for the demagneti-
zation effect along the cylindrical axis was estimated to
be too small to be considered within the accuracy of our
field measurement. The low-field M(H, T), H & 5 Oe, was
measured using a Quantum Design MPMS2 supercon-
ducting quantum interference device (SQUID) magne-
tometer. Figure 1 shows the M vs T at various H. The T
dependence of M is suppressed below T, —140 K com-
pared with that of usual homogeneous ferromagnets, as
usually observed for amorphous magnets. Measurements
to H as high as 7.6 T at low T indicated a saturation mag-
netization in agreement with antiferromagnetic alignment
V (S =

—,') and TCNE (S =
—,') spins resulting in a ferrimag-

netic state.
In light of the disorder present in this compound, we

compare the isothermal data at su%ciently low tempera-
ture (-4.5 K), Fig. 2(a), to the available RMA theory of
Chudnovsky and co-workers developed at T=O K for
ferromagnets. Taking the derivative of Eq. (2), one has
M =M, 2'~ B ~ (dM/dH)'—~ . The saturation magneti-
zation M, then can be estimated from the plot of M vs
(dM/dH)' . The intercept of the M axis with a straight
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FIG. 2. (a) M vs H at T=4.4 K. The solid line is the calcu-
lated results of Eq. (2); (b) (M, —M) vs H with M, =5250
emu Oe/mol.
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emu Oe /mol), Fig. 2(b). The agreement with Eq. (2)
supports that the magnetic structure within this field re-
gime is strongly noncollinear (FWA) with a characteristic
tipping angle of spins 8 —(H„/H, „H)'~, whose orienta-
tion may be locally preserved over length
Ri ((H,„R,/2H. ' The field-cooled (&3 G) and zero-
field-cooled data show an irreversibility below
Tf =10-14K varying with sample composition. We ob-
served hysteresis effects below Tf (coercive field less than
10 G) and much less above Tf (coercive field & 1 G and a
spontaneous M & 1%%A of the saturation M) suggesting a
"reentrance" to a spin-glass state for T less than freezing
temperature (Tf) at low H. Since the system is so soft, we
suggest that this weak RMA system may be best de-
scribed as a CSG for H & (H, /H, „H,) a—t T )Tf with
the characteristic that the local magnetization continu-
ously rotates over the entire length of the sample, that is
distance ))(H,„/H„) R, (long-range order is destroyed
by local anisotropy). ' ' ' High-field (H-H, „) M(H)
data are needed to obtain the short-range structural order
correlation function C(r) by the inverse Laplace transfor-
mation of Eq. (1).

Assuming typical exponential decay of correlation—r/R
function C (r) =e, Eq. (1) has the apparent
field dependence' ' M, —M =A /15p (1+p), where

p =[(H+H, )/H, „j' . Since H,„ is usually inaccessible,
we could not obtain the value of H,„ from low-field data.
For p~0 (H &&H„), we have M, —M~A /15p. This
is equivalent to Eq. (2) if in Eq. (4) one substitutes 0/R,
with 8' obtained by directly evaluating Eq. (6). With the
value of B determined in Fig. 2, we obtain

A H' =7.2X10 emuOe /mol . (7)

In the FWA regime, although the correlation length is
truncated to a limit

R =60rrM (R /O)(R H' )/(A H' )

it is still large (Rf/R, ))1). With the known values of
A H,', M„and Q/R„we then have H„))3.3 T,
in agreement with the applicability of Eq. (2) to our
field limit of —8 T. We estimate zJ-280 K-380 T
from a mean-field expression for a simple ferromagnet
with T, =(2zJ/3kii)S, (S, +1) utilizing T, =140 K and
effective spin S, = —,'. Using R, /a —3 from x-ray studies'
and Eq. (3), H,„=8.5 T. Equation (7) then yields A=160
(emu Oe/mol)' . Assuming z =6 (octahedral structure)
and knowing M„A, and R, /a, Eq. (5) leads to
D, /J=0. 12 or D, =5.5 K. Since H, =21 ko-2nD„
where n is the spin density of V+, we have D, -0.6 K
with n —

—,'. Thus J ))D, ))D, is consistent with the ap-
plication of the RMA model.

We now address our isothermal results in the vicinity
of T, . We employ the equation of state and scaling law
to analyze the isothermal data for H (6000 Oe, Fig. 3(a).
Plots of M vs H/M (Arrott plots) show a large down-
ward curvature away from linearity at low fields indicat-
ing that magnetization is suppressed. Indeed, the local
magnetization fluctuation could be caused by both effects
of random exchange and/or RMA. However, the large
value of critical exponent /3=0. 75 obtained below T,
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FIG. 3. (a) Isothermal M near T, plotted as ln(M) vs 1n(H).
(b) The Arrott-Noakes plots with P, =0.75 and y, =2.25
(5, =4); (c) scaling plot with T, = 138 K (see text).

(strong suppression of magnetization) compared with that
for the usual quenched disorder systems with random ex-
change alone ((0.5) (Ref. 20) supports the dominance of
RMA. Since the distance between V and TCNE may
vary little, the Auctuation in Jmay be less important than
that in anisotropy. Correlated molecular-field theory
showed that even for a strong exchange fluctuation case,
the nonlinear behavior near T, in the Arrott-Noakes
plots would be minute, hence effective exponents should
be close to the values of homogeneous critical ex-
ponents. '
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The inhomogeneity for the pure RMA case may be
characterized by nonlinear leading terms, e(D/J), in the
equation of state that give rise to the RMA exponents for

1/5
the isotherms as 5, =(10—d)/(6 —d) for M-H

1/51(T=T, ) and 5,=(8—d)/(4 —d) for M-H ' (T & T, ),
where d is the dimensionality. ' The critical exponent
5, =4 is estimated from the inverse slope of a straight
line fit to the isothermal data in a logarithmic plot as
closely as possible to T„Fig. 3(a). The exponent 5, can-
not be experimentally identified here as we did not find a
logarithmic behavior for all isotherms at T & T, .

The Arrott-Naokes equation of state can be deduced if
one replaces H/M with (H/M)'~r and M with M'~~,

1/y 1/P
that is (H/M) '=t+aM ' with RMA critical ex-
ponent 13, =(6—d)P/2 and t =(T —T, )/T, . We note
that P, =0.75 in the three-dimensional (3D) mean-field
case (P=0.5) appropriate for the 3D network struc-
ture of V(TCNE) yCH3CN. Figure 3(b) shows the
results of the Arrott-Noakes plot with /3, =0.75 and

y, =P, (5, —1)=2.25 (5, =4.0). In principle, it is possi-
ble to obtain parallel isotherm lines by varying both
values of)33, and 5, . However, the true values of P, and

5, should simultaneously satisfy three conditions: (1)
best parallel isotherm lines in the Arrott-Noakes plots, (2)
a line passing through the origin corresponding to the
critical isotherm (T = T, ), and (3) Widom's scaling rela-
tion y, =p, (5, —1). A systematic error could be present
in the determination of 6 owing to a difficulty of
the measurement of the critical isotherm. Widom's re-
lation can be verified by applying the general scaling
form to analyze the isothermal data near T„
M/~t~ '=f (H/ t~

' ', t/~t~). T, =138 K was found dueP, p 5

to the plot of scaled M vs scaled H with the "best" col-
lapsing of the isothermal data into two branches for

T & T, and T )T„as shown in Fig. 3(c). As the three
plots are consistent with each other, the values of the
critical exponents for this RMA system with estimates of
error are 5, =4.0+0.2 and P, =0.75+0.02 for the sam-
ple shown. The relatively large value of 13, implies that
eA'ects of RMA dominate the inhomogeneous behavior
near T, . Although the value of 5, is larger than that
given by the 3D mean-field RMA theory (—', ), it is still
smaller than that expected for most non-RMA systems.
Thus the material has relatively strong field dependence
of its critical isotherm compared to the non-RMA sys-
terns suggesting strong fluctuation of local magnetization
due to the dominant efFects of RMA.

In summary, magnetic studies of V(TCNE)
~y(CH3CN) provide strong support for the critical role of
the spinless organic solvent in the disordered high-T,
molecular-based magnetic materials. We have shown
that RMA concepts provide a quantitative description of
the low temperature M (H) and critical behavior near T, .
These results suggest that the critical feature governing
the increase in T, for the CH2Clz system is increased
structural order yielding a reduced RMA. It is of interest
to note that a detailed magnetic concept such as RMA
previously applied to site-diluted and amorphous f and d
electron systems can successfully account for magnet-
ic phenomena in a molecular magnetic system for which
a substantial fraction of the spin is supplied by p electrons
and for which spinless organic solvent has a key role in
determining magnetic properties.
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