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We show that quantum-mechanical molecular-dynamics simulations in a finite-temperature local-
density approximation based on the calculation of the electronic ground state and of the Hellmann-

Feynman forces after each time step are feasible for liquid noble and transition metals.

This is

possible with the use of Vanderbilt-type “ultrasoft” pseudopotentials and efficient conjugate-gradient

techniques for the determination of the electronic ground state.

vanadium are presented.

The unification of the local-density approximation
(LDA) to the many-electron problem with classical
molecular dynamics (MD) has marked an important
progress in the attempts to put the atomistic simulation
of the structural and electronic properties of materials
on a firm quantum-mechanical basis. The approach orig-
inally proposed by Car and Parrinello! is based on the
introduction of a pseudo-Newtonian dynamics describing
the evolution of the electronic degrees of freedom close
to the adiabatic ground state. An essential condition for
the practicability of the Car-Parrinello method is that the
transfer of energy between the atomic and electronic sub-
systems be small in order to prevent the electrons from
drifting away from the ground state. Metals are noto-
riously difficult to handle in the Car-Parrinello method
because in the absence of a gap the resonance between the
atomic and electronic dynamics drives the system rapidly
into nonadiabaticity.? For transition metals an additional
difficulty arises from the fact that even modern soft-core
pseudopotentials require a large energy cutoff for com-
plete total energy convergence and hence a plane-wave
basis that is too large to allow for ab initio MD sim-
ulations. The aim of the present paper is to demon-
strate that these problems can be solved and that ab ini-
tio MD calculations for open-shell transition metals are
possible. Our approach is based on a finite-temperature
density-functional approximation® for the electrons and
an exact determination of the LDA ground state after
each molecular-dynamics step using conjugate-gradient
techniques*—this completely avoids problems connected
with nonadiabaticity and with the crossing of energy lev-
els close to the Fermi edge. The feasibility of dynamical
finite-temperature LDA simulations for s,p bonded ele-
ments using these techniques has been demonstrated in
our recent paper.® The problem of the large energy cutoff
for transition metals is solved by adopting the concept of
“ultrasoft” pseudopotentials introduced by Vanderbilt.®
The success of the technique is demonstrated in the ex-
ample of simulations for liquid copper and vanadium. We
chose Cu, because convergence with respect to the energy
cutoff will be most difficult to achieve for the narrow d
band and the localized d state of the noble metals, and
V as the other example because the problems of nonadi-
abaticity and convergence to the LDA ground state are
most serious for metals with a high density of states at
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Results for liquid copper and

the Fermi level.

In the limit of zero temperature the total energy of
the ground state, E[n(r)], is stationary with respect to
variations of the electron density. At finite temperature
the free energy

Fn(r), fi,u] = E[n(r)] — oS[fi] + p [Z fi— Ne1:| (1)

is the proper variational functional which has to be min-
imized with respect to variations of the electron density
n(r), the orbital occupancy f;, and the chemical potential
p. At a given temperature the occupation f; of a state
with energy ¢; is given by the Fermi-Dirac distribution
and the entropy S[f;] corresponds to noninteracting elec-
trons (in that case ¢ = kgT). Gaussian broadening of
the one-electron levels can be computationally more con-
venient than Fermi-Dirac broadening. In this case o is
the width of the Gaussian; the corresponding form for the
entropy has been worked out in Ref. 7. The variational
derivatives of the free energy with respect to the atomic
positions are the Hellmann-Feynman forces.®° The ad-
vantage of using a finite-temperature LDA is the smooth
variation of the occupation of the orbitals; the crossing
of levels close to the Fermi energy does not lead to insta-
bilities in the equation of motion.

The LDA ground state is calculated after each molec-
ular dynamics step using a method similar to the conju-
gate gradient techniques pioneered by Teter, Payne, and
Allan. %1911 The method is a doubly iterative one: In
the inner loop the wave functions at each k point in the
Brillouin zone (BZ) and each band are improved by a
preconditioned conjugate-gradient method as described
in Ref. 12 until the change in the energy eigenvalue
is smaller than 107® eV (or smaller then 40% of the
change in the first step). After running over all bands
(including a sufficient number of empty bands), a sub-
space diagonalization is performed; the new fractional
occupancies f; are calculated using a Gaussian broaden-
ing of ¢ = 0.1 eV, and the charge density is updated. To
prevent charge sloshing, the mixing scheme proposed by
Kerker!? is used. The minimization of the electronic free
energy [Eq. (1)] is terminated when the change in the
energy becomes smaller than 1076 eV per atom.
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The atomic motion is described by Nosé dynamics4

generating a canonical ensemble at fixed temperature;
the equations of motion are integrated using a fourth-
order predictor-corrector algorithm!® which allows one
to use time steps as large as 1.5 x 107!® s with good
energy conservation. After moving the atoms, the wave
functions for the new configuration are estimated by a
subspace alignment procedure proposed by Arias, Payne,
and Joannopoulos.!! To obtain reasonable predictions for
the wave functions of the highest occupied orbitals it is
absolutely essential to calculate the wave functions for a
sufficient number of empty states, because the new wave
functions are a linear combination of old wave functions
over a certain energy range.

The electron-ion interaction is described by ultrasoft
pseudopotentials recently proposed by Vanderbilt.® In
this scheme norm conservation is given up, and the
pseudization is done at several reference energies. To
correct the charge deficit (i.e., the difference of the pseu-
docharge density and the exact charge density in the core
region) augmentation charges centered around each ion
must be added; i.e., the total valence electron density is
represented in the form

no(r) = 3 faldn(0)P + D piQu(r),  (2)

where
Qji(r) = (x| (|7} (o3| — 6"} (e}°]) Ir). (3)

¢7¢ are normconserving pseudo wave functions with suf-
ficient small pseudizing radii to mimic the exact all-
electron wave function with good accuracy, ¢} are ul-
trasoft pseudo wave functions constructed with large
pseudizing radii and without the constraint of norm con-
servation, and ¢ = Ime is shorthand for angular momen-
tum and magnetic quantum number and the reference
energy € where the logarithmic derivatives of the pseudo
and all electron wave functions are adjusted. The weights
pij of the augmentation charges are given by

Pij = an(¢n|ﬁj><ﬁzl¢n>’ (4)

where the (;’s are localized functions spanning the core
region, defined by (8;|¢}°) = &;;. The norm conserving
pseudo wave functions ¢° are written as a sum of three
Bessel functions, whose wave vectors ¢, are chosen so
that their logarithmic derivatives match that of the all-
electron wave function, qbf‘E, at the cutoff radius R,,

aigiRe) _ ¢£5(Re)
a(giRe) — #fF(Re)

The coefficients «; are chosen so that the second deriva-
tive of ¢P¢ is continuous at R.. For the ultrasoft wave
function a set of two Bessel functions is sufficient. We
found that the optimization scheme proposed by Rappe
et al.'® does not improve convergence properties without
compromising transferability (details will be given else-
where, Ref. 20). For the s- and p- parts a conventional
norm conserving potential was used (Re.s = R = 2.6

3
r°(r) = 3" audn(air),

=1

(5)
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a.u. for V, R, = R., = 2.7 a.u. for Cu), whereas the
d part was described using the new scheme (R2$ = 2.0
a.u., R = 2.6 au. for V, R} = 2.0 a.u., RS = 2.7
a.u. for Cu; two reference energies were used). To de-
scribe the wave functions, a relatively small energy cutoff
E.ut = R2G2,,/(2m.) is necessary. The action of the local
potential on the wave function and the smooth part of the
charge density can be calculated using a relatively coarse
fast-Fourier-transform (FFT) grid which must contain all
wave vectors up to G = 2Gyt. Nonlocality is handled in
the real space projection scheme.'® A finer grid is neces-
sary to represent the augmentation charges and for the
calculation of the Hartree and exchange-correlation po-
tentials. All operations involving Q;;(r) are performed
on this second grid in real space. The total time spent
on the fine grid scales linearly with the number of ions
and is negligible compared with the computational costs
necessary for one conjugate-gradient step on the wave
functions. One of the consequences of the introduction
of ultrasoft pseudopotentials is that the gradients of the
free energy with respect to the orbitals |¢,,) are now given
by

lgn) = (H — €n5)|én), (6)

where S = 1+3", - Q;;|6;)(B;| is an overlap matrix [note
that (6) holds only if the Hamiltonian is diagonal in the
subspace spanned by |¢,)]. Similarly the forces on the
ions at Ry are given by (same assumption)

bu).

dF
iRy = En:fn<¢n
(7)

Details of the modified conjugate-gradient algorithm will
be published elsewhere.2°

We tested the ultrasoft pseudopotentials for Cu and
V by performing total energy calculations for the crys-
talline phases. With an energy cutoff of 150 eV for Cu
and V the equilibrium lattice constant, bulk modulus,
and the structural energy differences for different phases
are fully converged and in good agreement with the full-
potential linear muffin-tin-orbital calculations of Pax-
ton, Methfessel, and Polatoglou,'” if the same exchange-
correlation functional is used (Wigner interpolation®).
For the simulation of the liquid metals, we used the
exchange-correlations functional of Ceperley and Alder
parametrized by Perdew and Zunger,'® which reduces the
equilibrium volume by 3% (copper) to 5% (vanadium).
Details will be published elsewhere.??

For the simulation of liquid copper and vanadium we
considered ensembles of 50 atoms in a periodically re-
peated cubic cell of side L = 16.46 a.u. for copper (cor-
responding to the experimental density p = 7.98 g cm ™3
at T = 1500 K) and L = 17.46 a.u. for vanadium (corre-
sponding to a density of p = 5.36 g cm™3 at T = 2200 K).
The simulation is started for a configuration of the liquid
generated using classical molecular dynamics and tight-
binding-bond pair forces.?! For the ab initio molecular-
dynamics calculations the wave functions at the I" point
were calculated for 300 bands and 175 bands for Cu and

O[H(V*=,Ry) — €, S(Ry)]
ORN
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V respectively, i.e., 25 and 50 bands more than neces-
sary to accommodate the 4s and 3d valence electrons.
After switching to the quantum many-body forces, the
system approached equilibrium very rapidly. With a
time step of At = 1.5 x 107'® s and a Nosé mass of
Q = (0.5 x 10%)m, a.u.? the system shows excellent en-
ergy conservation: For vanadium the total free energy of
the coupled ion-electron-thermostat system remains con-
stant within 0.008 eV per atom over a run of 1.0 ps (650
time steps) (see Fig. 1); i.e., the drift is smaller than
0.1% of the cohesive energy.

In Fig. 2 we report the pair correlation functions of
l-Cu and I-V as obtained by our simulation, and we
compare them with experimental data.?? For I-Cu the
agreement between theory and experiment is excellent,
even for the second and third peaks in g(R). This is re-
markable in view of the small size of the simulation cell.
The position of the first peak agrees well with nearest-
neighbor distance in crystalline face-centered-cubic Cu
(d = 2.55 A); the somewhat asymmetric shape of the
peak corresponds to a close random packing of rather
hard spheres. The coordination number evaluated by in-
tegrating over the first peak in the radial distribution
function up to the first minimum is N, = 13.6 +0.5. The
agreement between theory and experiment is less spectac-
ular for [-V, for two reasons. First, it is known that the
LDA and especially the Ceperley-Alder LDA functional
lead to an underestimate of the equilibrium density com-
pared with experiment. Second, the diffraction data for
the liquid “early” 3d metals Ti,V,Cr,Mn are of limited
accuracy, due to the difficulties arising from high melt-
ing temperatures and high vapor pressure.?? Nonetheless,
the results are interesting: The first peak in g(R) is much
broader and more symmetric; it is centered around the
theoretical first and second neighbor distances in body-
centered cubic vanadium (d; = 2.52 A, d, =293 A), and
the coordination number is N, = 12.6 &+ 0.4. Evidently
this arises from much softer interatomic potentials. The
important thing is that the local order in the liquid metal
reflects the local order in the stable crystalline phase and
that this is correctly predicted by ab initio simulations.

As a brief check of the dynamical properties we have
calculated the self-diffusion coefficients. For I-Cu we find
D =56+0.4x 10" m?/s at T = 1500 K in excellent
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FIG. 1. Variation of the total free energy (upper curve) and
of the potential energy (lower curve) of liquid V at T' = 2200
K along an ab initio MD run of 1 ps (see text).
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FIG. 2. Pair correlation function g(R) for liquid Cu (a) and

V (b). Solid line, ab initio MD; squares, experimental data
taken from Ref. 21.
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FIG. 3. Electronic density of states for fcc and I-Cu (a) and
for bcec and -V (b). Dotted curve, crystalline DOS; dashed
curve, liquid DOS, calculated from the eigenvalues at the
I'-point and Gaussian broadening; solid curve, liquid DOS,
calculated on a 6 x 6 x 6 grid of k points. For Cu the dashed
curve is aligned with the solid curve; the corresponding Fermi
level is shown by a dashed vertical line (see text).
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agreement with the experimental values of D = 4.6 x107°
m2/s at T = 1413 K and D = 6.0 x 107° m?/s at
T = 1533 K, respectively.?? For vanadium we find D =
9.3 x 1072 m?2/s at T = 2200 K; no experimental data
are available. Finally we show in Fig. 3 the electronic
densities of states (DOS). A calculation of the DOS for
the T" point only leads to an s-electron DOS with a se-
ries of pseudogaps which are a consequence of the rather
small sample. This could lead to a misestimate of the po-
sition of the d-band maximum relative to the Fermi edge.
Therefore, the calculation of the DOS was repeated for a
small number of configurations on a 6 X 6 x 6 grid in the
irreducible wedge of the simple cubic BZ. The resulting
DOS for the liquid metals is smooth and astonishingly
close to that of the stable crystalline phase. For I-Cu the
similarity of the electronic spectra of I- and fcc-Cu is con-
firmed by the photoemission spectra of Norris.24 For I-V
the calculated DOS shows a broad minimum just above
the Fermi level, reflecting the deep DOS-minimum char-
acteristic for the bcc 3d metals. Hence the differences in
the local atomic arrangement in the two liquid metals is
reflected in their electronic structure.

For [-Cu, our results may be compared with recent ab
initio MD simulations by Pasquarello et al.2®> These cal-
culations are based on ultrasoft pseudopotentials similar
to ours, a pseudo-Newtonian dynamics for the electronic
degrees of freedom, and a two-thermostat technique? for
the control of adiabaticity. The function of the electronic
Nosé thermostat is to drain the energy transferred from
the ions to the electrons and to put a limit to the devi-
ation from the Born-Oppenheimer surface. Both results
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are in excellent agreement. We think that our method is
computationally more efficient, because of the possibility
to use a much larger time step (typically a factor of 5—
10; a time step of 0.26 fs was used in Ref. 25) outweighs
the increased computational effort arising for the calcu-
lation of the LDA ground state after each time step (due
to the success of the prediction of the new wave func-
tion by subspace alignment only three to four conjugate-
gradient iterations are needed; one conjugate gradient
step takes about twice the time as a conventional Car-
Parrinello time step). However, the advantages of the
method should be most important for metals with an
open d shell. In this case the high DOS at the Fermi
level makes the nonadiabaticity problem particularly se-
vere, and atomic displacement will induce a strong mix-
ing of the electron states around the Fermi level. With
our technique, these problems are perfectly under con-
trol.

To conclude, we have shown that ab initio finite-
temperature local-density-functional MD simulations are
possible for elements with closed and open d shells. This
will allow us to study the structural and electronic prop-
erties in liquids, glasses, and clusters containing transi-
tion metals and at transition metal surfaces and inter-
faces using parameter-free ab initio techniques.

Our work has been supported by Siemens Nixdorf Aus-
tria within the contract of cooperation with the Tech-
nische Universitat Wien. Most calculations have been
done on the Fujitsu-SNI S100 computer of the Computer
Center of the Technische Universitat Wien.
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