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Spectral properties of small-polaron systems
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Small polarons, being composite particles in which the charge degrees of freedom and the lattice vi-

brational modes are locked together, show unique features in their single-particle spectral properties.
The occupation number ni, of the polaronic charge carriers is finite and roughly constant throughout the
entire Brillouin zone; with only a small jump at kF. Strongly temperature-dependent incoherent contri-
butions to the photoemission spectrum and the occurrence of a polaron-induced vibrational mode in the
neutron scattering cross section are indications for small polarons in band states.

It is of vital importance for our understanding of
strong-coupling electron-phonon systems and their super-
conductivity to know if, in principle, small polarons can
exist as itinerant band states. There is a great deal of ex-
perimental evidence for localized polaronic states or pola-
rons moving via thermal activation. In Mo W& 03, '
however, there is some indication that below a certain
characteristic temperature —150 K the activated conduc-
tivity abruptly changes into a temperature-independent
conductivity which could be an indication for itinerant
polarons.

In spite of a huge literature, the present state of the
art of transport theory for small polarons does not permit
one to draw any definite conclusions about the possibility
of itinerant polaronic states. In this article we propose a
number of experimental tests —based on robust spectral
properties of the single-polaron response function—
which should enable one to ascertain without ambiguity
if polarons are in itinerant states or not. These tests con-
cern the angle resolved photoemission spectroscopy
(ARPES) and inelastic neutron scattering.

Upon increasing the electron-phonon coupling beyond
a certain characteristic value, electrons and phonons be-
come locked together and form new states: the small po-
larons. The electrons and phonons are then nothing but
their elementary excitations. The itinerant (respectively,
nonitinerant character of small polarons) reffects itself in
the composition of these polaronic states, and becomes
manifest in the specific properties of the electronic and
vibrational excitations in such systems.

In the extreme limit of strong electron-phonon cou-
pling, small polarons are expected to form band states
with much reduced bandwidth. With decreasing
electron-phonon coupling such a small-polaron band,
contrary to a wide spread belief, does not go over smooth-
ly into the band of quasi-free electrons in the weak-
coupling limit, as was shown by us. The transition be-
tween quasi-free electrons and small polarons is known to
occur abruptly within a small regime of the electron-
phonon coupling constant. Exact diagonalization stud-
ies of the polaron problem on small clusters suggest that
the lowest energy branch of the polaronic band states is
well defined not only in the extreme strong-coupling limit
a —+ ~, but all the way down to e ~ 1; as soon as polaron

formation sets in. Higher branches of the polaron band
states, separated from the lowest branch by multiples of
the characteristic phonon frequency coo, become well
defined only for increasingly higher values of a. For the
purpose of the present study we shall limit ourselves to
temperatures small compared to coo. We then can use the
standard polaron theory in order to study the spectral
properties of small polarons. As we shall show below, we
expect the following features which distinguish itinerant
from nonitinerant small polarons:

(i) A distribution function of the charge carriers as a
function of wave vector k which fills the entire Brillouin
zone, with only a small step at the Fermi vector kz.

(ii) An ARPES spectrum which differs from that of
Franck-Condon processes by strongly temperature-
dependent amplitudes and peak positions of multiphonon
resonances in the incoherent part of the spectrum.

(iii) The appearance of a low frequency, large ampli-
tude "phonon mode" which puts an upper bound on an-
tiadiabaticity.

As the basis for our study we choose the simplest gen-
eric model describing small polarons which is the Hol-
stein molecular crystal model defined by

H=tgn, t g—c, c +Urn . tn g

i, a (i&j),o

—kgn, u, + g(u, +coo2u,2) .
i, o

t denotes the bare electron hopping integral, A, the
electron-phonon coupling constant, U the onsite
Coulomb repulsion, M the mass of the ions and u; the
displacements from their equilibrium positions. The elec-
tron annihilation (creation) operators at molecular sites i
and spin o. are described by c; and n; =c; c; . We
choose deliberately a system of uncoupled Einstein oscil-
lators (having frequency coo) in order to clearly show how
these oscillators become correlated in the case of
coherent itinerant polaron motion which is of the origin
of a new "phonon mode. "

The basic starting point for small-polaron theory is the
assumption of rather well-defined local polaronic states:
I
lo ),"=c; IO) IP(x —xo) ),". with n phonon modes excited.

These states can be superposed to form Bloch states,
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which for zero phonon excitations read

which transforms the original Hamiltonian [Eq. (1)] into

HS Hpo& +Hlz& +Hpz& ph 7

H„=g(t —e )n, t* g c—, c,
i, o &i&j &, a

+ g Sicko(a; a; + —,
' ), (4)

H,„,=(U —U) g n;tn;t,

)fc

Hpol ph g (&ij t )c(~cj
(i&j),0

Hp ] describes the main qualitative features of free smal 1

polarons: the shift in the harmonic oscillator positions
propositional to

~ xo ~, the polaron level shift
E, =A, /2Mcoo=a coo and the polaron hopping integral
t*=te . The eigenstates corresponding to H, &

are the
Bloch states given by Eq. (2). H;„, describes the polaron-
polaron interaction with an attractive renormalization in-
duced by the polaronic mechanism. Finally, H, & I, de-
scribes the residual interaction between the polaronic
band states and phonons where

&, .= t exp [(a;—a;t) —(aj —a ) ]
i6COO

t*= (8;.& denotes &;~ averaged with respect to the free
phonon Hamiltonian, the last term in Hp, i [Eq. (4)] where
the phonon operators at molecular sites i are defined by
u; =(a, +a;")/(2Mcoo/iit)'~ .

We shall consider here only the case where small pola-
rons are stable against bipolaron formation. This hap-
pens when the polaron-polaron attraction U is roughly
compensated by the Coulomb repulsion U. The single
particle Green's function for the electrons evaluated to
second order in H, i „h (Ref. 5) then reads

2
e

—a
G(k, co„)= .

l CO~

ti(gi, )
+g % —TI! N z, iso„—gi, .+leva

1 —n(gi, . )

iso„—gi,
—lcoo

—y e '"'c .1» I y(x —xo) &';Q
I y(x) &,'N jul

P(x —xo) &,. denotes an harmonic oscillator state for a
molecular unit at site i whose intramolecular distance is
shrunk by ~xo~

= A, /Mcoo.
The formal theory for small polarons is largely based

on the Lang-Firsov approach, a unitary transformation,
of the form

A(a; a—;t)(n;&+n; &)S=exp
fico (2M') /fi)'~
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FIG. 1. Schematic representation of the occupation number
of charge carriers for an itinerant polaronic system for a»1
and for three cases: a quarter-filled, a half-filled, and a three
quarter-filled band per spin degree of freedom. The dashed and
dotted curves for half-filling represents conjectured forms of n&

for a=1 and a(&1, respectively.

co„denotes the Matsubara frequencies, the polaron ener-

gy g&= e&
—p is measured from the polaron chemical po-

tential p and n(gi, ) denotes the Fermi distribution func-
tion.

From expression (6) we immediately obtain the distri-
bution function of the electrons in a many polaron sys-
tem:

—a2n„.=& c„'.c,.&=( 1—e .)n-. +e n-. (g„),
where n is the total number density of polarons with
spin o.. We notice that nk is constant throughout the

—a2Brillouin zone apart from a small jump equal to e at
k =kz (see Fig. 1). This result is expected for sufBciently
large a where small-polaronic band states (2) exist and for
which the incoherent part of the one electron Green's
function is k independent.

Exact diagonalization studies for small clusters show
that the incoherent part of the one particle Green's func-
tion becomes increasingly k dependent and diminishes
strongly as a is lowered towards a critical value where
small polarons become unstable towards quasi-free elec-
trons. The random-phase approximation (RPA) result (6)
for the one electron Green's function with its @-

independent incoherent contribution reAects the physics
in the strong-coupling polaronic limit leading to the par-
ticular shape of n& depicted in Fig. 1. From the numeri-
cal analyses of the one particle Green's function we con-
jecture that the form of nk will evolve in the following
way upon reducing a. As one approaches the limit of
stability of small polarons, the jurnp in n& will become
increasingly larger and at the same time will get smeared
out over an interval coo around the Fermi energy. nk
then resembles that expected for a marginal Fermi liquid.
Upon further decreasing a, the jump in nk further in-
creases becoming of order unity and sharpens up as one
reaches the quasi-free electron limit. One then recu-
perates the normal Fermi liquid distribution (see Fig. 1).

The reason for the smearing out of the electron distri-
bution function over the entire Brillouin zone in the pola-
ronic regime can easily be understood by rewriting the



&3 168 JULIUS RANNINGER 48

single-polaron state
~
lo ), [Eq. (3)] in the form

~
icr) = 1 i(a —4+ q)r, .

e
i k, q
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and is plotted in Fig. 3.
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For a system with randomly localized polarons, we
have a set of molecules which occur in two distinct oscil-
lator states corresponding to intramolecular distances
differing by IxoI. If the frequency of the individual mole-
cules is independent of the intrarnolecular distance [as as-
sumed in our model, Eq. (I)], we have a set of indepen-
dent Einstein oscillators with frequency coo. The oscilla-
tions of different molecules are uncorrelated. If instead
of localized electrons we consider coherently moving
electrons in this system, it requires that the motion of the
electrons and the motion of the polaron induced modula-
tions of the intramolecular distances are correlated.
There is experimental evidence from optical spectroscopy
which shows that the appearance of itinerant polarons
accompanies such nonadiabatic behavior. Such features
are clearly distinct from quasiharmonic or anharmonic
lattice dynamics as far as concerns the appearance of (po-
laron induced) modes which show unusual temperature
dependence for their oscillator strength and linewidth.
For a single polaron this leads to Bloch states of molecu-
lar deformations IP(x —xo) ) . Because of their coherence
with the electron motion they have exactly the dispersion
of small polarons as was shown previously. For a many
polaron system, because of the superposition of polaronic
states with wave vector a.[O, ~F] we obtain for a given q a
superposition of polaron energies leading to a scattering
cross section for phonons with an intensity which covers
a sizable fractions of the frequency regime of the polaron
bandwidth. The quantity which measures those excita-
tions is given by the phonon Green's function
( Taq(t)aq(0) ). Transforming this correlation function
to the Hilbert space of polaronic states (via the Lang-
Firsov transformation) whose dynamics is controlled by
the polaron Hamiltonian, we obtain

(T(aq(t) anq(t))(aq (0) anq(0))) (11)

with nq =gz cz+ cz . The contribution
~ (aq(t)aq(0)) in Eq. (11) measures the usual response
of renormalized intrinsic phonons of the system. The
contribution ~(n (t)n (0)) on the contrary measures
the response of a deformation wave induced by the
itinerant motion of the polarons. This quantity is in prin-
ciple measurable by either optical experiments in the lim-
it q~0 or by inelastic neutron scattering for finite q. For

the two extreme cases q —+0 and q =q~(q~ being a high
symmetry Brillouin vector) we have

for ro & 2
I q I

a Hat *, q~0,
q

(nq(t)nq(0)) ~

p —6I(ro —2p)8( W' —co), q=q~,
(12)

I am indebted to N. Schopohl and A. Krebs for critical
comments and discussions on this subject and to J. M.
Robin for help with the numerical analyses. Centre de
Recherches sur les Tres Basses Temperatures is Labora-
toire Associe a, 1'Universite Joseph Fourier.

where a denotes the lattice constant and p(co) the polaron
density of states.

The contribution (12) to the phonon Careen's function
is of purely electronic origin which results from the lock-
ing together of the electronic and vibrational degrees of
freedom in small-polaron systems. The appearance of a
deformation wave, driven by the charge fluctuations of
the system, is a unique feature of itinerant small polaron-
ic states. Their bandwidth can thus be determined by in-
elastic neutron scattering which is expected to yield finite
intensity smeared out over an energy regime of the order
of half the polaronic bandwidth. This energy regime is
well below that of the energy of the intrinsic polarons in
the system. For q-q~ one expects a gap in the excita-
tion spectrum.

The appearance of such low-lying lattice mode within a
frequency regime of the order of the polaron bandwidth
sets a limit to the degree of antiadiabaticity. The conse-
quence of such modes on transport phenomena in pola-
ronic systems is presently under study.

Using the fact that small polarons are composite parti-
cles in which the charge carriers and the intrinsic lattice
vibrations are locked together, we showed that the
dynamical properties of such small polarons are rejected
in characteristic properties of their single particle spec-
tral functions. In principle these can be tested experi-
mentally and should unambiguously distinguish itinerant
small polarons from those either localized or moving by
thermal activation.
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