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Boson localization and correlated pinning of superconducting vortex arrays
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A theory of vortex pinning in high-temperature superconductors by correlated disorder in the form of
twin boundaries, grain boundaries, and columnar defects is described. Mapping vortex trajectories onto
boson world lines leads to a "superfluid" flux liquid at high temperatures, as well as low-temperature
' Bose-glass" and "Mott-insulator" phases, in which the flux lines are localized. Currents perpendicular
to the average vortex direction act like an electric field applied to charged bosons, while currents parallel
to the field act like an imaginary magnetic field in this approach. We discuss the equilibrium and dy-
namic properties of these phases, and propose a scaling theory for the flux-liquid to Bose-glass transition,
at which the linear resistivity vanishes. Although the Bose-glass predictions share some features with
vortex-glass behavior predicted for point disorder, the response to tilting the magnetic field in the two
cases difters dramatically, thus allowing the two theories to be distinguished experimentally.

I. INTRODUCTION AND SUMMARY

A. Overview

The static and dynamic response of the Aux lines in the
cuprate high-temperature superconductors has been the
subject of numerous recent experimental and theoretical
investigations. ' Interest in this problem is motivated in
part by important technological questions, but also by the
intellectual challenge of dealing with large assemblies of
flexible lines subject to both thermal fluctuations and pin-
ning by point, line, and planar disorder. A complete un-
derstanding requires new ideas and phases, including en-
tangled Aux liquids, with a linear resistivity, and if point-
like disorder is important, a possible vortex-glass phase,
with zero linear resistivity and nonlinear current-voltage
characteristics. Although the original theory described
the vortex glass in terms of undetermined critical ex-
ponents, the nonlinear resistive properties may be es-
timated more quantitatively in certain intermediate re-
gimes via a collective pinning theory.

On the theoretical side, the question of whether a dis-
tinct vortex-glass phase, dominated by point disorder, ac-
tually exists in three dimensions is still not completely
settled. It is clear that a single vortex line, subject to ran-
dom point pinning and pulled through the sample by a
current-induced Lorentz force, exhibits glassy behavior.
The behavior of interacting fluxon assemblies is more sub-
tle, however. In dense Aux liquids, for example, collisions
and close encounters between vortices screen out a weak
random potential, whose effect on the equilibrium prop-
erties may then be calculated with ordinary perturbation
theory. Similar conclusions apply to the dynamical
response of dense Aux liquids. '

Explicit glassy behavior, in the form of nonlinear
current-voltage characteristics, does emerge for dense
lines in the low-temperature limit from a collective pin-

ning approach, which assumes local crystalline order
and then treats phonon distortions caused by the random
pinning potential. The nonlinear resistivity which re-
sults from such theories would be correct at all current
and length scales if the "topology" of nearest neighbors
surrounding every line in the moving flux assembly sub-
jected to a Lorentz force remained fixed. It is unclear,
however, how topology-changing defects such as disloca-
tions, vacancies, and interstitials alter the quantitative
theoretical predictions at the very lowest currents and
longest length scales.

Computer simulations of a simplified random gauge-
field model on a lattice haUe found evidence for a genuine
vortex-glass phase in three dimensions. ' There is as yet
no biasing of the magnetic-field direction in these simula-
tions, however: The average magnetic field is zero. The
London penetration depth in the gauge glass, moreover,
is infinite, so that vortices interact logarithmically at all
length scales. It is possible that the vortex-glass phase
exists in the case of long-range interactions, but disap-
pears when the London penetration depth is finite. "

To counter such theoretical uncertainties, we can of
course appeal to striking experiments on vortex transport
in yittrium barium copper oxide (YBCO), '2' which pro-
vide impressive evidence of a genuine phase transition.
One might question, however, whether these transitions
are really caused by uncorrelated "point" disorder in the
form of, say, oxygen vacancies, as assumed in the original
vortex-glass phenomenology. The films studied by Koch
et al. ' are heavily microtwinned, and such twins usually
extend completely through the sample along the c axis.
One also expects grain boundaries, as well as forests of
screw dislocations parallel to the growth direction, ' pro-
viding another source of correlated disorder along the c
axis. Although dislocations are probably absent in
significant concentrations in the large single crystals of
Ref. 13, these saInples still contain twins, with spacings
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ranging from micrometers down to several hundred
angstroms. Most twins lie in planes spanned by the c axis
and in one of two perpendicular directions inclined at
+45 to the principal axes of the local ab plane. The
resistivity measurements of Refs. 12 and 13 were all taken
with the field aligned with the c axis, a direction which
maximizes effects of the correlated pinning centers dis-
cussed above.

Experimental observation of a sharp downward dip in
the resistivity as the field orientation is rotated through
the c direction' provided early evidence of twin-
boundary pinning. One would expect the resistivity to be
a slowly varying function of orientation angle near the c
direction if point disorder dominated. Additional sup-
port for this view appears in recent low-temperature
neutron-diffraction measurements of heavily twinned
YBCO. ' A square pattern of Bragg peaks strongly sug-
gestive of pinning by two orthogonal families of twin
planes appeared for fields parallel to the c axis. Only
when the field was tilted appreciably away from this
direction did the expected triangular pattern of peaks ap-
pear.

There are now new experiments which confirm the im-
portance of twins. Charalambous et al. ' have found an
abrupt shoulder in the temperature-dependent resistivity
of twinned YBCO crystals, provided the field is oriented
perpendicular to the c axis. The behavior is quite non-
linear near the shoulder, which becomes sharper at low
currents. This resistivity drop, which is distinctly
different from the vortex-glass-like behavior observed for
fields parallel to c, was interpreted as evidence for first-
order freezing transition into an Abrikosov Aux lattice.
The field is inclined at +45 to the twin boundaries in this
geometry, significantly reducing their inAuence as pin-
ning centers. Extensive investigations of twin-boundary
pinning by Kwok and co-workers' as a function of angle
also reveal a shoulder, but only when the field is tipped
appreciably away from alignment with the twin planes.
In completely twin free sample-s, a sudden shoulder is ob-
served even for fields along the c axis. Earlier torsional
oscillator experiments by Farrell and co-workers' on
twin-free YBCO also found a sharp feature whose depen-
dence of the tipping angle agreed with that expected for a
freezing transition.

Perhaps the best evidence for first-order freezing in the
absence of twins comes from recent work by Safar et al. ,
who have studied untwinned, single-crystal YBCO with
picovolt voltage sensitivity and millikelvin temperature
resolution. These authors find hysteresis loops, strongly
suggesting that the melting transition of the Abrikosov
Aux lattice is first order in the clean limit. We should
stress that point disorder, in the form of oxygen vacan-
cies, is undoubtedly present in all the above experiments.
This pinning is, however, evidently quite weak at the
elevated temperatures of the melting transition expected
in pure systems. The theoretical arguments predicting a
j7rst order transition ' in cle-an limit are reviewed in Ap-
pendix A.

The above experiments do not mean that point disor-
der can be neglected entirely. It is well known that any
amount of point disorder, however small, will break up

crystalline translational order on sufficiently long length
scales. Worthington et al. present evidence for
separate vortex melting and vortex-glass transitions in
the same sample. Observation of vortex-glass-like effects
required irradiation to enhance the point disorder and oc-
curred at a lower temperature than melting. Freezing
was argued to lead initially to a "vortex slush" phase
with large but finite regions of translational order and a
small but nonzero resistivity. The hysteresis loops ob-
served in twin-free YBCO by Safar et al. eventually
disappear at sufticiently high magnetic fields. One ex-
planation is that disorder increases in importance at high
fields, because the resistivity drop now occurs at slightly
lower temperatures. Thus first-order melting at moderate
fields could be replaced by a continuous vortex-glass tran-
sition when the field is high. Other explanations are pos-
sible, however.

B. Correlated vs point disorder

To understand experiments such as those of Refs. 12
and 13, it may be critical to determine how correlated dis-
order affects the configurations and dynamics of vortex
assemblies at both high and low temperatures. One
significant source of correlated disorder is surely twin
boundaries. Potentially even more important for applica-
tions are columnar pins, produced by bombardment of
crystals with energetic heavy ions of tin, iodine, or
lead. In YBa2Cu307, for example, Civale et al.
have reported greatly enhanced pinning due to long
aligned columns of damaged material, 15 pm or more in
length and -60 A in diameter. Even more striking re-
sults on thallium-based compounds have been reported
by Budhani, Suenaga, and Liou. The concentration of
columnar pins is easy to control experimentally (unlike
the density of twin boundaries) and may lead to a
significant upward shift in the apparent irreversibility
line. These two kinds of correlated disorder are illus-
trated schematically in Fig. 1.

The main focus of this paper is correlated disorder as
embodied in columnar pins. The behavior induced by a
mosaic of grain boundaries [see Fig. 1(c)], running ran-
dornly at +45 angles within the local (a, b ) plane, should
be similar, however, at least at scales large compared to
the mosaic size. Related behavior might also be expected
due to random arrays of grain boundaries aligned with
the c axis. We shall discuss as well Aux motion transverse
to single family of parallel twin boundaries, which is
relevant to the physics at scales smaller than the mosaic
size.

Our emphasis on correlated pinning allows us to map
the physics of Aux lines onto the problem of localization
of quantum-mechanical bosons in two dimensions, simi-
lar to an analogy proposed earlier for vortices in pure sys-
tems. This mapping exploits methods developed to un-
derstand the behavior of He films on disordered sub-
strates. ' At low temperatures we find a "Bose-glass"
phase, with Aux lines localized on columnar pins, separat-
ed by a sharp phase transition from an entangled liquid of
delocalized lines. This Bose glass has an infinite tilt
modulus c44 and is in fact stable over a finite range of tip-
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FIG. 2. Mott insulator phase. (a) At low temperatures, every
columnar pin is occupied with a flux line, (b) B vs H constitutive
relation showing the lock in to the matching field B&=go/d
over a finite range of external 6elds H.
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FIG. 1. Varieties of correlated disorder. In (a), columnar
pins of diameter 2bQ and average separation d pierce a sample of
thickness L. A single twin plane of thickness 2bQ is shown in
(b). In (c), an edge-on view of twin boundaries inclined at +45'
angles within the ab plane is shown.

ping angles away from the direction parallel to the corre-
lated disorder. The resistivity vanishes, in the sense that
current-voltage characteristics are highly nonlinear.
Specifically, we find that the electric field A' induced by a
small current J in the hmit J—+0 scales in the thermo-
dynamic limit like

6'- exp[ —(Ek /T )(Jo /J )'~3] .

Here Ek and Jo are characteristic energy and current
scales calculated (up to constants of order unity) in Sec.
IV. Transport in this regime bears a remarkable resem-
blance to variable range hopping of electrons in disor-
dered semiconductors. The most important excitations
in this regime are "double kinks, " which allow vortex
lines to "tunnel" to distant unoccupied defects with near-
ly the same energy. At intermediate current scales,
J, &J &J, , the behavior is also nonlinear, with
@-exp[—(Ek/T)J, /J]. The relevant excitations are
now "half loops, " which allow pinned vortices to escape
into interstitial regions. Depending on the field strength,
temperature, sample thickness, and pin density, a number
of other interesting regimes are possible. See Sec. IV for
details.

The theory also predicts a "Mott-insulator" phase at
low temperatures when the Auxon density exactly
matches the density of columnar pins. See Fig. 2. Both
the tilt modulus and compressional modulus c» are

infinite in the Mott insulator. The magnetic field is
locked at the "matching field" B =B&——n;„italo over a
range of external magnetic inductions H within in this
phase, as shown in Fig. 2. Here, n;„ is the areal density
of columnar pins (which are assumed for simplicity to
pass completely through the sample) and go=Pic/2e is
the Aux quantum. Flux motion in this regime is also
highly nonlinear and resembles transport in the Meissner
phase. As illustrated in Fig. 3, the Mott insulator is
buried deep within the Bose glass phase, where relaxation
times are very long. Equilibration time problems may
thus make the Mott insulator dificult to access experi-
mentally.

As is the case for point disorder, the effect of correlat-
ed pinning on an entangled Aux liquid is rather benign
and can be calculated using perturbation theory. ' Al««

though we expect the usual linear resistivity in this phase,
correlated disorder does show up as a ridge of scattering
which might be observable in neutron-diffraction experi-
ments. '

Figure 3 shows a schematic phase diagram, indicating
the three phases discussed above. Also shown is a dashed
curve B*(T),above which interactions play an important
role in determining vortex configurations and dynamics
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FIG. 3. Phase diagram in limit of strong correlated disorder.
Mott insulator appears as a line phase at B=B&. Interactions
are important in determining the localization length and trans-
port at intermediate current scales above the dashed crossover
line B*(T). A sharp phase transition line THG(B) separates the
flux liquid from the Bose glass.
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in the low-temperature phases. Of particular interest is
the transition at TBG from the Bose-glass to the
entangled-Aux-liquid or "superAuid" phase, which we
identify with the experimentally observed "irreversibility
line. " Although an exact theory of this transition is not
available, its critical behavior can be parametrized in
terms of a scaling theory with just two undetermined crit-
ical exponents, as in the vortex-glass phenomenology.
The root-mean-squared transverse wandering li(T) of a
localized vortex line transverse to the field direction is ex-
pected to diverge as T~TBz from below, '

&i(T)- 1

(TBo —T)

The time scale ~ for relaxation of a fluctuation with this
size is assumed to diverge with a new critical exponent z,

(1.3)

Hi(T)-+[Tiio(0) —T] (1.6)

For Hz (H~, we have a transverse Meissner effect, i.e.,
Bi=0. If we approach TBo(0) by letting ~Hi~ tend to
zero (i.e., on path A in Fig. 4), scaling implies that the
resistivity must vanish according to

ing temperature, TvG should actually increase with in-
creasing tilt, i.e., a )0.

Correlated disorder, on the other hand, is turned off as
the tilt is increased: Vortices will eventually "tunnel"
through columnar and twin disorder at some average tip-
ping angle for large enough H~. Indeed, the scaling
theory predicts a sharply decreasing cusp in the phase
boundary TBo(Hi ) as the field is tilted away from the c
axis —see Fig. 4. The perpendicular critical field Hi(T)
marking this transition out of the Bose glass to a Aux
liquid is predicted to vary as

We then find that the resistivity p(T) should vanish as
T~T~G from above,

(1.4)

Precisely at TBG, scaling predicts a power-law relation
between the electric field @ and current,

J( 1+Z')/3 (1.5)
These critical-exponent relations are remarkably simi-

lar to those predicted by the vortex-glass theory.
Indeed, the analogous vortex-glass predictions near a
transition temperature Tvo are that p-( T Tvo )

'—
and 6 -J"+'/, where v and z are yet another pair of
undetermined exponents. How can one easily decide
whether vortex-glass or Bose-glass physics dominates in a
given experimental situation? In this paper we use "vor-
tex glass" to mean a distinct thermodynamic phase, with
zero linear resistivity, dominated by point disorder. By
"Bose glass" we mean an alternative thermodynamic
phase, again with zero linear resistivity, but now dom-
inated by correlated disorder, in the form of lines or
planes which extend across an appreciable fraction of the
sample thickness. These phases have similar "glassy"
properties, but very different underlying microscopic
physics. In contrast to point disorder, which promotes
Aux-line wandering and entanglement, correlated disor-
der inhibits wandering and promotes localization.

Fortunately, these two disorder-induced "glasses" have
dramatically different responses to tipping the external
magnetic field away from the c axis. Suppose for simpli-
city that the disorder is strong enough to suppress first-
order freezing into an Abrikosov fiux crystal for H~~c. If
point disorder causes a vortex-glass transition, then the
resulting irreversibility line Tvo(Hi) should be an ana-
lytic function of the transverse magnetic field as H~ is
varied through H~=0. Except for the usual Ginzburg-
Landau anisotropies associated with the copper-oxide
planes, point disorder should act on a tilted vortex ar-
ray just as it does for H~ =0. The vortex-glass tempera-
ture should thus be a simple parabolic function of Hz for
small perpendicular fields, TvG(Hi ) = Tvo(0)[1+aHi ].
If the vortex-glass transition tracks the equilibrium melt-

Indications of a cusp in the irreversibility line for field
orientations near the c axis in twinned single-crystal
YBCO were noted years ago by Worthington et al.
More generally, the theory predicts an asymptotic scaling
form for the linear resistivity,

(t g)=~i ~ ' f(g~t~ )

&& T (H~ fixed)

ygUX LIQUID)

(Hg)

CRYSTAL RYSTAL

Hg

FIG. 4. Phase diagram in the ( T,Hj ) plane with the field H,
along direction of the correlated disorder fixed. Note the sharp
cusp in TB&(Hj ) for small H~. The crystalline phase is an Abri-
kosov lattice for fields tipped away from a single family of paral-
lel twins. The "crystal" is a smecticlike phase for columnar pins
or a mosaic of twin boundaries.

where t=(T TBo)/TB—o and 8=Hi/H, is the tilt an-
gle. Note that Eqs. (1.4)—(1.7) represent four distinct pre-
dictions depending on only two critical exponents. Re-
cent simulations of a simplified model of lattice bosons in
imaginary time yield the estimates v' = 1+0.01 and
z'=6+0. 5. A fit of the data in Refs. 12 and 13 to the
Bose-glass scaling hypothesis yields v' = 1.3+0.5 and
z'=7+2. The cusp wi11 be rounded off in thin samples
due to finite-size effects, which are particularly pro-
nounced in the direction parallel to the correlated disor-
der.
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The transition curves leading to the tip of the cusp in
Fig. 4 are in a different universality class than the Bose-
glass transition which occurs for perfect alignment with
the correlated disorder. The physics here is reAected in a
kind of commensurate-incommensurate transition:
Vortices initially running parallel to extended defects in
the Bose glass develop a series of solitonlike kinks upon
crossing this phase boundary. These kinks allow jumps
between neighboring twin planes, grain boundaries,
and/or line defects, and cause the vortex arrays to tilt
and entangle in a flux-liquid phase (see Ref. 37 and Sec.
IV). At low temperatures the transition may instead
proceed from a Bose glass into a tilted (and anisotropic)
Abrikosov Aux lattice, broken up by point disorder only
at the very largest length scales. If the tilt is away from a
single family of parallel twins, crystalline order will ex-
tend quite far in both directions perpendicular to the
average Aux-line orientation. A first-order transition line
T (H~) then presumably separates the Aux liquid from
this crystal. For columnar pins the low-temperature
crystalline phase is a series of smecticlike vortex sheets,
periodic along the direction of the columns. As discussed
in Appendix A, this smectic phase can arise via a continu-
ous freezing transition (dashed line in Fig. 4) from the
Aux liquid. The resistivity near the tilted Aux-
liquid —to —Bose-glass transition line is determined by the
density of kinks. We have not tried to analyze the
Bose-glass —to —Aux-crystal transition which is presum-
ably induced by tilting at low temperatures. There may
in fact be a small sliver of Aux liquid interposed between
the Bose-glass and crystalline phases at all nonzero tem-
peratures, in analogy to what happens near H, &

in the ab-
sence of correlated disorder.

Most realistic samples are, of course, subject to both
point and correlated disorder, and the analysis of this pa-
per only applies to field, temperature, and current ranges
where point disorder can be neglected. The experimental
evidence for first-order melting in the absence of correlat-
ed pinning' suggests that point disorder in single
crystals may not be important near the irreversibi1ity line,
unless artificially enhanced by neutron or proton bom-
bardment. Calculations on Aux lines in 1+1 dimen-
sions with both columnar and point disorder included
show that correlated disorder dominates at the transition
if the point disorder is weak. We expect that similar
conclusions apply in 2+1 dimensions. Point disorder
may affect the asymptotic dynamics of the low-
temperature phase, however. One possibility is that an-
isotropic excitations —influenced by both correlated and
point pinning —control the asymptotic dynamics at very
small currents. Another is that point disorder ultimately
dominates in the low-temperature phase as the current
vanishes. The relevant length scale for this behavior can
be of order kilometers, however (see Sec. IVE), i.e., so
large as to be experimentally unobservable.

Tno in the presence of correlated disorder. J,(T) is the
current (perpendicular to the average field direction)
which produces a Lorentz force f, =J,gp/c strong
enough so that significant thermal activation is no longer
needed for an isolated vortex to break away from its pin-
ning site. For J & J, ( T), one is in a Aux-flow transport re-
gime, only mildly perturbed by pinning. As illustrated in
Fig. 5, the critical currents for high-T, superconductors
are often much larger than the current scales J which
control the behavior as J~O. The results summarized
below are restricted to the regime B &B*(T)in Fig. 3, so
that interactions between vortices are relatively unimpor-
tant. See Sec. IVG for critical currents due to moving
vortex bundles when B & B*(T).

The renormalization of critical currents by thermal
Auctuations is illustrated in Fig. 6. We model a columnar
pin by a cylindrical well with vortex binding energy per
unit length Uo and radius co ~ The solution of the London
and Ginzburg-Landau equations for the vortex line near
the cylindrical cavity with radius co gives, for the binding
energy, '

Uo = c.oln
co

v'2g. ,
'2

cp »V 2$~b

(1.9a)
co

Uo =co
2(,b

cp «+2( b

Up = —,'Epln[1+(cp/&2g, b ) ] .

The critical current is determined by the maximal pin-
ning force the vortex line experiences near a linear defect.
Neglecting interaction effects, one finds, at zero tempera-
ture,

3&3
J~ —Jzb~ cp & 2g,4

(1.9b)2
27&2

64
co

Jpb~ cp & 2kab~2/ b

where J~b =cpp/12&3~ A,,b g,b is the pair-breaking
current. This critical current, up to numerical constants

E —expC —(J/ J) j

with Ep=(pp/47TA«b) and where g,b is the superconduct-
ing coherence length. A useful formula which interpo-
lates between these limits is

C. Critical currents and instabilities for J~~B

The analogy with the quantum mechanics of two-
dimensional particles also allows simple estimates of the
temperature dependence of critical currents J,(T) below

Jc(T)

FIG. 5. Schematic current-voltage characteristic in the
Bose-glass phase. Conventional Aux-Aow behavior is recovered
for J)J, . A distinct current scale J controls the variable-range
hopping behavior near the origin.
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4

(~) = [x( ),y(~)] (planar disorder, T, & T & Td ), (1.11a)

I
I

'~

2e& (v')

2bp

vo

again for T greater than a characteristic temperature
scale T&. For a single family of parallel twins with aver-
age spacing d, a depinning temperature can again be
defined by the condition li( Td ) =d, where li is the local-
ization length perpendicular to the planes. When
T & Td, the collective pinning result for the critical
current is

(a)

2bp

(b) b()
J,(T)=J,(0) (T'/T)

FIG. 6. Schematic of a flux line interacting with a columnar
pin. (a) The line is confined to a tube of radius l~(T). (b) Cylin-
drical square well potential which models the binding of the line
to the pin. The binding potential is reduced from Up to U(T)
by thermal fluctuations.

(planar disorder, T) Td~) . (1.11b)

It is interesting to contrast Eqs. (1.10) and (1.11) with
the analogous result for point disorder, namely,

—(T/T)J,(T)=J,(0)e ' ~ ' (point disorder), (1.12)

and logarithmic corrections, is also given by equating the
Lorentz force with U0/g, b, i.e.,

cU0 /4 04a b (1.9c)

(line disorder, T, & T & Td~) . (1.10a)

Here T*=+e,U0b0, with b 0m Iacx, 02i$,&J, is the
energy scale of the pin.

For T) Td, where Td is a temperature such that
Ii(Td~ ) =d, the spacing between pins, the critical current
falls off more slowly,

J,(T)=J, (0)
&o

3

(line disorder, T ) Td~ ), (1.10b)

reAecting the collective pinning of one line by many pins.
The discussion of critical currents for planar pins such

as twin boundaries is similar, except that now one needs
to solve a problem in one-dimensional quantum mechan-
ics. ' We show here that, for I.orentz forces perpendicu-
lar to the twins, the renormalized critical current is ap-
proximately

In the presence of thermal Auctuations, however, Uo
should be replaced by a smaller binding free energy U( T)
per unit length, to account for the entropy lost by
confining the Aux line to the vicinity of the pin. This en-
tropy is determined by the zero-point energy in the
ground state of a fictitious two-dimensional quantum-
mechanical particle confined to the cylindrical well. ' As
illustrated in Fig. 6, g, b should now be replaced by li(T),
which is the spatial extent of the corresponding ground-
state wave function. For T~ T„where T& is a charac-
teristic pinning temperature estimated in Appendix 0,
we find a strong thermal renormalization of J, ( T),

J (T) J (0)e
—3(T/T )

where T is a characteristic energy scale for point disor-
der. The relative importance of pinning by points, lines,
and planes in a given context depends crucially of course
on the characteristic energies T* or T for each type of
defect. We stress again that interactions are not included
in the above estimates. Nevertheless, the different tem-
perature dependences embodied in Eqs. (1.10)—(1.12)
show clearly that point disorder is particularly suscepti-
ble to being thermally neutralized, while planar and
columnar disorder are much more robust.

We have also considered the stability of pinned vortex
lines to currents Jparallel to B. There is extensive work
on this problem by Clem, Brandt, and others during
the classic (pre-high-T, ) era of superconductivity
research. A nonzero J, tends to produce helical instabili-
ties in vortex arrays. In an entangled Aux liquid, one
would expect this instability to lead to a linear resistivity,
just as for currents perpendicular to the lines. As shown
by Brandt, a nonzero shear modulus in a weakly pinned
Abrikosov Aux lattice resists this instability, suggesting
that J~~B is an excellent geometry in which to study melt-
ing or a possible entanglement-induced shear modulus. '

A detailed study of the response of interacting vortices
in the Bose-glass or Mott-insulator phase to J~~B in the
presence of thermal Auctuations is beyond the scope of
this paper. We do show, however, that J, acts on Aux
lines like an imaginary magnetic field applied to
quantum-mechanical bosons. We then use this analogy
to calculate the probability per unit length of the
thermally activated escape of a single vortex trapped on a
columnar pin to form an unboundedly growing helix. Be-
cause the magnetic field is imaginary, it adds a destabiliz-
ing parabolic contribution to the binding potential. The
pitch of the unstable helical eigenmode plays the role of
the cyclotron frequency. For small currents J„ the es-
cape over this barrier can be calculated via the WKB ap-
proximation of elementary quantum mechanics. The
physics is similar to nuclear P decay.
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D. Outline

In Sec. II we first review a simple model of interacting
flux lines subjected to correlated disorder. The analogy
with quantum mechanics is illustrated by estimating criti-
cal currents for columnar and planar pins. Having estab-
lished the basic energy and length scales, we then discuss
a tight-binding model which assumes that the vortices
spend most of the time in the vicinity of a random array
of columnar pins. The instability of a bound flux line to a
current J~~B is described as well.

In Sec. III we describe the phases and phase diagrams
expected for the tight-binding model developed in Sec.
II. ' The responses to compression and tilt are discussed,
as we11 as density correlations in the flux liquid. We
determine the range of translational correlations in the
presence of correlated disorder and describe what is
known about the transition from the Mott insulator to
the Bose glass.

Section IV treats the dynamics of pinned flux lines at
1ow temperatures. Bose-glass dynamics mediated by
half-loop and double-kink configurations is described.
We point out that half-loop configurations may be partic-
ularly important in the Mott insulator and discuss vari-
ous percolationlike transport regimes which occur over
immediate length scales in the Bose glass. We argue that
variable-range hopping via "superkinks" dominates the
asymptotic dynamics at the lowest currents and largest
length scales in the Bose glass. We also review the stabil-
ity of this picture of the dynamics to both tilting the field
and the introduction of point disorder. We discuss as
well the dynamics of vortex bundles at high fields where
short-range crystalline order is important.

In Sec. V we describe the scaling theory of the Bose-
glass —to —flux-liquid transition, with an emphasis on its
predictions about the response of flux lines to tilt, and
discuss the stability of the transition to weak point disor-
der.

Section VI describes the changes needed to adapt the
theory to pinning by mosaics and single families of twin
boundaries.

II. FREE ENERGIES, PATH INTEGRALS,
AND QUANTUM MECHANICS

In this section we introduce and analyze statistical sys-
tems of vortices in the presence of correlated disorder.
The models considered are the simplest ones which cap-
ture both the physics of flux-line localization and of in-
teractions. Understanding the relevant free energies re-
quires evaluation of path integrals over the trajectories by
which vortex lines cross the sample in the direction of the
applied field. These path integrals can be evaluated by
exploiting an analogy with the quantum mechanics of
two-dimensional particles in imaginary time. We illus-
trate the use of this technique both for isolated vortices
and interacting assemblies of lines.

A. Model free energy

We start with a model free energy F& for X flux lines in
a sample of thickness I., defined by their trajectories

[rj.(z) j as they traverse a sample with both columnar
pins and external magnetic field aligned with the z axis,
i.e., in the direction perpendicular to the CuO2 planes,

2
dr (z)e—yJ ' az

0 dz

with

+—g f V[~r, (z) —r (z)~]dz
2;~ 0

N
+ g f VD(r, (z))dz,

j=1

M
VD(r)= g V((r —Rk) .

k=1

(2.1a)

(2.1b)

2
drj «M, /M,
dz

(2.2)

for the most important vortex configurations. The in-
teractions can extend to arbitrarily distant flux lines, but
have been taken to be local in z. Locality in z is a good
approximation for describing fluctuations in the "nonre-
lativistic" limit of nearly straight lines, which for aniso-
tropic systems again translates into the condition Eq.
(2.2)—see Appendix B. Correlated disorder only pushes
the system further into this "nonrelativistic" regime.
Equation (2.2) is well satisfied in a high-temperature flux
liquid except close to the upper critical field as discussed
in Appendix B.

We model VD(r) for simplicity by a random array of
identical cylindrical traps of average spacing d passing
completely through the sample with well depth per unit
length Uo and effective radius bo. Here

b, =max[ c„&2g.b j, (2.3)

in accordance with the calculations of Mkrtchyan and
Schmidt. Here co =25 —40 A is the radius of the colum-
nar pins and g,b is the superconducting coherence length
in the ab plane. The characteristic temperature To such

Here V(
~ r; —

r~ ~ ) =2e+0 ( r /A, ,b ) is the interaction poten-
tial between lines with in-plane London penetration
depth A,,b and the random potential VD(r) arises from a
z-independent set of M disorder-induced columnar pin-
ning potentials V, (r) centered on sites (Rz j. The tilt
modulus Z, =(M~/M, )coin(k, ,b/g, b ), where the material
anisotropy is embodied in the effective-mass ratio
Mq/M, &&1, and so=($0/4vrk, b) is th, e energy scale for
the interactions. A slightly better approximation which
takes interactions into account when B ))Po/i, ,b is

(My /M )spin(ao /g, b ), where ao =(Po/B )' is the
vortex-lattice constant. For B 5Po/iL, &, we have Z, =so
because of magnetic couplings between the CuOz planes.
The elastic contribution —,e&~dr /dz

~

is the first nontrivi-
al term in a small tipping angle expansion of the line en-
ergy of nearly straight vortex lines. The stretching ener-
gy evaluated in this approximation should be quantita-
tively correct provided



48 BOSON LOCALIZATION AND CORRELATED PINNING OF. . . 13 067

that &2g,b( To ) =co and above which bo is proportional
to the coherence length is estimated in Appendix D.
Upon assuming the pins are parallel and randomly distri-
buted with bo «d, we find that VD=(bo/d) Uo, while
the random potential fluctuations 5VD(r)= VD(r) —VD

satisfy

—F~ /TZ, = $ e" f2)r, (z) . fSr~(z)e
N=O

where the chemical potential

p =E, H—go/4m

(2.5)

(2.6)

5VD(r)5VD(r') =b, ,5' '(r —r'),
with

(2.4a)
changes sign at 0,&. Expressions for equilibrium correla-
tion functions are similar. To average over a quenched
random distribution of columnar pins, we must also
evaluate quantities such as

h, , =(Uobo/d )[1+8(bo/d )] . (2.4b)

The overbars represent a quenched random average over
the disorder. A more realistic model might use a poten-
tial which vanishes linearly as r ~0 instead of the simple
square well used here. ' Such modifications will
change coefficients of order unity, which we suppress in
these and most subsequent estimates of physical quanti-
ties.

Although we consider here explicitly only fields nearly
parallel to the c axis, qualitatively similar models and re-
sults should apply for fields in, say, the ab plane. The in-
teractions will now be anisotropic, and the tilt modulus c&

will be replaced by an anisotropic 2X2 matrix whose
largest component reflects the confining effect of the
Cu02 planes on flux-line wandering away from the ab
plane in the c direction.

A complete statistical treatment of the free energy (2.1)
/T

requires integration of e over all vortex trajectories
[r (z)I. The grand canonical partition function, for ex-
ample, is

f2)V&(r)lnZ, exp[( —1/2b, i)f d r VD(r)]

f2)VD(r)exp[( —1/2b &)f d r VD(r)]

(2.7)

Consider a vortex line trapped near a single columnar
pin parallel to z in an otherwise defect-free sample of
thickness L„as shown in Fig. 6. As discussed in the In-
troduction, we require the binding free energy per unit
length

U(T) = Uo —TS, (2.8)

where S is the entropy reduction due to confinement.
This free energy is given by a path integral,

Related averages for a few flux lines and a few columnar
pins are evaluated in the next section.

B. Critical currents
from elementary quantum mechanics

fX)r(z)exp[( —E&/2T) f (dr/dz) dz —(1/T) f Vi[r(z)]dz]
U( T)L/T

f2)r(z)exp[( —E, /2T) f (dr/dz)~dz]
(2.9)

where the denominator is required to subtract off the en-
tropy of an unconfined line far from the pin. The cylin-
drically symmetric confining potential Vi(r), indicated in
Fig. 6(b), tends to zero as ~r ~oo and need not be a
square well in general. The path integrals in (2.9) follow
from standard statistical methods which express them in
terms of the eigenvalues of a transfer matrix. In the
limit I- —+ ~, the smallest eigenvalue dominates, and
U(T)= —Eo(T), where Eo(T) is the ground-state energy
of a two-dimensional "Schrodinger equation" '

T'
2V, + V, (r) itjo(r) =EOOD(r) .

2c)
(2.10)

Here and henceforth, all vectors r will refer to positions
in the plane perpendicular to z. Note that T plays the
role of the Planck parameter A' and c& plays the role of
mass m in this quantum-mechanical analogy.

The ground-state wave function go(r) determines the
localization length li( T) displayed in Fig. 6(a). As shown
in Appendix C, the probability P(r) of finding a point on

the vortex at transverse displacement r relative to the
center of the pin is independent of z and given by the
square of $0(r), just as in elementary quantum mechan-
ics,

P(r)=go(r) f d r $0(r) .

We then define the localization length as

li= f d r r Po(r) f d r $0(r) .

(2.11)

(2.12)

1 d dr Po(r) + k (r )$0(r) =0, r & bo,r dr dr (2.13a)

and

The properties of a vortex near a columnar pin now
follow from standard results for a quantum particle in a
cylindrical potential. We write Eq. (2.10) in radial coor-
dinates as
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with

1 d d 2r go(r) —ir Po(r) =0, r )bo,r dr dr
(2.13b)

where we have approximated the zero-order Bessel func-
tion Ko(x) by a form appropriate to the limit bo ((K
Equating logarithmic derivatives of go(r ) at r =bo leads
immediately to the usual result for a weakly bound quan-
tum particle in two dimensions, namely,

and

T k (r)
0 1 (2.14a)

Eo(T)—:—U(T)

1 T
2 T

2
—2( T/T )2

e (2.22)

T K

2Z)
(2.14b)

and where we assume a binding potential Vi(r) which
vanishes for r )bp.

For the special case of a cylindrical square well
[Vi(r) —= —Uo, r & bo, and Vi(r)=0, r )bo), the binding
free energy U(T) = Eo tak—es the form '

where we have specialized to the case of a square well. In
this limit we have li(T) =ir '= T/+2 EUi(T), so that

l (T)=b e'

The Aux line now "diffuses" within a confining radius of
order li(T) as it crosses the sample. The length along z
required to diff'use across this tube is l, = li I( T/Z, ), i.e.,

U(T)= Uof(T/T*), (2.15) l, =(b /T) (2.23b)

where T* is an important characteristic energy scale
defined by

T*=QE,Uobo . (2.16)

When T « T*(T), the well is effectively infinite, and we
find the usual particle-in-a-box result

T2
U(T) = U —c0 (2.17)

li( T)=bo [1+0( 1/~bo ) ) . (2.18)

The low-temperature correction in Eq. (2.17) represents
the entropy lost each time a wandering Aux line is
reAected off the confining walls of the binding potential.
At a crossover temperature T„defined by T'( T, ) = Ti,
this "zero-point energy" of confinement becomes compa-
rable to the well depth.

When T )T„ the Aux line is only weakly bound
bo

[~Eo~ &&( —1/bo) f o Vi(r)dr = Uo), although strictly lo-

calized states always exist in this effectively two-
dimensional (2D) problem. Equation (2.13a) may now be
approximated by

where c& is a constant related to the first zero of the
Bessel function Jo(x) which solves Eq. (2.13a) in this lim-
it. The localization length is then

The qualitative behavior of the binding free energy as a
function of temperature is shown in Fig. 7. The critical
current renormalized by thermal fluctuations is of order

J, (T)=cU(T)/$ lio(T), (2.24a)

which replaces the zero-temperature estimate (1.9c).
Upon combining Eqs. (2.22) and (2.23a) and ignoring
preexponential factors, we find that J,(T) takes the form
(1.10a) for T)T„as discussed in the Introduction.

A more precise expression using (1.9b) results from a
simple quantum-mechanical derivation analogous to
derivation of the Frantz-Keldysh effect:

2 . . 2

J =J (2.24b)c Pb 8

cp

&2g

U(T)/Up

This derivation exploits the equivalence between a super-
current and a fictitious electric field acting on Auxons
viewed as quantum-mechanical particles —see Sec. IV.

A key experimental parameter is the crossover temper-
ature T„which must in general be determined self-
consistently from T*(T,)=T„since E„Uo, and bo are

1 d d 2c)
r -Po(r) =, V, (r)it(o(r) .

7" dp' dp'
(2.19)

Upon using a normalization such that go(r) = 1 for r (bo,
Eq. (2.19) can be integrated to yield

diplo 2Ei bpf V, (r)r dr .
dl" i=ho b T 0

(2.20)

Outside the well, Eq. (2.13b) is solved by

Po(r) =const XKo(Kr )

~ ln(~r ), (2.21)

1.0

FIG. 7. Renorrnalized binding free energy U(T) for the pin
in Fig. 6.
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themselves temperature dependent. We estimate T, for
the layered cuprates in Appendix D.

Critical currents for planar pins with well depth Uo
and overall width 2bp [see Fig. 1(b)] can be calculated in
a similar fashion. We again find the scaling form (2.15)
with f(x)=1 (vr —/4)x for x «1, i.e., T«T, . For
T &)T„the results are '

(2.25)

and

t Eo
(2.28)

where Eo is the ground-state energy determined in the
previous subsection and t & 0 is a tunneling matrix ele-
ment. The two lowest-energy eigenvalues for the double
well are then

functions gp(r —R&) and gp(r —Rz), the effective Hamil-
tonian (generalized to allow for many columnar pins in
the next subsection) takes the form

Eo t

li(T) =bp(T/T*) (2.26) E+ =Eo+t . (2.29)

Equation (1.1 la) for the critical current associated with
planar pins now follows immediately from Eq. (2.24a).
[Equation (1.11b) is derived in Sec. VI B.)

To determine t we use the method of Baz', Zel'dovich,
and Perelomov to find the ground-state energy E in a
regime such that

C. Tunneling between pinning sites &p « Ip « d i2, (2.30)

V2(r)= V, (r —R, )+ V, (r —Rz), (2.27)

where identical wells of depth Uo and radius bo are as-
sumed. As in a quantum double well, the dominant
configurations are those in which the particle delocalizes
further by "tunneling" from one well to another. In the
subspace spanned by the isolated pin ground-state wave

Section II B describes the "atomic physics" of Aux lines
and columnar pins. The localization length is like the
Bohr radius of an isolated "atom" consisting of one
columnar pin and one vortex line. Now consider a vortex
line which is able to hop between two nearby identical
columnar pinning sites at r, and r2 (analogous to a H2+

molecule) as it traverses the sample —see Fig. 8. The
binding potential in Eq. (2.10) in this case is

where lp=+T /2c, , lEpl is the localization length for
one pin and d,2= R, —R2l is the pin separation. Away
from the cylindrical wells, we take

@, t(r) =&p(~ lr —R~ I
)+It p(~ lr —R21),

where

(2.31)

2E, 1

Just outside the pin at R, =0, we can approximate,
1/2

(2.32)

fp(r) = —In(a. r )+ 2
7TK —d 12

K
e 12 (2.33)

2
77K d )2

( T/Te )2 (2.34)—1n(a bp ) +

Inside this pin we can use the estimate (2.20) described
above. Upon equating logarithmic derivatives on the
boundary of pin 1, we find an implicit equation for ~

1/2

A straightforward iterative solution in the regime (2.30)
gives

E (T)=Ep(T) 1+2
' 1/2

2T
m.E12

(2.35)

where

E,2
=+2E)U( T)d, 2 (2.36)

and U(T) is given by Eq. (2.22). Upon comparing with
Eq. (2.29), we find that the tunneling matrix element is

2bp t=2
1/2

(2.37)

FICx. 8. "Tunneling" of a Aux line between two neighboring
columnar pins. The analogous quantum-mechanical system is a
H2+ molecule.

The Aux line has now delocalized a distance d12 in
the transverse direction. Delocalization proceeds via
wandering in a tube of radius lj (T), given by Eq. (2.23a),
and occasional tunneling across to a neighboring tube, as
indicated in Fig. 8. The spacing between such tunneling
events along the z axis is of order
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1,(T)= 0 1 2( z /z+ )2 E&2/T
e 12 (2.38)

where the prefactor (an inverse "attempt frequency" in
imaginary time) comes from the isolated pin result Eq.
(2.23b). Note the close analogy between Fig. 8 and the
configurations of a classical one-dimensional Ising model
with exchange constant J=E,2 disrupted by kinks along
the z axis.

D. Tight-binding model

where

ePNL iTyr
I

N=O

y2
g Vi+Ep g Ep(lr; r. l/~~b)

2E, 1 lWJ

1V

+g VD(r).

(2.40a)

(2.40b)

When many columnar pins are present, we can general-
ize the effective Hamiltonian (2.28) to a tight-binding
model which allows vortex lines to hop between a ran-
domly distributed array of defect sites. "Tight binding"
means that each vortex spends most of its time near one
of these sites. The grand canonical partition function Eq.
(2.5) is then Z, ~ exp( EpL /—T ), where Ep is the
ground-state energy of the tight-binding model,

&~B=—pea a.+g t; (a; a +a,"a,. )

J /WJ

(2.39)
J

Here a and a are boson creation and annihilation
operators which create and destroy Aux lines on a colum-
nar pin at site R. and V;„, is a typical interaction energy
for two vortices on the same site. The tight-binding mod-
el (2.39) approximates the low-lying states of the full
Hamiltonian entering the transfer-matrix representation
of Eq. (2.5), i.e.,

JV(s) = J g(E')dE' (2.43)

is the number of eigenvalues per unit area with energy
less than E and g ( E ) is normalized such that
JV(+ ~ ) = 1/d . Note that g(E) has units of
(energyXlength) '. For an extensive discussion of the
density of states for this "Lifshitz model" (in the context
of hopping transport in amorphous semiconductors), see
Ref. 32. Dispersion arises, even if all pinning sites have
identical sizes and well depths, because vortices can reso-
nantly tunnel between nearly columnar pins. The Quxon
on the extreme left of Fig. 1(a), for example, is more
tightly bound than the others because of this tunneling.
In this model the bandwidth y should be of order y =t,
where t is given by Eq. (2.41), evaluated at a typical
columnar pin spacing d. Interactions generate an addi-
tional contribution to the bandwidth, of order V;„,. In
order-of-magnitude estimates, we shall take

in the Hubbard model of correlated electrons) because
the physics at very low currents and near the Bose-glass
transition is dominated by length scales much larger than
the interaction range A,,& of the vortices. If desired, the
on-site term in Eq. (2.39) could be generalized to explicit-
ly reflect the longer-ranged potential in Eq. (2.40b). The
e6'ect of a longer-range interaction on transport is dis-
cussed in Sec. IV.

The "particles" described by this Hamiltonian are bo-
sons because the ground-state wave function of any per-
mutation symmetric Hamiltonian is bosonic. The parti-
cle statistics only matter at high temperatures, in any
case, when there is a significant probability for Auxons to
exchange positions. In the strongly localized regime,
identical results would emerge for fermions. The tight-
binding approximation Eq. (2.39) allows us to convenient-
ly extract results from a phenomenological theory of bo-
son localization, ' which also used a tight-binding formu-
lation. For many applications, however, it is more con-
venient to use the classical expression (2.1) for the flux-
line free energy.

The first two terms of Eq. (2.39) determine a nonin-
teracting density of states g(E), such that

The hopping-matrix element between sites separated by a
distance d,.~ is a direct generalization of Eq. (2.37),

y =maxI t(d), V;„,I . (2.44)

t(d))=2 2 U ( T) F.„zT—
QE,J. /T

(2.41)
Suppose that these states are filled up to a chemical po-
tential such that approximately half the columnar pins is
filled. The density of states corresponding to the most
weakly bound flux lines is then g(p) = 1/d y, i.e.,

with E; =+2m, U(T)dj
We shall assume the cost of double occupancy of a pin-

ning site is prohibitively large. A reasonable estimate of
V;„, is

d g(p) =min '

1/4
E1d

U (T)T

V;„,= spin(H', 2/H ), (2.42) Xexp['1/ 2EiU(T)d/T], V;„„' ' . (2.45)

rejecting the energetic cost of one doubly quantized vor-
tex as opposed to two singly quantized ones. The loga-
rithmic term is included to correct for interactions with
distant vortices. ' We use a simple on-site repulsion (as

Note that this characteristic density of states is tempera-
ture independent and determined by V;„, for
T((d/bp)T'(T).
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E. J~~8 and quantum mechanics
in an imaginary magnetic field

J,a(r)= f d r'Kp
212

(2.51)

We discuss Anally a mapping onto quantum mechanics
in an imaginary magnetic field possible when J~~B. When
JIB the mapping is onto quantum mechanics of particles
in a real electric field —see Sec. IV. For J~~B a general
analysis is complicated because currents are then typical-
ly confined to a penetration depth of the sample surface
in the Bose-glass and Mott-insulator phases; this penetra-
tion length presumably diverges as one approaches the
high-temperature Aux liquid. Even the response of indi-
vidual vortices and of the Abrikosov Aux lattice are sub-
tle in this geometry. ' We shall restrict our attention
to a few comments, showing how vortices in an approxi-
mately uniform current J~~B are destabilized from their
columnar pinning sites. The analysis would pertain to
vortices trapped by columnar pins in samples with trans-
verse dimensions smaller than this penetration length,
which diverges like li( T) as T~TBo.

If we add an external current J=J,z to a system of
vortex lines with average direction along z, the free ener-

gy of Eq. (2.1) is modified,

Upon adding the extra term to Eq. (2.1a), we find an ex-
pression which is formally identical to the Lagrangian for
quantum-mechanical particles in imaginary time subject-
ed to a fictitious "vector potential" a(r). This vector
potential is a nonlocal average weighted by Kp(r /A, ) over
a region of size A, of a "microscopic" vector potential

(2.52)

Consider the consequences of this mapping for one
vortex r(z) initially confined to one columnar pin at the
origin of a cylindrical sample and let us approximate
a(ri)=a;, (ri). The statistical mechanics is now con-
trolled by a partition function of the form

2

Z = fNr(z)exp ——' f dz
0 dZ

+ f a;,(r) dz
4o I dr
CT 0 dZ

F&~F~— f d r f dz H,„„B(r,z),
4m

where

(2.46) ——f V, [r(z) ]dzT 0
(2.53)

l.e.,

VXH,„,= J,z,4~
c

4m.J,
H = —(zXr), (2.47)

Instead of Eq. (2.10), the "Schrodinger equation" for the
smallest eigenvalue of the transfer matrix now reads

2

leap

—.V~+ a;,(r) fp(r)
l C

+ V, (r)gp(r)=Epgp(r) . (2.54)

for a cylindrical sample with axis along z.
To evaluate the extra term, we need an expression the

perpendicular magnetic field Bi(r,z), which for isotropic
superconductors satisfies

(2.48)

N

B~(r,z)= g Kp
j—

J

/r —rj /, z dr~

dz
(2.49)

The additional contribution to the free energy (2.46) be-
comes

pp iv L, dr,
5I'~ = — g f dz a[re(z)].

C . ) 0
(2.50)

with

Results for anisotropic systems can be obtained via the
methods of Ref. 33. The columnar pinning potentials are
independent of z, and the helical vortex distortions in-
duced by J, have a wave vector q,

* which vanishes as
J,—+O. ' We can thus, to a first approximation, neglect
the z derivative in the Laplacian appearing in Eq. (2.48).
Equation (2.48) is then easily inverted to give

Note that the "magnetic field" -i(VXa;, ) is purely
imaginary. The cross term in the "kinetic energy" van-
ishes for radially symmetric eigenfunctions, and so Eq.
(2.54) leads to a Schrodinger equation with an unstable
effective potential,

$2+2r 2

V,s(r) = Vi(&)—
8E, iC

(2.55)

indicated schematically in Fig. 9.
The potential in Fig. 9 rejects at instability in the un-

derlying path integral (2.53) for large r(z). Once the vor-
tex escapes from its columnar pin, it presumably forms a
growing helix and generates voltage by expanding toward
r = ~. ' The pitch of the initial helix corresponds to a
wave vector

=J~po/Elc (2.56)

which represents the "Lamour precession frequency" of
the fictitious quantum particle.

Vortices will escape from columnar pins when J~~B
with a probability determined by the WKB tunneling rate
out of the unstable potential (2.55), in analogy to
quantum-mechanical 13 decay. A fluxon bound with free
energy U( T) before the current is turned on must
penetrate the barrier shown in Fig. 9. To escape com-
pletely it must tunnel a distance of order
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&~ Veh-(r) corresponding length of the Auctuating vortex segments,
we arrive at (with b, r = u)

bo
Q T

(2.63)

Uo

U(&)
Equation (2.63) describes the uncertainty in the vortex

position due to thermal Auctuations and mimics the
quantum-mechanical uncertainty principle. This basic
result, already used to derive Eq. (2.23b), is equivalent to
"diffusion" of vortex lines along the z axis with diffusion
constant D = T/E,

r*=+ 8Uc, c)/P oJ, . (2.57)

The probability for this event is proportional to

exp ——I I2E, [ V,(t(r) —U]}'/ dr
0

(2.58)

Upon approximating the exponential in the limit
r*))1~~ho and neglecting factors of order unity, we
find that the probability per unit length of escape is

[Uo U(T)]' (J*/J )

-1/2
~1 Ii

(2.59)

FIG. 9. EA'ective Aux-line potential near a columnar pin with
a current J~~B. The vortex bound state is unstable; the
equivalent quantum problem is g decay.

III. FLUX-LIQUID, BOSE-GLASS,
AND MOTT-INSULATOR PHASES

The physics of the right-binding model Eq. (2.39) was
discussed by Fisher et al. ' in the context of real
bosons —helium films on disordered substrates at T=O.
The temperature translates into an inverse sample thick-
ness in the boson analogy, and so "T=O" in Aux arrays
simply means thick samples. Varying the physical tem-
perature in superconducting vortex arrays means chang-
ing "Planck's constant" in this quantum-mechanical anal-
ogy.

The three phases described in Ref. 31 are all relevant
to Auxon arrays with correlated disorder. The
"superAuid" maps onto the high-temperature Aux liquid
in Fig. 3. In this entangled vortex liquid, Aux lines are
delocalized and hop freely from one columnar pin to
another as they traverse the sample. A11 vortex trajec-
tories r. (z ) "diffuse" as they wander across the sample, in
the sense that

where the critical current for this process is
lim ( ~r. (z) —r (0) ) =2D ~z~, (3.1)

cE)U(T)

Tdo
(2.60)

Note from (2.22) that this critical current has a different
temperature dependence for T & T* than that predicted
by Eq. (1.10a) for JJ.B.

F. "Uncertainty principle" for vortex lines

[p., r~] = T"o.~, (2.61)

Now we describe brieAy one last illustration of the
analogy with quantum mechanics. Upon viewing Eq.
(2.9) as a quantum-mechanical amplitude, we see that
E)(dr/dt) is the "momentum" p for a fictitious 2D parti-
cle. The momentum and position operators in the corre-
sponding Schrodinger equation then satisfy the commuta-
tion relations

where the brackets and overbar denote thermal and dis-
order averages, respectively. The renormalized
"diffusion constant" in Eq. (3.1) is expected to be
D~ =T/c, when the disorder is weak, but should be-
come much smaller near the Bose-glass transition, i.e., for
T ~ TBo(8).

Each Aux line is localized to the vicinity of one or more
columnar pins in the low-temperature Bose glass and is
described by an exponentially decaying eigenfunction
such as those discussed in Sec. II. We can formally define
a localization length via

(3.2)

Delocalization occurs for vortex densities and tempera-
tures such that the localization tubes surrounding neigh-
boring Aux lines overlap. ' When this happens the locali-
zation length diverges at T~&,

where a, f3 are the coordinate indices in the plane perpen-
dicular to the vortex. Equation (2.61) leads in turn to an
"uncertainty principle"

lt( T)—
I
T—Tao I"

(3.3)

Ap Ar=T . (2.62)

Upon estimating the uncertainty in the momentum as
hp =E)(u /z ), where u is the mean characteristic thermal
transverse displacement of the vortex line and z is the vq=1. 0 . (3.4)

where v~ is an important critical exponent, determined
from simulations of disordered bosons to be
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There is also a correlation length along the z axis,

(3.5)

which is the distance along z it takes a flux line to
"diffuse" across a tube of diameter the localization
length. (See Fig. 10.) Here Do is a short-distance parame-
ter which describes diffusion via tunneling between neigh-
boring pins on scales less than lz. The macroscopic
large-scale diffusion constant Dz vanishes in the Bose
glass. The simplest scaling hypothesis, which seems to be
confirmed by computer simulations, is that Dp remains
finite at TBo, so that l, (T) diverges according to '

ill(T)—
(T Tao) II

(3.6)

with vol =2v~.
The Mott insulator arises when the vortex density

matches the density of columnar pins at low tempera-
tures (see Fig. 2). The fiuxons are again localized, not
only by the pinning sites themselves, but also by interac-
tions with neighboring lines. It is again possible to define
a localization length via Eq. (3.2). Unlike the Bose glass,
however, the Mott insulator is incompressible —the vor-
tex density will remain locked to the density of pins over
a finite range of external fields, as in Fig. 2(b). As indicat-
ed in Fig. 2, the Mott insulator behaves in many respects
like a Meissner phase with 8 =B* instead of B=0. We
shall assume, following Ref. 31, that the Mott-insulator
line phase in Fig. 3 terminates below TBo(B), although
there is evidence contradicting this assumption in the
simulations of Krauth, Trivedi, and Ceperley.

In the remainder of this section, we describe the equi-
librium properties of each of the above phases. Real-time
dynamics in response to a Lorentz force requires special
treatment which we reserve to Secs. IV and V.

A. Flux liquids with weak correlated disorder

At high temperatures, flux liquids are stable to corre-
lated disorder, just as they are when the disorder is un-
correlated. The properties of this "superfluid" can be
extracted from a coherent-state path-integral treatment
of Eq. (2.5) or, equivalently, of its representation via Eq.
(2.40) as a quantum partition function. We also use a
more general hydrodynamic theory approach which al-
lows for nonlocal elastic constants. ' Both methods lead
to the important conclusion that the tilt modulus of the
flux liquid is proportional to the inverse superfluid densi-
ty of the fictitious "superfluid. " We shall also compute
the characteristic signature of correlated disorder in
density-correlation functions of flux liquids, which may
be measurable via neutron diffraction. '

Standard methods ' allow the quantum partition
function (2.40) to be expressed via a coherent-state path
integral

Z „=f2)t/r(r, z) f2)Itj*(r,z)e

where the "action" is

(3.7)

(3.8)

We have absorbed VD =(bold ) Uo into the chemical po-
tential and, for simplicity, replaced the pair potential by
V(ri)=uo5(ri). Arbitrary in-plane potentials are easily
treated, but will have the same long-wavelength
behavior, provided they have a finite range, of order k,b
for fiux lines. The amplitude of the complex field g(ri, z )

is related to the fiuctuating local fiux-line density n(ri, z )

by

n(r iz)= lP(ri, z)l (3.9)

r

I
I

I
I
I

I

I

I

I

' r
Ir

2
I Ill = E~ /DP

ie(r, ,z)
II((ri, z ) =+no+sr(ri, z )e

vr(ri, z )=Qn, 1+
2np

i 0(r~, z)
e (3.1 1)

As discussed in Ref. 41, entanglement of the flux lines
is equivalent to phase coherence in g, and so we shall set

g(ri, z ) = l @(ri,z ) le (3.10)

and expand about the minimum of the action in Eq. (3.8),

(a)

BOSE GLASS $ LIQUID
TBG

(b)

where the average vortex density n 0 =B/$0 of this model
1S

FIG. 10. (a) Flux-line wandering in a tube of size l&(T) which
contains several columnar pins. ill(T) is the distance along z
needed for the line to wander across the tube diameter. (b)
Divergence of l~ ( T) at the Bose-glass transition. The tilt
modulus c44 diverges like l~~(T) as TB& is approached from
above.

np =p/vp . (3.12)

Upon keeping only terms quadratic in 8( ri, z ) and
vr(ri, z ) and integrating out the amplitude fiuctuation
m(ri, z), we find an effective action which depends on the
phase only,
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S,s= J dz f d r~ (V~8) + (c),0)
(Tno)'

0 2 C44 C11

+i 5VD(r~)B, g
~ T

vo

where

and

i|(T)= C11C44

Tno
(3.17a)

where4'

(3.13)
i~~(T) =

0

(3.17b)

and

c44 =no~1

2c» =novo

(3.14a)

(3.14b)

are the tilt and bulk modulus, respectively, for this
simplified model of interacting Aux lines.

The crucial point is that the disorder potential multi-
plying c),0(r~, z) in Eq. (3.13) is independent of z, so that
it shows up only as a surface term at this level of descrip-
tion. We conclude that weak correlated disorder has
little effect on the properties of the "superAuid" Aux
liquid. Upon dropping this surface term and comparing
Eq. (3.13) to the "phase only" representation of disor-
dered bosons, ' we find that c,1' is proportional to the
compressibility of the "superAuid" and that, more impor-
tantly, c44 is proportional to the superAuid density.
Since the superAuid density vanishes at the localization
transition, ' we conclude that the tilt modulus of the Aux
lines diverges at TB&.

An infinite tilt modulus is to be expected in the Bose
glass, since the correlated disorder keeps localized vor-
tices from following a tilt in the external field.
"SuperAuidity" of the Aux liquid means precisely that c44
is finite —there is a nonzero linear response to tipping
the field, even in the presence of correlated disorder.
Note that once the vortex liquid has been tipped relative
to the correlated pins, we have the equivalent of a "super-
current in imaginary time" as the Auxons " Aow"
through and around the columnar defects with increasing
timelike variable z. Real superAuid films of He are able
to Aow in a similar fashion without resistance across
disordered substrates.

Correlations in the boson order parameter (3.10) are
measured by

(3.15)

where we have dropped in disorder average since 5VD(r~)
is irrelevant at this level of approximation. The approach
of G(r~, z) to its asymptotic value for large arguments al-
lows us to extract correlation lengths in the Aux-liquid
"superfluid" phase. ' ' Upon using Eq. (3.13) to evaluate
the average, we find that

For simplicity, we have assumed wave-vector-
independent elastic constants. Nonlocal elastic parame-
ters would lead to crossovers at intermediate length
scales, but should not affect the asymptotic analysis as I~
and

l~~ diverge at TBG. Following the classic treatment
by Josephson of the finite-temperature k transition in
bulk superAuid helium, we assume that these lengths
diverge at TBz in the same way as their low-temperature
counterparts in Eqs. (3.3) and (3.6). ' Note that Eqs.
(3.17) can be combined to give

Tno2
ill(T)= lq(T) . (3.18)

The bulk modulus c» is expected to be finite in both the
Bose-glass and Aux-liquid phases. The exponent relation

(3.19)

assumed for T( TBo, is thus consistent with Eq. (3.18)
provided c» is also finite at TBz as well. ' Equation
(3.17b) predicts the way in which c~4(T) diverges as
T—+ TBC;,

c44(T)- (3.20)

Ã

n(r~, z)= g 5[r~ —r (z)] (3.21a)

and a tangent field in the plane perpendicular to z,

The physical reason for this divergence is the stiffening
effect of pinning by columnar defects as T~TBz. The
tilt modulus is strictly infinite in the Bose-glass phase be-
cause the Aux lines become locked to the columnar pin
direction —see Sec. IV D. The behaviors of the localiza-
tion length l~(T) below Tao and the tilt modulus c&4(T)
above TBo are summarized in Fig. 10(b).

We can also describe the Aux liquid via a more general
Landau expansion which expresses the free energy as a
functional of two coarse-grained hydrodynamic fields:
the vortex density

lim G(r~, z)= ~(g&~ 1+
I~~ oo

(3.16a)
dr

t(r~, z)= g ' 5[r~—r (z)] .
j=1

(3.21b)

lim G(r„z)= ~&q&~' 1+
Z~ OO z

(3.16b) To quadratic order in 5(rn~, )=zn(r~, z) no and t(r~, z), —
we have '
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1F= d ridz d ri dz'[c44(ri —r'i, z —z')t(ri, z) t(r'i, z')+c&&(ri —r'i, z —z')5n(ri, z)5n(r'i, z')]
2n0

+ f d ri f dz 5VD(ri)5n(ri, z), (3.22)

where 5VD(ri) is the correlated disorder potential with
correlations given by Eq. (2.4) and the conservation of
vortex lines imposes the constraint

8,6n+V~ t=o . (3.23)

n4
0+b, , 5(q, ),

c„(qi,O)
(3.24)

where c44(qi, q, ) and c»(qi, q, ) are transforms of the
nonlocal functions c44(ri, z ) and c» (ri, z ). In addition to
the contours of constant scattering expected for neutron
diffraction off Aux liquids in clean systems, there is a
sharp ridge of intensity running down the qz axis due to
the columnar pins. See Fig. 11. This spike would show
up as a "central peak" in a q, scan at fixed nonzero q~
and should be a characteristic signature of the presence
of correlated disorder. Below T~z, essentially all the
scattering will be confined to a ridge along the q~ axis
with maximum width in the q, direction of order I

~~

A natural scaling hypothesis for the wave-vector-
dependent tilt modulus just above TBG reads

c (T,q. , q, ) =litic'qit, q, l~~(),

with N(0, 0) finite and where

lim &b(O, y )- 1/y,
y~ oo

(3.25)

(3.26)

Here cii(ri, z) and c44(ri, z) are nonlocal generalizations
of the constant moduli given in Eq. (3.14), which can be
estimated rather accurately from their values in an un-
perturbed Abrikosov Aux lattice. '

Straightforward computations, similar to those for
point disorder in Ref. 6, now lead to the Fourier-
transformed density-density correlation function

S(qi, q, )=( ~5n(qi, q, )~ )

Tn oq~
2 2

c (q, q, )q, +c„(q,q, )q

Tao(B)=const X T* 0

d B
(3.27)

with T*=(d E,b, , )' =+Ups, bp
The instability of the theory for T & TBo(B) presum-

ably signals the onset of Aux-line localization and a disen-
tangled phase with ( g(ri, z) ) =0.

B. Bose glass:
Interaction field and depinning temperature

It is natural to discuss the Bose-glass phase accordingly
to whether vortex lines can be pinned individually by
columnar defects or whether collective effects of vortex-
vortex interactions are important for pinning. The
characteristic "interaction field" B*(T) which separates
the region of single vortex pinning from the region where
the properties of Bose glass are governed by interactions
and the pinning of vortex bundles can easily be estimated.
First, consider the situation ao )d and let us take T (T„
so that energetic rather than entropic considerations con-
trol B*. Then, in order to adjust itself to the random ar-
ray of columnar defects, the vortex line should be shifted
over the distance d. This shift costs interaction energy
c66d, where c66=co/4ao is the local elastic modulus,
while the energy gain is Uo. Upon comparing these ener-
gies, one arrives at the characteristic field B*(T)

( Up p/)EP p/d. In the regime cp & &2g,b, we have [see
Eq. (1.9a)]

so that c44 remains finite for q, XO precisely at TBo.
When this scaling ansatz is inserted into Eq. (3.24), one
finds that the contours of constant scattering near the ori-
gin in Fig. 11 are "pinched down": Although q, ~ qi on
these contours away from T~~, one has q, ~ q J as
T~ Tzz, signaling the onset of localization.

We discuss finally the stability of this description of a
weakly perturbed Aux liquid. A complete treatment for
all magnetic fields would require a detailed theory of the
Bose-glass transition itself, which is unavailable. At very
low vortex densities (B & Pp/A, ,b ), however, we can study
the stability of the model fiux liquid described by Eq. (2.1)
to weak disorder via a renormalizable-group method ap-
plied previously to point disorder. Identical conclusions
emerge from adapting treatments of Aux-liquid dynamics
to the case of correlated disorder. Because we reach a
similar result via a concise "quantum-mechanical" argu-
ment in Sec. III C, we only quote the main conclusion:
Flux liquids are stable to weak correlated disorder pro-
vided T )Tso(B), where

1/4

FIG. 11. Contours of constant scattering intensity in a flux
liquid with weak correlated disorder. The disorder shows up as
a 5-function ridge of intensity along the q& axis.

B'(T)=(Pp/d')(cp/g, I,
)'

=B&(cp/gp) (1—T/T, ) (T& T, ), (3.28a)
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where go=/, b(T=O) and 8&=go/d is the matching
field which appears in Fig. 3. At low temperatures
T & To, where co) &2g, 8*=8&. For Ti & T& Tdz,
where Td is given by Eq. (3.29) above, we determine
B*(T)by setting (Eo/ao)d =—U(T), with U(T) given by
(2.22), and find

8*(T)=
2

0 T 2(T/TB

li(Td )=d . (3.29)

We estimate T&z in Appendix D. The localization length
of one vortex line is now determined by the interplay of
many columnar pins. Multiple rods in a transverse re-
gion of size li(T) )&d will now be incorporated into the
ground state. Energies should now be measured relative
to VD =( —bo Id ) Uo, and we need to solve a
Schrodinger equation such as Eq. (2.10) with the random
potential 5VD(r) replacing V, (r).

We proceed variationally by minimizing

TEo(g)= f d r(VQ) + f d r P 5VD(r), (3.30a)
2c)

with a wave function $0(r) of spatial extent li with
Po(r)- I/li for r & I„so that

f d rgo(r)= I . (3.30b)

The localized state is produced by a favorable fluctuation
in the local density of pins. To estimate the second term,
we compute its mean-square fiuctuation using Eq. (2.4),

2f d r 5VD(r)go(r) =hi/li = Uobo /lid (3.31)

A typical contribution from the random potential in a
favorable region is thus of order —Uob o Il id. A
straightforward estimate of the first term in (3.30a) then
gives

Uobo

l~d
(3.32a)

Minimizing over l~ now leads to our basic result,

li(T)=d(TIT') (T) Td ), (3.32b)

and a binding energy U( T)= Eo which is approx—imate-
ly

( T, & T & Td~ ) . (3.28b)

At high magnetic fields ao «d, methods of 2D collective
pinning have to be used: See Secs. III D and IV G.

We now assume 8 &8*(T) and allow T) T, . For
T ~ T&, each Aux line is localized on one or two columnar
pins as in Fig. 1(a). The binding energies and wave func-
tions for vortices bound to one or two isolated pins were
discussed in Sec. II. A new regime arises, however, when
T & Td, where the depinning temperature Td & T& is
defined by

bo
U(T) = UQ

d

2 2

(3.33a)

B*(T)= Uo &o
B~ (T*/T) (T) Td ) . (3.33b)

The crossover line obtained by combining Eqs. (3.28a),
(3.28b), and (3.33b) is shown as the dashed curve in Fig.
3. As T~T„B*(T) ~ ( T, —T ) —see Appendix D.

C. Bose glass:
Estimation of the transition temperature

In the limit of very low fields, 8 & P/A, ,b, flux lines in-
teract via a short-range potential, V(r) ~ exp( —r/A, ,i, ).
The localization length then grows according to Eq.
(3.32b) until it becomes comparable to the intervortex
spacing ao. The transition from the Bose glass to the vor-
tex liquid occurs when li(T) ao, which leads immedi-
ately to Eq. (3.27). In Appendix D we show that this re-
sult may be reexpressed in terms of a critical Bose-glass
transition field 8Bo ( T), which vanishes as T~T, ac-
cording to

BBo(T)~(T, —T)4 . (3.34)

In the limit 8 )Po/A, ,b, interactions restrict the
growth of the localization length we/1 before the transi-
tion to a Aux liquid ever occurs. We first treat the case
B ~ B&, so that essentially every vortex is able to find one
or more columnar pins to localize on for T & Tzz. To es-
timate TBG and determine how interactions delay locali-
zation we examine the Auctuations of one representative
Aux line in the confining potential provided by, say, six
neighboring vortices. See Fig. 12(a). Delocalization
occurs when there is an appreciable probability for this
Aux line to escape over one of the six saddle points.
There is also one columnar pin near the center of this po-
tential, which makes the escape more dii5cult and delays
the transition to the Aux liquid. In a strongly pinned
Bose glass, more irregular confining cages of five, six, or
seven vortices are likely. Figure 12(b) shows the com-
bined potential seen by the Aux line in a schematic cross
section cutting through two of the saddle points. The in-
tervortex pair potential is V(r) =2eoln(r/A, ,b ) in this re-
gime; the characteristic height of the saddle point relative

The distance along z required for the vortex line to sam-
ple this localization tube is l, (T) =E,li/T. We see that
the localization length now grows much more slowly with
temperature than the isolated pin result (2.23a). This
slow growth arises because the spreading of the ground-
state wave function is restrained by the multiple pinning
centers away from the central one. Upon substituting for
li(T) and U(T) in Eq. (2.24a), we derive the estimate Eq.
(1.10b) for the critical current when T ) Tz~.

We can use Eq. (3.33a) to estimate the interaction field
8'(T) in the regions where T)Td, vortices must now
move a distance of order li(T) to adjust to the random
pinning potential. Upon setting (Eo/ao)12i(T)= U(T), we
obtain

2
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Ep —Trop,

with corresponding eigenfunction

1
Qo(r)= exp[ (r—/2r„) ] .

27rri

(3.37)

(3.38)

(a)

r*(T)= (3.39)
E081

Here Taboo
= eo( r—*/ao ) defines a typical length scale for

transverse vortex fluctuations, namely,
1/4

ao

Melting occurs when r*=cl ap, where cL is the Lin-
demann constant. Alternatively, we can say that melting
arises when the zero-point energy of the equivalent quan-
tum oscillator becomes a fixed fraction of the saddle-
point barrier energy,

I

Trop
=cl Ep,

which leads to a melting temperature

=cL, +Eoe&~o ~

(3.40)

(3.41)
U(T)

Uo

2bo

(b)

FIG. 12. Flux line confined both by a columnar pin and in-
teractions with six near neighbors. (a) Contours of constant po-
tential. The black dot at the center represents the columnar
pin. (b) Cross section of the potential in (a) containing the pin
and two saddle points.

T 2 1V'i+ kr Po(r) =Eofo(r—),
2E1

(3.35)

where

d V(r)
dr r=a 0

2Ep/a p

to give the correct barrier height at r =ap. The natural
"frequency" of this two-dimensional oscillator is
coo=Qk/c. , or

to the minimum is then of order Ep.

When the columnar pins are absent, delocalization
proceeds via melting at a temperature which we now esti-
mate via a simple harmonic-oscillator argument. The
confining potential near the minimum is parabolic, and
vortex-line Auctuations are controlled by a "Schrodinger
equation, "which reads

with cL =cL in agreement with more elaborate estimates
with nonlocal elastic constants using the traditional Lin-
demann criterion. '

Consider now the effect of the square well near the
center of the harmonic potential in Fig. 12(b). Provided
T & Td, the localization length will be /i=/o(T), with
[see Eq. (2.23a)]

/ (T)=b e~ (3.42)

r

&2 d
X T*ln

2 bo Eo

Up
1/2

(3.43)

where we have set ap=d since B =B&.
The overall qualitative behavior of /i(T) together with

the Lindemann criterion is depicted in Fig. 13. Note that
the Bose-glass transition always occurs at a higher tem-
perature than T, as one might expect.

A more quantitative estimate of T~G could be obtained
by computing the wave function in the various tunneling
regimes and using /i ( T ) =cl a o. An equivalent and
more convenient procedure, however, is to calculate the
shift in the harmonic-oscillator ground state due to the
square well. To leading order in Up, we have

In this regime the wave function's extent is determined
by tunneling through a barrier of order U( T). At higher
fields or temperatures, however, the wave function must
tunnel as well through the harmonic interaction poten-
tial. The range of the wave function will be determined
by interactions when U= T /2e, /o & —,'E, (/o/ao ), i.e., for
/o) r*, in which case we have /i(T)=r* The crosso. ver
temperature at which this transition takes place is given
by

CO

a 0

1/2
E,p

and its ground-state energy is

(3.36)
Eo =

Taboo+ J d r V, (r )fo(r)

b= Tcuo — Up, (3.44)
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TBG Tm
ap

d T
(3.48)

CLBp

TM TBG

FIG. 13. The localization length l&(T) as determined by the
columnar pin and the interaction potential in Fig. 12. The
columnar pin delays the delocalization predicted by the Lin-
demann criterion.

where we have, as usual, neglected factors of order unity.
The precise position of the square well is immaterial pro-
vided it is within r* of the center. Upon using the Lin-
demann criterion (3.40), we obtain

TBG=T 1+ (3.45)

(3.46)
coc.iao

Upon inverting this relation we recover the crossover
field 8'(T) for T) Td displayed in Eq. (3.33b). To
lowest order in the fiuctuating potential 5 VD(r), the shift
in the harmonic-oscillator ground-state energy is

i.e., a significant increase in TB& relative to T . Al-
though the melting and Bose-glass temperatures are relat-
ed, the detailed nature of these transitions is of course
different. Melting is typically a first-order transformation
by which a regular array of vortices loses its translational
periodicity. The Bose-glass transition is expected to be
continuous ' and occurs when a translationally disor-
dered array of pinned vortices delocalizes.

We can also estimate T~~ in the limit

Po/A, ,b &8 «8&, when many columnar pins occupy a
single harmonic well. Provided T & Td, the localization
length will now increase according to Eq. (3.32b) until in-

teractions cause it to behave like r*(T) beyond a cross-
over temperature,

' 2/3
ap 1/3

T'—

Note that the correction agrees with (3.45) when d =ao,
but is much larger when d (&ap, i.e., when there are
many pins per vortex. Of course, this enhancement can-
not continue indefinitely, since the sample T, will eventu-
ally degrade. Qualitatively similar behavior has been ob-
served by Budhani, Suenaga, and Liou upon irradiating
thallium-based cuprates.

If B ~ B&, every pin is occupied and the excess vortices
go into the interstitial spaces between the random colum-
nar pins. These vortices will still be localized at low tem-
peratures by interactions with vortices trapped on the
pinning sites. Most Aux lines are still bound to columnar
pins in this regime and the estimate (3.45) should remain
approximately correct.

When B ))B&, vortex configurations will be dominat-
ed by patches of crystalline order broken up by the corre-
lated pinning potential, and we expect that TBz=T
The translational correlation length will be estimated in
the next section.

D. Range of translational order
in the Bose glass for B & B

&

For 8 &B*(T) the range of translational order R, in
the Bose glass is at most of order ap ~ When B »B& the
translational order is much more extended, and it is of
some interest to know, for example, the translational
correlation length Rp when T=TB~ =T . We shall not
attempt to analyze correlations in the interesting inter-
mediate regime 8*(T)&8 &8&. To determine the range
of translational order when B &)B&, we use the collective
pinning approach. The free energy for displacements
u(ri, z) describing local crystallinity in the presence of
disorder is

=1 d ridz[c«u; +c»uzk+c44(B, u) —V;„(u,ri)],
2

(3.49)

where u;J =
—,'(8;u +d/u; ), i,j =x,y, and the shear

modulus is c66=eo/4ao. Note that pinning potential
depends on z only through u(ri, z). As long as the mean-
square relative displacement ~u(ri, z )

—u(0, z ) does not
exceed ho, the scale of the microscopic columnar pinning
potential, one can treat random field perturbatively and
write V;„ in a form V;„=f,„(ri) u(ri, z). The statisti-
cal properties of f;„are given by the correlator

=Tee + d2r $V (r)e1 2 4 2

( «)2 D (3.47) f;„(ri)f;„(ri)=35' '(ri —ri), (3.50a)

We assume that a favorable fluctuation in this potential
has positioned the average vortex position near the well
center. We find from Eq. (2.4) that the root-mean-
squared value of the integral in (3.47) is of order
(
—Uobo/d)r*, which leads via (3.40) to a Bose-glass

transition temperature

with
2

bo

ap

2
Uo

d' &o
(3.50b)

Here (bolao) (l/d ) is the effective concentration of de-
fects which are within bo of a vortex in the relatively stiff
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local lattice. The correlation function
=[u(ri) —u(0)] can now easily be found,

2 2 2
Up a or~ sC(ri) =4 ln

C(ri)

(3.51)

where s =d for r~ (d, and s =ap for r~ )d. The pinning
correlation length R, is defined by the condition
C(ri=R, )=bp, ' which leads to a self-consistent equa-
tion for R„

1 bo Eo 1R, =—6
2 ao Uo +~In(s/R, )

(3.52)

When To & T (see APPendix D), Uo =Epc p/g b b p

=i/2g, b, and (neglecting logarithms and constants of or-
der unity)

3

2apcp
(3.53)

Note that since the pinning potential does not depend on
z, the dispersion of c44 is irrelevant for pinning at spatial
scales ri & R, (but becomes important for creep processes
at small currents J« J,—see Sec. IVG).

At larger distances ri & R„C(ri)) bo and the pertur-
bative approach is inapplicable, since the behavior of
C(ri) is governed by the low-lying metastable states of a
vortex lattice in a random field. The scaling behavior of
C(ri) is governed now by the 2D wandering exponent

2 2, 5

'2g

C(r )=b rz rz

R R
—b 2

C C

4/5

(3.54)

The critical radius R, for the breakup of translational
order is given by condition C(R, ) =ao. One then finds
(again with logarithmic accuracy and neglecting con-
stants of order unity)

5/2

R, =R,
0

d(aok b)
=ao 2

Co
(Tp& T& T'), (3.55)

where the last line assumes T) Tp and T' is defined
below.

The above analysis assumes that the root-mean-square
thermal fluctuation uT of a vortex position is small, so
that energetic considerations alone control the breakup of
translational order. The quantity uT is just the size r'(T)
of the harmonic-oscillator wave function discussed in the
previous section. When uT exceeds the pin size bp, there
is a significant thermal enhancement of the translational
correlation length R, . Upon using Eq. (3.39) for r*(T),
we find that this new regime arises whenever T) T',
where T' is a relatively low temperature given by the
solution of

where the temperature-dependent quantities on the
right-hand side are evaluated at T=T'. More precise
numerical estimates of T' can be found by the method
used to determine T* in Appendix D.

When T & T', Eq. (3.50b) for the correlator of the ran-
dom potential is modified in a number of ways. First, the
well depth Uo is modified as in Eq. (3.44),
Up ~ ( bp /u T ) Up and its corresponding range is
changed, bp uT. In addition, the effective density of
pins which interact with a vortex becomes

2 '2
bo

d 2

uT

ao ap

Collecting together these changes, we find that the vari-
ance of the disorder is now

4
bp Uo

uT apd2 2 (3.57)

Because the length R, is now determined by C(R, ) =uT,
we find

R, =d (T& T'),
Up aob p

which becomes
3uT

R, =d
2

aoCp

(3.58)

(3.59)

for T) To. Proceeding as before to calculate R„we find
that

d(u, a, )'"
R, =ao

Cp
(3.60)

Note that these formulas differ from those relevant to
T & T' by the substitution of u T for g,b.

We can now determine the range of translational corre-
lations at TBG, assuming that TBG. =T for B ))B&.
The Lindemann substitution uT =CL ap leads to

ao
R, (T ) =apcL

Cp Cp
(3.61)

E. Mott insulator

With cL =0 15, d =350 A (B&=1T), ap =225 A
(B=4T), and co=35 A, we find R, =33ao. True Bose-
glass behavior will only become evident on scales large
compared to R, .

The nature of the delocalization transition depends on
the relation between R, and the translational correlation
length gT just above T in clean materials. If
g T

& R, ( T ), the system should melt via a first-order
transition similar to the clean limit. If gT )R, (T ), the
first-order transition is replaced by the second-order
Bose-glass transition whose scaling properties are de-
scribed in Sec. V.

oEibo lao (3.56)
The Mott-insulator phase ' should arise at low temper-

atures over a range of external fields H such that B =B&,
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We treat vortex transport in the Bose-glass and Mott-
insulator phases by adapting the equilibrium analysis
presented in Secs. II and III. When JlB a Lorentz force
per unit length perpendicular to J acts on all vortices,

zXJ,
which leads to an additional term

N

5F~ = —fl g f rq(z)dz
j=1

(4.1)

(4.2)

in the vortex-free energy Eq. (2.1a). We exploit the anal-

ogy with boson quantum mechanics by noting that this
term represents a fictitious "electric field" E=(1/c )z XJ
acting on particles with charge Po.

The dynamics of the Bose glass is determined by the
competition between the 2D array of columnar pinning
centers and the 3D thermal fluctuations of vortex lines.
A detailed picture can be obtained in the regime T ~ T,
and B (B*(T),where each vortex is localized on one or
two columnar defects and the pins outnumber the vor-
tices. The boson mapping then reduces single vortex dy-
namics to a problem of hopping conductivity of 2D local-
ized particles with the hopping-matrix elements t;.

provided the vortices can achieve thermal equilibrium
given the sluggish dynamics in this temperature range.
See Figs. 2 and 3. To a first approximation, every Aux
line occupies exactly one columnar pin, although oc-
casionally two lines will tunnel cooperatively between
two closely spacing columnar pinning sites, as in the H2
molecule. With its infinite bulk and tilt moduli, the Mott
insulator resembles the Meissner phase. Its transport
properties will be discussed in Sec. IV.

The transitions out of the Mott insulator at the fields
H,* and Hb* in Fig. 2(b) are similar to the transition at
H„. For H )H&* a few extra Aux lines occupy the inter-
stices between the completely occupied pinning sites. In-
teractions are presumably sufhcient to localize these lines.
When H &H,* one has instead a few wandering vacan-
cies. Vacancies wander whenever a vortex line "tunnels"
from an occupied to an unoccupied pin. Again, we ex-
pect that these vacancies will localize at low temperatures
to produce a Bose glass. Upon adapting the
renormalization-group treatment of point disorder near
H, i( T ) of Ref. 6, we find that correlated disorder changes
the character of the transition expected in pure systems.
The precise nature of the transitions out of the Mott insu-
lator (and the transition at H„when correlated disorder
is present) is unknown.

IV. VORTEX DYNAMICS
AT LOW TEMPERATURES

(4.3)

where po is a characteristic fiux-fiow resistivity and Uz( J)
is a barrier height. In the remainder of this section, we
determine this barrier height under various cir-
cumstances. In contrast to the original TAFF models,
this barrier diverges as J~0. Similar diverging barriers
for vortex transport have been hypothesized for vortex
glasses dominated by point disorder. '

Although most of our explicit results apply to the re-
gime T ~ T, , B & B*, we believe the behavior as J~0 is
the same throughout the Bose-glass phase. We expect,
for example, that the asymptotic law (1.1) applies every-
where for T & TB~ outside of the Mott-insulator phase.

A. Tunneling via half loops

The critical current J, =cU/Pol i in the strongly
pinned Bose glass was discussed in Sec. IIB. Note that
U(T) and li(T) are of order Uo and bo, respectively, if
T ~ T&. We now consider the regime of moderate
currents, J

&
&J & J„where

J, =cUo/(hod, (4.4)

and d is now the average spacing between unoccupied

displayed in Eqs. (2.39) and (2.41). See Table I. The bo-
son electric field E maps onto the super conducting
current, as mentioned above. The boson current density
and conductivity map onto the vortex velocity (i.e., the
true electric field 8) and superconducting resistivity, re-
spectively. Note that we indicate the true electric field
and the fictitious boson "electric field" by the symbols A'

and E, respectively. As discussed in Sec. II E, a current
J

~ ~

B acts like an imaginary "magnetic field" on the bo-
sons. Note that the inverse sample thickness plays the
role of boson "temperature. "

We can now reproduce for Bose-glass dynamics the
rich variety of hopping conductivity phenomena in semi-
conductors by transcribing the proper quantities. For
example, the famous low-temperature Mott variable-
range hopping conductivity in two dimensions,
o -exp[ —(To/T)' ], becomes a superconducting resis
tivity which vanishes with thickness according to
p —exp[ —(L/Lo)' ], where Lo is a characteristic sam-
ple dimension calculated below. We shall also find it con-
venient to view the vortices as charged directed
"polymers" in a perpendicular electric field, since this
gives insight into the physics in the imaginary-time direc-
tion.

In the thermally assisted fiux-fiow (TAFF) model of
vortex transport, the resistivity p=8/J behaves accord-
ing to

TABLE I. Boson analogy applied to vortex transport.

Charged bosons

Sup erconducting

Vortices

Mass
Pair

potential

2EoKo(r /k, b )

Charge

4o

Electnc
field

zXJ
Current
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2

F, = dz —E, + V, [r(z)]—fI r(z) dz,1 dr

(4.5)

with f~ =Jgo/c.
Consider a vortex line trapped on a columnar pin, as

shown in Fig. 14. Escape from this metastable state
proceeds via the "half-loop" saddle-point configuration
illustrated in the figure. Although an explicit variational
analysis based on Eq. (4.5) is possible, it is easier to sim-

ply estimate the magnitudes of the various terms. If the
half loop extends for a distance z along the pin and has
perpendicular extent r, the energy relative to the case
fL =0 is

c, &r
5F, (r, z)= + Uoz fL rz .—

z
(4.6)

Optimization with respect to r and z and yields the
saddle-point parameters

Ur*= z*=Uoc/QoJ (4.7)

pins. In the above current range, we can ignore these
nearby pins and use the one flux-line free energy

6 =poJ exp [
—(EI, /T )(J, /J )], (4.9a)

6 —exp — [Ek(T)/T](Ji /J)4&v
(4.9b)

with Ek( T)=QEi U( T)d. The preexponential factor can
be calculated in a similar fashion. When J ~ J& we have
z ~ d and neighboring occupied pins must be taken into
account. If QE, /Uod (co, where co is the Cu02 plane
spacing (as may happen for the highly anisotropic
bismuth- or thallium-based compounds), our continuum
description should be replaced by a more microscopic
one in terms of "pancake vortices. " We shall see, how-
ever, that even in this case the continuum description be-
comes valid for currents J« J&. The "double-kink" ex-
citations which dominate the variable-range hopping
(VRH) regime (see Sec. IV C) are always larger than co as
J~0.

B. Tunneling via double kinks

with Ek =+a., UDd. A similar result was obtained re-
cently by Brandt. A more quantitative calculation of
the exponential factor valid for T & T& using the
quantum-mechanical analogy to the ionization of an
atom in an electric field leads to

and saddle-point energy
-1/2 U 3/2

$FQ
C& 0

1 (4.8)

Upon identifying this saddle-point energy with the bar-
rier U~(J) in Eq. (4.3), we find that the electric field 8
generated by half-loop tunneling is

When J & J& the transverse displacement of the liberat-
ed vortex segment exceeds the mean distance between oc-
cupied pinning sites. The transition of a vortex line from
one rod to another can then in principle take place via a
thermally activated double-kink configuration which
throws a vortex segment onto an adjacent columnar de-
fect. A double kink is shown as a dashed line in Fig. 14.
If the two wells are exactly identical, the double-kink en-
ergy is approximately 2Ek, where the kink has width

1/2

Wk =
U0

(4.10a)

(.
)r

(
I

)

,)
I

(
)

(

)

(
Wp

C

FIG. 14. Half-loop and double-kink transport processes for
Aux lines. The Lorentz force fL attempts to push the line to the
right.

and energy

Ek='1/ E, Uod . (4.10b)

Once this excitation has nucleated, the kinks will
separate to z =+~ as the vortex spreads from one rod to
the next.

The above scenario bears a strong resemblance to
dislocation motion over a Peierls potential. A crucial
distinction, however, is the dispersion which characterizes
the energies of the different pinning sites. As discussed in
Sec. IID, dispersion arises due to interactions, and be-
cause vortices are sensitive via thermal Auctuations to the
different random environments which surround pinning
sites. The bandwidth y due to tunneling and interactions
was estimated in Eq. (2.44). Suppose that the density of
states g(e) is filled by vortices up to a chemical potential
p well away from the band edges. Double-kink tunneling
must in general then lead to a state with a higher energy
per unit length. Any such energy difference, however,
will produce an infinite barrier in an infinitely thick sam-
ple. This barrier shows up as linear potential binding the
two kinks together.
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Dispersion of energy levels can only be neglected in
samples thin enough so that L & L „where

(4.1 1)

In this regime, samples will exhibit a nearest-neighbor
hopping conductivity with

(4.12)

Lorentz force. To understand the middle term, consider
the states available to a weakly bound Aux line about to
hop. A11 states up to a chemical potential p are filled.
The density of nearly compatible states with energies just
above p is g(p). The total number of states with energy
within hc of this Aux line at distances less than or equal
to R is g(p)DER . By setting g(p)E'ER =1, we deter-
mine the expected energy difference (per unit length) for a
hop of size R,

where the constant c& can be determined from percola-
tion theory. bE = 1/g(p)R (4.14)

C. Variable-range hopping

The dispersion of Aux-binding energies is essential for
J &J, and L )L &. The most important excitation in this
regime is illustrated in Fig. 15: Fluxons move by sending
out a tonguelike pair of "superkinks" connecting the vor-
tex to a state which optimizes the tunneling probability.
Once the tongue is established, the superkinks move out-
ward, and the vortex spreads to the new site. Spreading
is not possible on the intervening higher-energy pins, be-
cause the barrier is proportional to the sample thickness.
Tunneling via superkinks is the analogue of Mott
variable-range hopping of electrons between localized
states in semiconductors.

Consider two superkinks with separation Z along the
pins and extending a transverse distance R, as in Fig. 15.
The free energy, relative to the energy without kinks,
consists of three terms

5Fs~(R, Z)=2Ek —+ f~RZ, —(4.13)
R Z

g(p)R

with Ek given by Eq. (4.10b). The first term is the energy
of the kinks themselves, while the last comes from the

( I

)
(

)l

There is a linear potential AcZ binding the two kinks to-
gether, which leads to Eq. (4.13).

If fI =0, we optimize (4.13) to find the shape of the op-
timal low-temperature thermal fluctuation,

Z*= (R*) (4.15)

Optimizing with fL &0 leads to
1/3

Z
E«(1 )

1/3

(4.16)

Ek
QF Q

,
g(v)4P

(4.17)

Upon identifying 5FsK with the barrier height in Eq.
(4.3), we find non-Ohmic variable-range hopping
behavior

6 =poJ exp[ —(Ek/T)(JO/J)'~ ], (4.18)

Since the width of this superkink is of order
Wk =(QE, /Uo)R *, we have Z* ))Wk and are justified
in neglecting weak additional attractive interactions (log-
arithmic for Z* &X,b, exponential as J—+0) between su-

perkinks. The slope of the vortex-line segment within a
superkink is approximately QE, /Uo. In view of Eq.
(2.2), the continuum, small-tilt description of vortex fiuc-
tuations will be correct provided Eo/Uo«(M, /Mi),
which is easily satisfied for anisotropic high-T, materials.
The energy of the saddle-point configuration (4.16) is

1/3

I

I

I

I

I

I

I

I

R'.
I

I

I

I

I

I

I

I

)
I

)
I (

(
I

I

where

CJo= (4.19)

When L = ~ the intermediate percolation regime of the
previous subsection never occurs. We then return to the
"half-loop" description of vortex transport for J)J2,
where

J2=J, [Uog(p)]' d . (4.20)

I I

I

I

I

I

When the sample thickness is finite, the behavior is ulti-
mately Ohmic at the very lowest currents. The crossover
to a linear resistivity occurs when Z *=L„ i.e., for
J(Jl ((Jo, where

FIG. 15. Double-superkink configuration required for
variable-range hopping. The "tongue" of vortex line seeks out a
compatible low-energy pin so that the line can spread. JI- eEk /'(t'od+ (4.21)
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and the asymptotic resistivity then has a very unusual
dependence on sample thickness,

p=poexp[ (L—/Lo)' ],
where

(4.22)

LO=T g(p)/E, UO . (4.23)

P[R]-R exp —Ag(p) fLR
mR

The non-Ohmic Bose-glass current-voltage characteris-
tics will thus disappear in thin superconducting films
when J~O or L &L0. Up to logarithmic corrections,
g(p)=1/d so in the low-temperature regime [see Eq.
(2.45)], and so

Lo( T) =d(bo/d ) (Mi Uo/M, EO)'i (T/T*)

Particularly unusual behavior can arise when B «B&,
i.e., when the band of localized states is nearly empty.
Vortex motion in this case is determined by rare Auctua-
tions in the spatial distribution of rods: The vortex line
can be captured by the dead ends of the percolation net-
work and/or can reach a position where no favorable
rods are available at the distance of the optimal jump.
Therefore the vortex remains trapped in such a position
for a long time, which determines the characteristic rate
of jumps and, therefore, the mean vortex velocity. We
consider a relevant trap formed by a rod which has no
neighbors within a hemispherical cavity (centered about
the direction of the Lorentz force) of radius R. Then the
vortex can easily enter such trap, but cannot return back
or jurnp fast enough against fL. The time the vortex
spends at this trap is t-exp(R/rr), where

rz = T/+2E, U(T). The vortex can jump to another rod
over the distance R if the energy difference per unit
length between the final and initial positions is b,E-fL R
[see Eq. (4.13)]. Then the relevant trap can be viewed as
the volume in configurational (R, s) space free from the
localized states within the band Ac above the initial vor-
tex state. The probability to find such a volume is

pect eventually to return to the prediction (4.18) in an
infinite sample when J—+0.

There is a rich variety of additional effects associated
with the rare fluctuations in the concentration of colum-
nar pins. For example, a nonmonotonic resistivity arises
in the regime L (Lo [see Eq. (4.22)], analogous to the
nonmonotomic conductivity discussed in Ref. 69. We
leave the detailed discussion of these phenomena for
another publication.

QOHi & L ~1 '

F~ +F~ — ~ g f dz
477 ) 0 GZ

(4.24)

Since the tilt modulus is finite for T & TzG, there will be a
finite linear response to H~ in the Aux liquid,

Bi=(pano/4nc44)Hi .. (4.25)

The behavior in the Bose glass is more subtle. The linear
response vanishes (c44 = oo ), and Hi must actually exceed
a threshold Hi(T) before Bi becomes nonzero: There is
a transverse Meissner effect. When the Aux lines finally
do begin to tip over, they exhibit "variable-range tilting, "
similar to the variable-range hopping discussed in the
previous section.

Vortex lines tilt at small angles by proliferating super-
kinks of the same sign, as illustrated in Fig. 16. These
kinks are similar to those induced by Cu02 planes for Aux
lines directed close to the ab plane. The kinks in our
case have variable size, however, so that the vortices can
avoid unfavorable intermediate pinning sites. The free
energy of one such kink when H~ =0 can be calculated as

D. Response to tilt

The stability of the Bose glass to a perpendicular mag-
netic field can now be studied. For a more extensive
treatment, which exploits insights from soluble model in
1+ 1 dimensions, see Ref. 37.

A perpendicular field Hi changes Eq. (2.1a) according
to

3/2
k 0=exp A

& T J
1/2

and the electric field corresponding to this hopping rate is

6-exp[ —A, (Ek/T) (Jo/J)' ] . (4.18')

Note that this version of variable-range hopping vortex
dynamics can only be realized at very small fields where
the concentration of relevant hemispherical traps exceeds
the concentration of vortex lines, namely, for

B (B~exp[ —3 i(Ek/T) ~ (Jo/J)'~ ] .

Note that as J~O the regime of B to which this theory
applies vanishes exponentially fast. For fixed B, we ex-

where A is a numerical factor of order of unity. The
mean jurnp time is then

t = f dR P[R ]e

I

I

I

I I

I

I

I

I

I I

I
I

I

I

I

I

)
(

)
I )
I (
I )

FIG. 16. Variable-range tilting. The response to a perpendic-
ular field for Hj )H~(T) is to produce a set of widely spaced
superkinks connecting compatible sites.
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in the variable-range hopping problem. We suppose that
the average superkink size is R and that spacing between
kinks is Z. The energy per superkink in Fig. 16 is then

R Hido
1 k + Z

g(p)R

where the last term arises from the extra contribution to
Eq. (4.24). Unlike the imposition of a Lorentz force, tilt-
ing does not destabilize a localized vortex line. Indeed,
H~ can be incorporated into a renormalized single-kink
energy

Higod
E1 (Hi)=Ek (4.27)

Optimizing Z for a fixed kink width 8'=8'* leads to
(4.15) with Ek replacing Ek and the superkink energy

V*, =Ek(Hi)
d

(4.28)

477 l/ E 1 UQ /yo (4.29)

c44~(dBildHi) ' remains infinite and the Bose glass
will exhibit a transverse Meissner effect. For H )H~ the
conductivity is mediated by kink propagation. As dis-
cussed in Ref. 37, these kinks tend to form chains along
the direction of tilt, with areal density n, t,„-„which van-
ishes like

n,„„(H1 Hi ) (4.30a)

Tilting a Aux line by a small angle t9 would require a mac-
roscopic number of superkinks proportional to I.O and
hence an infinite energy cost in the thermodynamic limit
whenever 7*, )0.

For H (Hi ( T), where

H i ( T) =4~Ek /Pod

E. Response to point disorder

Weak point disorder ultimately destabilizes the Bose
glass, but only at rather large length scales. To see this
we add a new random potential to Eq. (2.1a),

n L
F~~F~ —g I dz 5 VD [r (z), z ],

j=l
where the new point-disorder potential has variance

5VD(r„z, )5VD(r2, z2)=bo5 (ri —r~)5(z, z~), —

(4.32)

(4.33)

where 50 can be expressed through experimentally acces-
sible parameters as

1/2

~o= EXb(J„/~,b)'"
Z

(4.34)

with J b the pair-breaking current defined under Eq.
(1.9b) and J, the critical current due to point defects.
Usually, for high-temperature super conductors,
J, /J =0.01.

It is easily shown that this disorder potential does not
significantly affect the energy barriers which lead to Eq.
(4.9) in the "half-loop" regime. Consider, however, the
superkink pair shown in Fig. 15. As the vortex tries to
spread, the line segment joining the pair is subjected to
the random point potential over a volume of order Zl~.
This potential leads to an additional contribution to the
energy

&+sK. =&Ek —+R Z
g(1u)&'

g1/2Z 1/2
0

l~
(4.35)

The energy of a superkink pair of size Z from optimizing
the first two terms is (E&Z/d g(p))' . The last term
dominates this energy (and will trap the spreading super-
kink pair) for Z )L „,where

The resistivity in this regime is proportional to n,&„„and
so37

Ek l (T)Lx=
dg(P) bo

(4.36)

8~(Hi H') J— (4.30b)

as H~H~ from above.
Formula (4.29) describes the lock-in transition, analo-

gous to that discussed in Ref. 36. The critical angle for
this transition is 0, =H~/B, which we may write as

Upon taking d g(p) —1/Eo, Uo —Eo, and i& =ho as is ap-
propriate when T (T1, we find, for reasonable parameter
values (Mi/M, = 10, d =240 A, ho

=24 A)
1/2 - - 3 9/2

d pb

Z bo J,

0, = E, UQ

4~ Ep

ao
(4.31a)

Above a still larger "accommodation angle" 6„

Uo
' 1/2

(4.31b)

there is crossover to a regime where kinks disappear com-
pletely. Just below the accommodation angle, tilted vor-
tices begin to organize themselves into kinks in order to
adjust to the columnar pinning tracks.

The regime where point disorder disrupts the predictions
of the Bose-glass theory is thus likely to be of only
academic interest, unless this disorder is greatly enhanced
by, say, proton or neutron irradiation. The crossover
length L ~ is even larger for T)T1.

Although point disorder disrupts the Bose glass at low
temperatures and currents, the behavior on scales larger
than L x is unknown. The behavior could be that of an
isotropic point-disorder-dominated vortex glass. An al-
ternative asymptotic state is an anisotropic glass involv-
ing both columnar and point disorder in an essential way.
We note in any case that weak point disorder is unlikely
to change the Bose-glass transition itself —see Sec. V and
Ref. 37.
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F. Effect of interactions

Interactions between vortices are already partially in-
cluded in our variable-range hopping analysis, because we
exclude multiple occupancy of pinning sites (d is the
spacing between unoccupied sites in the above sections)
and allow for the interaction contribution to the band-
width in Eq. (2.44). Interactions have the additional
effect of lowering the density of states at the chemical po-
tential g(p). However, g(p) will not be lowered to zero,
provided the range of interactions (here of order A,,b) is
finite —see Ref. 32. It is nevertheless interesting to con-
sider the case A,,b ))ap, where the long-range logarithmic
interaction between vortices dominates over intermediate
current and length scales.

It is well known from the theory of variable-range hop-
ping that the long-range Coulomb interactions between
particles drive the density of states g(p) to zero at the
Fermi level, giving rise to so-called Coulomb gap. This,
in turn, changes the variable-range hopping exponent p
in the relation 6-exp[ —(J/J)~]. One can easily repeat
the consideration by Shklovskii and Efros for vortices
subject to logarithmic vortex-vortex interactions at al'I

length scales. One finds that interactions change p from
p, = —,

' to the value p = 1 (with logarithmic accuracy).
If 8 &8 *(T), however, the Coulomb-gap effect

relevant in the physics of semiconductors is masked by
the collective effects due to the existence of a local vortex
solid with a finite shear modulus. A similar situation in
the semiconductors would correspond to the formation of
the two-dimensional Wigner crystal. Indeed, the gap in
the density of states becomes important if the distance of
the hop, i.e., the transverse size of the superkink, exceeds
the vortex spacing. The collective effects in the vortex
lattice come into play, however, when the change in in-
teraction energy due to superkink formation exceeds the
superkink energy Esz =Ek(J, /J)' . One can easily find
comparing these two energies that collective effects be-
come relevant at transverse displacements u « a p.
Therefore, to account for the interactions in a locally
crystalline array, one has to consider collective pinning
and creep through the system of columnar pins.

The effects of the "Coulomb" gap can possibly be ob-
served in the motion of the vortex liquid and will be dis-
cussed elsewhere. In the next section, we concentrate on
the critical currents and vortex dynamics in the collective
creep regime 8 )B*(T)

G. Dynamics of vortex bundles

Pinning and critical currents of vortex bundles

Now we find critical currents in the field range
8 *(T) &8 &8 ( T), where 8 is the melting field at tem-
perature T. The temperature dependence of the interac-
tion field 8 '( T) is summarized in Appendix D. We con-
sider sufficiently high temperatures T) Tp, so that
&2$,b )co; i.e., the coherence length plays a role of the
defect radius and Uo =Eo(co/2g, b ) . In the low-
temperature regime T & T', with T' given by Eq. (3.56),
only a small fraction of vortices of order (bo/d) are

within b p of a columnar defects and hence pinned direct-
ly. The others are kept at their positions by the elastic in-
teractions with these strongly pinned vortices. Two
mechanisms of the formation of the critical current are
possible in this regime. One of them is related to the pin-
ning of the vortex bundles of the transverse size R, from
(3.53): The critical current is defined by the balance be-
tween the Lorentz force exerted on this bundle and the
shear deformation energy necessary to shift this bundle to
the next metastable state. Another mechanism becomes
relevant, however, when R, «d. In this case vortices
which are locked between these pinned islands of the size
of R, will move under the sufficient current before the de-
pinning of the vortices trapped by rods take place. The
corresponding critical current is given by the balance be-
tween elastic and the Lorentz forces in the area d:
(1/c )JP Bd ao -cbba o and

J~=Jb Bp «8, Tp & T&Tl8 ap' (4.37)

«p 8*Jcol

0ok b 8 pb

cp
2

8
8*&8&Bp, Tp&T& Tl (4.38a)

Note that this expression matches (up to the numerical
factor) the critical current (1.9b) for the single vortex pin-
ning in the Bose-glass state. The plastic pinning mecha-
nism holds in the region where R, is sufficiently small:

cp
R, &d

ab

2

When T) Tl the thermal renormalization of the col-
lective pinning potential becomes essential, and we must
use Eq. (3.59) for R, . It is easy to check that for 8 & 8*
and T) T, the pinning correlation length R, )d, and so
the conventional collective pinning picture applies. The
critical current is then found straightforwardly:

Jcol
C

5
cUo gb 8

4okab uT 8
2

4b
5

8
Cp

pb uT
J

8*&8 &8, T & T, . (4 38b)

Upon writing uT as uT=(I/2v'vr)@Tao/Eo, we obtain
Jcol ~ 8 1/4yT5/2

C

We have seen that two main regimes of the pinning can
exist in the region 8 )8 *: (i) the plastic pinning (at
T & T, ) with critical current given by Eq. (4.37) and (ii)
collective pinning with critical currents from Eqs. (4.38).

where J & is the pair-breaking current defined below Eq.
(1.9b).

The critical current due to pinning of vortex
bundles can be found from the condition
(1/c)J;"BR,g,b-ebb/, b. Using (3.53) for the correla-
tion radius, one immediately finds
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Note that the condition for plastic pinning to exist can be
rewritten as

B'&B&B' k.b

Cp

d

k.b

which means that the condition (g,b /co) )d /g, b should
be satisfied. Accordingly, we consider two creep mecha-
nisms: plastic creep and collective creep of vortex bun-
dles. Recall that the current at which the transition from
the single vortex creep to the creep of the vortex bundles
occurs is defined by the condition '

where y =QM, /M~ and k = (K, k, ). Since the charac-
teristic wave vectors are k, —1/L, and K —1/R~, we find
that, in the dispersive region,

B2 y2R 2

C44 y R
7T g b

(4.43)
1y RJ

~ab ycx= '
& A+b &Ry &A&by&

Rj
ap &Rg &A, b

L, (J)=ao, (4.39)

where L, (J) is the characteristic length of the fiuctuating
segment appearing in the single vortex creep process.

We emphasize that these results apply to transport at
intermediate current and length scales. As J~O, the
relevant length scale for transport eventually exceeds R .
On scales large compared to R„we expect that variable-
range hopping of Aux bundles leads to a result of the form
(4.18) in the asymptotic limit J~0.

2. Creep through plastic barriers

The thermally activated motion of the vortex bundles
over the plastic barriers occurs via jumps over a distance
ap separating difFerent metastable states between the
tracks. Therefore this "plastic" creep corresponds to the
so-called charge-density-wave (CDW) limit of vortex
motion. The characteristic size of the bundle and the
dependence of creep activation energy on the applied
current J are obtained by means of the usual dimensional
estimates:

for large fields, where a p & A,,b /y. Combining Eqs.
(4.40) —(4.43), we find, for the creep activation energy,

B2

U(J)=— &aR j,
4my k,b

(4.44)

d (JPI/ J )
I/2 J(JPI (4.45)

U( )
Bdy Pi

2 5 2 J
4~a' y'

ly RJ )k bp
5/2

A,,b &R~ & k,by,
R~

y, ap &Rx &kab

»nce Jp' & ', we have U(J) 8 in the nondisper-
sive region and in the region of small R j, and U (J) ~ 8 in
the intermediate region.

2 2 2ap ap ap ]
C44 2 C)) 2 C66 2

—JBap
L' R

ll
Rl c

(4.40) 3. Collective creep

c))
(4.41)Ri, Rll —— Rq.

The elastic moduli of the vortex lattice, c44 and c&&, show
nontrivial dispersive behavior which complicates the
creep picture and changes the values of creep ex-
ponents. For the case Hllc, the tilt and compression
moduli take the form ' '

B2 1
c44(k) =

4~ 1+(A,,b/y )K +A.,bk,

c„(k)=a(k)c44(k), (4.42)

1+(A,,b/y )k
a(k) =

1+A, k

This estimate represents the balance between tilt,
compression, shear, and Lorentz forces per unit volume
of the moving bundle. The lengths L,„Rll, and R~ are
the sizes of the bundle along the z axis, in the direction of
bundle motion, and in the transverse direction, respec-
tively. The criterion for the bundle creep is R~ )ap. The
length scales R~, R ll, and I., are related according to

' 1/2 1/2

Now we consider the regime of collective creep, i.e.,
d & R ~, where R ~ is the transverse dimension of the mov-
ing fIux bundle. The dynamics of the Aux bundles at
small currents J«J, is viewed as the sequence of the
thermally activated jumps of vortex bundles between stat-
ic metastable states generated by disorder. The spatial
distribution of the metastable states and connection be-
tween the metastable states with spacing u and the
characteristic size of the vortex bundle R are governed by
the scaling relation u -R (, where g is the wandering ex-
ponent depending on the dimensionalities involved (i.e.,
dimensionalities of the disorder, the driven elastic object,
and the space. ' The applied currents select the most
favorable hopping distance and the optimal size of vortex
bundles, and, therefore, determine the creep activation
barriers.

Using once again the quantum-mechanical analogy,
one can reduce the problem of classical collective creep
through columnar disorder to the problem of quantum
tunneling of a two-dimensional pancake vortex lattice be-
tween metastable states generated by time-independent
point disorder. We first write the free energy of the vor-
tex lattice as
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2

F= f dz d R —c«+—(c» )(divu)

+—c66(V'iu) + VD[R —u(z, R)]1 2

2

1——JBu
c

(4.46)

E2D —V'c«c» (R i )u (R J )

and for the "quantum" action, i.e., creep energy

(4.48)

along the z axis.
Upon replacing ao by u in (4.40) and combining now

Eqs. (4.40) —(4.43) and (4.47), we find, for the "static"
two-dimensional part of the free energy,

u =—ro(Ri/Ro) (4.47)

Here ro and Ro are the characteristic scales depending on
the particular scenario of the development of the creep
process. If we start in the region B & B*, ro =u T (the
root-mean-square thermal fiuctuation of a line) and
Ro =R, . If initial conditions correspond to the half-loop
creep or VRH processes considered above, the charac-
teristic lengths ro and Ro are to be found by setting
Z=ao, u =—r*, where Z is the size of the vortex bundle

where u~ is the component of u parallel to the Lorentz
force. Note that the tilt modulus c44 plays the role of the
fictitious particle "mass" and the tilt deformation term
represents a fictitious "kinetic energy" in Eq. (4.46). We
can consider Eq. (4.46) as the Euclidean action governing
the process of quantum tunneling. The creep rate as
usual is controlled by the saddle-point trajectory, and in
order to find it we have to minimize (4.46) with respect to
the size of the bundle, the hopping distance (in the xy
plane), and the "duration" of tunneling process in imagi-
nary time. This kind of 2D quantum collective creep has
been discussed brieAy in Ref. 2 in the strongly dissipative
limit. The Euclidean action (4.46) describes a difFerent
nondissipatiUe limit of quantum tunneling with a strongly
dispersive mass c44.

The scaling of the optimal jurnp for 2D creep is given

by u -R ",$2 2= —', , as long as u (ao and the structure&z, z

of the vortex lattice is irrelevant. When u )a o,
u —=aoln(Ri/RcDw), where RcDw is the size of the bun-
dle corresponding to u =ao and can be found from the
scaling formula for u:

U(J)=c«(Ri)VaRiu (Ri) . (4.49)

19/8
b

ao &Rg &A,ab (4.50a)

where Ub=(B /4m)(ro/aoy)R, and Jb is the charac-
teristic current at which R i(J)=R o and

14/5
A,,b Rq

U(J) —= U&
Ro Ro

14/8
Jb

b (Rg & kaby (4.50b)
Ro J
A,,b Rq

Ro

y~ab

Ro

9/5

yXab (R JU(J) —= U&

9/8
b

J (4.50c)= Ub

Note that the obtained results show that the wandering
exponent g for a vortex lattice subject to columnar disor-
der coincides with that for the 2D vortex lattice, /= —', .

When the hopping distance u exceeds the vortex spac-
ing ao, creep is governed by the CDW-like pinning and
the corresponding pinning energies read

Because in a dispersive region where the transverse size
R~ &A,,b, the optimal hopping jump u scales as u -lnR~
and one finds, for di6'erent ranges of magnetic field,

19/5
Rq

U(J) =—Ub
Ro

a
UcDw( J) Ub

ro
~ab (Rl (~aby&

(J /J )15/81n2( J /J )5/8 a & R
5/4 5/8

ab b 2 b

. Ro J J (4.51)

Ro
ln J by (Rq

The last result enables us to consider the competition
between columnar and point disorder at large scales. At
Ri »k, by, creep energy (4.51) scales as (Ri)-Riln Ri.
Let us superimpose weak point disorder and consider the
e6'ect of point disorder on the vortex creep perturbative-
ly. After each elementary jump over u —=a„, the bundle
acquires an additional energy 6E —QaoR i -Ri due to

point disorder (the pinning force due to point disorder is
proportional to the square root of the volume 6V swept
by the bundle during the jump, and 5V o- aoR i). Thus,
since the energy barrier provided by columnary pins
scales as R~ln R~ at very large distances R~, the Bose-
glass dynamics is stable with respect to point disorder in
this regime.
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We now discuss brieAy the results describing collective
creep at high enough fields B)B* and high enough tem-
peratures T)T' where the characteristic scale of the pin-
ning potential is controlled by the mean thermal displace-
ments of the vortex lines in the vortex lattice:
uz--=(u ),h =—Tao/EiEo. In this region RO=R„where
R, is given by Eq. (3.59), ra =uz. , and Jb =J;"from Eq.
(4.38). We find, in this regime,

[J;"(T)/J]', ao &R~ & A,,b,

U(J)= U —~ (A,,b/R, )[J;"(T)/J]' i, X,i, (Ri &A,,by,

(X,by/R, )[J;"(T)/J] ~, A,,i, y &Ri,
(4.52)

where U~
= Ub(R0=R, ).

Another creep scenario, when creep starts in the region
of single vortex creep (via half-loop formation or VRH
process) and then evolves into a collective creep of vortex
bundles as current decreases, can be considered in a simi-
lar fashion.

To conclude this section, we discuss brieAy the temper-
ature dependence of physical quantities. Taking into ac-
count that R, —(1—t ) ~, T"-(1 t ), J;"(T—)
—(1 t) ~, —and U -(1 t) "—

, where t=T!T„we
find, from Eq. (4.52),

(1 r)"—~", a &R, &A,,„,
U(J)- (1—r)"~', X,b &Ri (A,,by, (4.53)

V. SCALING THEORY
OF THE BOSE-GLASS TRANSITION

A quantitative theory of the Bose-glass transition itself
is unavailable at present. Our ignorance about the exact
dynamics near TBz, however, can be packaged into just
two critical exponents, as discussed in the Introduction.
These exponents can be extracted from computer simula-
tions of simplified models designed to focus on the
"universal" asymptotic behavior when the correlation
lengths l~ and

l~~
are large. We apply here ideas applied

previously to isotropic vortex glasses to transport with
JlB. Although the two theories are similar when
H~=O, striking differences arise when we consider the
response to tilting the external field. We invoked a simi-
lar static scaling assumption [Eq. (3.25)] earlier in our
treatment of vortex density fluctuations near TBG.

A. Scaling for H~=o

The scaling behavior of the current and the electric
field for H~ =0 is related to the critical properties of the
vector potential in the underlying Ginzburg-Landau
description of the physics. The in-plane vector potential
A~, in particular, gives the current J and the electric field
8 via

(5.1a)

1 BA
c Bt

(5. lb)

H. Dynamics of the Mott-insulator phase

Excitations in the Mott insulator differ from those in
the Bose glass due to the gap in the excitation spec-
trum. ' Because the Mott insulator has both an infinite
tilt modulus and is incompressible, (small) currents will
Aow only within a penetration depth of the sample sur-
face, as they would in a conventional Meissner phase.
Low-energy thermal excitations are similar to the half
loops discussed in Sec. IVA. The characteristic energy
of an excitation of size z* is of order Uoz* =+UOE, r*,
as we find from optimizing Eq. (4.6) with fL

=0.
Variable-range hopping of vortices to distant, nearly de-
generate states is impossible because of the gap. Non-
linear current-voltage characteristics will arise because of
vortex half loops generated near the sample surface. The
physics should be similar to the discussion of transport in
a conventional Meissner phase in Ref. 4. Point disorder
never destabilizes the Mott insulator even in the limit
J~0.

Like variable-range hopping, "variable-range tilting" is
also impossible in the Mott insulator. As a result, the
Mott insulator should be stable to tilt until the rather
large tipping angle 8, in Eq. (4.31b) is reached. Because
the Mott insulator may occur only well below TBz,
which plays the role of an irreversibility line in this prob-
lem, it may be dificult to access experimentally for
dynamical reasons.

where f is the free-energy density. Because the vector
potential appears in the anisotropic Ginzburg-Landau
theory in the combination

2
2el~J. Al +BCS
Ac

(5.2)
2M'

where the + subscripts allow different scaling functions
above and below TBz. Note that the scaling combination

lil~~ JPO/c is just the work done by the Lorentz force to
move a critical fluctuation (extending a distance

l~~~
along

the z axis) a distance li.
Henceforth, we set v~~=2v~=2v', in accordance with

the exponent relation ' (3.19), which has been checked
with simulations. The primes on the exponents v' and
z' are intended to distinguish these exponents from their
counterparts v and z in the vortex-glass phenomenology.
Data at different current levels near TBG should be col-

where O'Bcs is the BCS order parameter, we expect that
the behavior of Ai near the transition is A il/l (Ti),
where li(T) is given by Eq. (3.3). Since the free-energy
density f—I/lil~~ [with l~~ given by (3.6)], we find from
(5. la) that J- I/lil~~. If the relaxation time for a critical
Auctuation scales according to Eq. (1.3), Eq. (5.1b) im-
plies that 6"—I/lir-1/li+'. These expectations are
embodied in the scaling hypothesis

(5.3)
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lapsible into two scaling functions, according to (5.3).
Above TBG, the expected linear resistivity at small
currents requires that F+(x)-x as x ~0, which leads to
Eq. (1.4). Precisely at TBo, we require F+(x)-x"+' '~

as x~zc (so that 8 remains finite for finite J), which
leads to Eq. (1.5). The variable-range hopping prediction
(4.18) requires that

~t'

rr
rI

I
I

I
I

I
I

'\ I
1t
BL

F (x) —exp
—const

1/3 (5.4)

as x —+0.

B. Scaling with a perpendicular field

Except for the anisotropically diverging correlation
lengths, Bose-glass scaling when Hz=0 is very similar to
the vortex-glass scaling hypothesis. In fact, point-
disorder-dominated vortex glasses could in principle also
have correlation lengths which diverged differently paral-
lel and perpendicular to the average field direction. In
this case, however, tilting the external field would im-
mediately cause a rotation of the direction of the most
strongly diverging length. The response to Hi&0 at the
Bose-glass transition is very different, because tilting H
attempts to pull vortex trajectories away from the
privileged direction singled out by the correlated disor-
der.

To extend the scaling description, note that
Hg =8 Ag /Bz, and so the ideas of the previous subsection
lead to Hi-1/lil~~. Hence we generalize Eq. (5.3) to read

i+' =V+(lill Jpo/c, Hil)(li/Pc) . (5.5)

The most interesting consequences of (5.5) arise in the
fIux liquid regime of Fig. 4, where there is a linear resis-
tivity. Upon linearizing (5.5) for small J, setting
v~~=2v~=2v', and changing variables to O=H~/H, and
t=(T TBo)/TBo, —we recover the scaling form in Eq.
(1.8),

(1.8')

An enlarged view of the cusped region in Fig. 4 togeth-
er with the expected behavior of the scaling functions
f+(x) is shown in Fig. 17. We have argued in Sec. IVD
that a finite tilt Hi(T) is required to destroy the Bose-
glass phase. This transition, discussed in Ref. 37, re-
quires a singularity in f (x) at x =+x„so that the criti-
cal tilt angle 0, vanishes as T~ TBG,

(5.6)

which is equivalent to Eq. (1.6). Consistency with Eq.
(4.31) requires that

+C

(b)

FIG. 17. Scaling description of the response to tilt near the
Bose-glass transition. (a) Phase diagram near T~~(H, =0) as a
function of reduced temperature t =(T—TBG)/TB& and angle
O=H~/H, . The dashed lines mark the onset of a sharp drop in
the resistivity as a function of angle in the flux liquid. The shad-
ed region is the Bose glass. (b) Scaling functions f+{x) for
T) Tao(0) and f+(x) for T( TaG(0).

Aux-liquid phase. The angular dependence of the resis-
tivity just above T~z is thus

(5.8)

where A is a positive constant. The dashed lines in Fig.
17 denote the locus of points where p(t, 0) has increased
by a fixed fraction of its value at 0=0. Note that the
coefFicient of 0 is proportional to t ' ' ', which
diverges as T~TBG provided z' (8. A very sharp rise of
the resistivity with tipping angle away from alignment
with twin boundaries has, in fact, been observed experi-
mentally. ' ' We predict a similar strong angular depen-
dence in samples with columnar pins, since z'=6. We
note finally that Eq. (1.8) is only consistent with a finite
resistivity when t =0 and 0%0 provided

f (x)-(x+x, )
i (5.7)

(0 g) g(z' —2)/3 (5.9)

near these singularities. In very thin samples, this cusp
will be rounded off for small reduced temperatures t such
that l~~(T) =Eili(T)/T ~L.

The function f+(x) should be an analytic even func-
tion of x at x =0, rejecting the finite tilt modulus in the

which is equivalent to Eq. (1.7).

C. Irrelevance of point disorder at the transition

It is easy to show that weak disorder has no inhuence
on Bose-glass scaling near T~~ itself, at least insofar as it
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shifts the local transition temperature. We adapt the
Harris criterion ' for random spin systems to this prob-
lem. Our conclusion agrees with explicit computations
for a soluble (1+1)-dimensional system. We assume
that the point-disorder potential in Eq. (4.32) produces a
linear shift in the local Bose-glass transition temperature
Tao(r, z ) = Tao+ oTHG(r, z ), where

oTHo(r, z ) =const X5VD(r, z) . (5.10)

This quantity will be much less than distance t to the
transition as

~
t

~

~0 (and point disorder will be irrelevant)
provided

Point disorder wi11 be irrelevant if the correlation volume
near T~G diverges fast enough to efficiently average out
the random potential 5VD(r, z). The root-mean-square
fluctuation in oTHo averaged over a volume l~l~~ [see Eq.
(4.33)] is

(5.11)

describing correlations perpendicular to the field direc-
tion but parallel to the twin planes. Standard variable-
range hopping arguments suggest a current-voltage
characteristic V-exp[ —(J/J)'~ ] in the Bose glass.
Rare events, such as exceptionally large gaps between
thin spaces, should dominate transport at very low
currents, however. A more complete treatment of this
fascinating problem wi11 be presented in a future publica-
tion.

We conclude this brief discussion with a derivation of
the critical-current formula (1.11b) for parallel twin
boundaries quoted in the Introduction. Consider the re-
gime of low fields where every vortex is localized on a
twin, with well depth Uo and effective width 2bo. The
temperature renormalization of the pinning energy and
the localization length for T & T* are given in Eqs. (2.25)
and (2.26). This estimate holds, however, only when
l~( T) & d, i.e., T & Td~, where

1/2

(6.1)
v &—

2 (5.12)

which is guaranteed by the rigorous inequality ' v' ~ 1.

VI. PINNING BY TWIN BOUNDARIES

Clz+: 9+(lgl~~ Jgp/c Hzl~[lJ /Pp) (5.5')

where l~ and
l~~ have the same meaning as for columnar

pins, and l~( T)-1/~ T Tao ~

' is a new div—erging length

Twin boundaries can be an important source of corre-
lated disorder even if columnar defects produced by irra-
diation (or embodied in screw dislocations' ) are absent.
Twins are ubiquitous in superconducting YBa2Cu307
and La2Cu04, where they are needed to accommodate
strains produced a crystallographic tetragonal-to-
orthorhombic transition. Twins occur in two orthogonal
families of lamella called "colonies, "whose characteristic
dimension (mosaic size) scales as the square of the twin
spacing d within the colony. See Fig. 1(c). Our theory
should be directly applicable to twinned materials on
scales large compared to this mosaic size. Indeed, boson
localization rather than vortex-glass physics may well be
responsible for the phase transitions observed in Refs. 12
and 13. As discussed in the Introduction, this question
can be easily decided experimentally by rotating the mag-
netic field away from the direction of alignment with the
correlated disorder. ' '

It is also possible to prepare samples which contain a
single family of parallel twin planes. ' ' For H~~c, locali-
zation of Aux lines by correlated pinning will occur at low
temperatures, in the direction orthogonal to the planes.
A Bose-glass delocalization transition should occur with
increasing temperatures. The tilt modulus will again be-
come infinite below THG, at least for tipping vortices out
of alignment with the twins. A scaling theory, such as
that presented in Sec. V, should become applicable near
the transition, but with different critical exponents and
three distinct length scales. Equation (5.5), for example,
generalizes to

When T» Tdp vortices are localized collectively by
many twin planes in the perpendicular direction. In the
absence of strong interaction effects, these lines are
presumably delocalized in the direction parallel to the
planes. To determine l~( T), we carry out a one-
dimensional variational calculation analogous to that fol-
lowing Eq. (3.30a). Straightforward estimates of the
ground-state energy now lead to

Uo&o

(ljd )'~ (6.2)

in analogy to Eq. (3.32a). Upon minimizing with respect
to lj, we find

2/3

li(T) =d
4/3

T (T& Td, ) (6.3)

and ground-state energy
2/3

U(T)= Up

2/3

(6.4)
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APPENDIX A: FIRST- AND SECOND-ORDER
FREEZING OF ABRIKOSOV FLUX LINES

In this appendix we briefly review theoretical argu-
ments predicting first-order freezing from a flux liquid
into a triangular vortex lattice. We also show that this
transition can be continuous for the smecticlike crystal
which appears in Fig. 4 when columnar pins provide the
correlated disorder. From mean-field theory, one expects
that the Abrikosov flux lattice appears exactly at H, 2 via
a continuous phase transition. A renormalization-
group analysis in 6—c dimensions, ' however, shows that
thermal fluctuations reduce the ordering temperature and
force this transition to become first order below six di-
mensions. Although this effect is probably unobservable
in most conventional superconductors, it should become
more pronounced in the strongly fluctuating high-T, rna-
terials. In the physical dimension d =3, we can also ap-
peal directly to the following physical argument: ' Once
fluctuations drive the ordering transition significantly
below H, 2, the system still acquires a nonzero local con-
densate density below &,2( T),

p( „)=(l+ ( „)l'), (A 1)

where %acs(r~, z) is the BCS order parameter and the
field is assumed to be along z. In a flux liquid, the zeros
of O'Bcs(r~, z) (i.e., embryonic vortices wandering along
the z axis) are disordered, and so the thermal average in
Eq. (Al) is independent of position. This quantity be-
comes modulated, however, once these zeros crystallize.
We can then follow the classic analysis of Landau and
expand p in the Fourier components of the triangular flux
lattice:

rG. r&
p(rl) po+ r, pae

GWO

(A2)

where the ICOSI are reciprocal-lattice vectors lying in a
plane perpendicular to z. The free-energy density
difference 5V between the liquid and crystalline phases
can then be expressed as a Taylor series in the IPG J,
which are order parameters for the freezing transition,

6

& lpo l'+~ X popo po, +
j=1 G,. +G +Gk=0

(A3)

The Cx vectors included here come from the first ring of
six around the origin. The crucial element is the third-
order term allowed by the symmetry of a triangular lat-
tice, which leads to a first-order phase transition when
r = r( T ) decreases with decreasing temperature. Toner
has discussed how to incorporate hexatic bond orienta-
tional order and quenched random point disorder into
this picture.

A recent computer simulation of a lattice-gauge glass
model by Hetzel, Sudbo, and Huse does indeed find a
first-order transition. The flux array studied in Ref. 78

is somewhat artificial, because it is exactly commensurate
with the underlying mesh of points which defines the
model. In addition, the star of reciprocal-lattice vectors
which defines the order parameter points in a discrete
rather than continuous set of directions. This should not
alter the basic prediction of a first-order freezing transi-
tion, however. The Landau argument correctly pre-
dicts a first-order freezing transition for liquids of point
particles in three dimensions and is likely to be correct
for three-dimensional line liquids as well.

When columnar pins are present, the Landau theory of
freezing may be applied to the low-temperature crystal
phase shown in Fig. 4. Consider first a magnetic field
oriented in the ab plane exactly perpendicular to colum-
nar pins aligned with the c axis. We neglect point disor-
der, which is assumed to affect the physics only at length
scales much larger than the vortex-lattice spacing. Vor-
tex lines then run at right angles through the defect
"forest" on predominantly "horizontal" trajectories. Al-
though fluxons may deviate to the right or left to pass
through particularly favorable "thickets" of columnar
pins, their vertical deflections are unconstrained. A low-
temperature crystalline phase periodic in two directions
is impossible because of the disorder. The vortices can
order, however, in smecticlike sheets which are periodic
in z, along the c axis. This crystal should freeze from a
flux liquid in a way somewhat reminiscent of the
nematic —to —smectic-3 transition in liquid crystals.

The condensate density (Al) is now modulated in the z
direction below the freezing transition, and the order pa-
rameter expansion (A2) becomes

p(z) =po[1+ReI@ e '
I j, (A4)

where N is a complex order parameter describing the
qp

amplitude and phase of a density wave with wave vector
qo=qoz=(2~/ao)z. Although integer multiples of qo
could also appear in the expansion, wave vectors with
components perpendicular to z are excluded by the disor-
der. As in the de Gennes theory of the
nematic —to —smectic-A transition, we expand the free-
energy density difference between the liquid and crystal
phases to quartic order in @

q 7

SV=-,'rlc, l'+ale, f', (A5)

with r ~ (T—T ). Unlike Eq. (A3), a third-order term is

not permitted by symmetry, and so the transition can be
continuous. Of course, a first-order transition caused by
a negative value of u cannot be ruled out, however. To
treat thermal fluctuations more accurately, we should al-
low @ to have spatial dependence and include gradient

terms such as lV&b (r~, z)l . The continuous phase tran-
qp

sition which results should be in the universality class of
the three-dimensional XYmodel, with v~~

=vs= —', .
Suppose the field is tilted at some angle away from the

ab plane, but not so close to the c axis as to produce a
lock-in to a Bose-glass phase (see Fig. 4). Fluxon trajec-
tories will now consist of approximately horizontal vor-
tex segments (kinks) which connect vertical portions run-
ning along the columnar pins. The low-temperature
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phase will now consist of vortex sheets tilted on average
which will remain periodic along the c axis. Because the
periodicity is still only possible in one direction, the
analysis of freezing sketched above for perpendicular field
orientations should remain valid.

APPENDIX 8: NONLOCAL VORTEX INTERACTIONS

The interaction in Eq. (2.1a) can be of arbitrary range
in the plane perpendicular to B, but is local in z. We

show here that locality in z is an excellent approximation
provided Eq. (2.2) is satisfied. Interactions are clearly lo-
cal in all directions when ao) A,,b (i.e., B & $0/k, b), and
so we restrict our attention to the high-field regime
8))go/X, b. We assume B~~c and use the method of
Blatter, Geshkenbein, and Larkin to rescale the under-
lying Ginzburg-Landau free energy onto an isotropic
problem. After rescaling, the nonlocal interaction be-
tween two flux lines with trajectories ri(z, ) and rz(z2) in
the limit L~~ reads

d r, (z', ) dr&(zz) exp[ —Q~r, (z', )
—r2(zz)~ +(z', —z2) /A, ,b]

V&2
—80 dz

&
dz2 1+

dz2 Q~ri(zi ) —r2(zz)~ +(zi —zz)
(81)

The rescaled energy V&z and coordinates z' are related to
the parameters in the original problem by

MZ~i2=
'

1 /2
Zz'= z .

(82a)

(82b)

This screened "Biot-Sovart" law allows every element of
the Aux line to interact with every element on the neigh-
boring line. Note that the interaction vanishes when the
three-dimensional line elements

(83)

z'=
—,'(z', +z2 ),

Az =z', —z~

and expand in bz with r, 2(z') —=r, (z') —r2(z'),

(84a)

(84b)

ri(zi ) —r2(z2 ) =ri2(z')+ —bz[ti(z')+tz(z')]
2

dr, (z')
t, (z')=

dz'

The condition ( t, (z') ) « 1 is. equivalent to Eq. (2.2).
We now set

dr, (z )
, 1 dz, i =12,

zl

are at right angles. We shall be interested in the limit of
nearly straight lines so that ( t, (z ') ) « 1, where to obtain

+—(Az) +dz' (85)

exp[ —Qr, 2(z')+(hz) /A, ,b]
V', 2=ED dz' d(bz) [I+8(t, , t2, t, t2)] .

Qr, ~(z')+(bz)
(86)

Upon neglecting the corrections, which are quadratic in
the tangents, and restricting z' to a slab of thickness L,
the Az integral gives

I 'i2 =2EO f dz' &o[ri2(z')/~ b ] (87)
0

Upon returning to the original coordinates and energies
via Eq. (82), we recover the interaction used in Eq. (2.1a).
The contributions from the correction terms in Eq. (86)
are readily estimated. For vortex separations such that
g,& «ri2 «A, ,b, the correction to the logarithmic in-
teraction embodied in Ko(riz/A, ,b) is always
6(ti, tz, t&, t2) over this entire range of distances. When
r,2) A,,b the exponential tail in Ko(r, 2/k, ,b) acquires
corrections whenever r, 2 & r*, with

This contribution, induced by nonlocality in z, is similar
to the asymptotic retarded 1/r interaction (instead of a
1/r van der Waals attraction) between neutral atoms at
very large distances induced by the finite speed of light.
The interaction strength, however, is only of order
eoexp( —r*/A, , )«bEO in this regime for flux lines and
hence should have a negligible effect on the statistical
mechanics of melting or localization.

Finally, we estimate directly the size of

M,((«;/dz) ) = (r (z'))



BOSON LOCALIZATION AND CORRELATED PINNING OF. . . 13 093

In the fiux-liquid phase, the first term to Eq. (2. la) leads
to

ping angles only arise close to H, 2( T), where the conden-
sation energy vanishes.

APPENDIX C:
VORTEX PROBABILITY DISTRIBUTIONS

M,
sop, Mi

(B9)

where we have used the coherence length g, to cut off the
path integral over vortex trajectories at short distances.
The right-hand side is of order 0.02M, /M~ at T=77 K,
and so Eq. (2.2) is very well satisfied; vortices are tipped
away from normal at a root-mean-square angle of order
7' in YBCO by thermal Auctuations. Interactions will
reduce this angle to even smaller values. Even a small
tipping angle is sufficient to produce considerable entan-
glement in macroscopic Aux liquids, however. Large tip-

We show here that the probability of finding an indivi-
dual vortex line at height z with position r~ in an arbi-
trary binding potential V, (ri) is related to the ground-
state wave function of the corresponding Schrodinger
equation. See Fig. 6(a). The probability distribution at a
free surface is proportional to the wave function itself,
while the probability far from the surface is proportional
to the wave function squared.

Consider first a Auxon which starts at the origin 0 and
wanders across a sample of thickness L to position r~.
The partition function associated with this constrained
path integral may be written as a quantum-mechanical
matrix element,

r(L) =r&
Z(ri, O;L ) = f X)r(z)exp

r(0) =0

2

f dz ——f V, [r(z) ]dz
2T 0 dz T 0

—(r
~

—
L&/T~O) (Cl)

where ~0) is an initial state localized at 0, while ( ri is a
final state localized at ri. The "Hamiltonian" & appear-
ing in (Cl) is

where

Z(ri;L)= f d r, fd rfZ(rf, ri;.L —z)Z(ri, r, ;z) (C7)

T'
2Vi+ V, (r) .

2E, i

(C2)
and Z(r2, r„L ) is given by Eq. (Cl). Upon inserting com-
plete sets of states as before, we find that

Upon inserting a complete set of (real) energy eigenstates
~n ) with eigenvalues E„ into Eq. (Cl), we have

g P„(0)g„(r,)e
(C4)

g itj„(0)f d rip„(ri)e
P(ri) =

The probability distribution P(ri) for the vortex tip posi-
tion at the upper surface is then

P(r~)=Z(ri, O;L) f d riZ(ri, O;L) .

Po(r, )
2

L(E& Eo )/TP(ri;L)= [1+6(e ' ' )] .
d "i |('o( ri )

For large ri, &go(ri) ~exp( —wr), where ~ ' =—li(T) is
the localization length induced by the potential V, (r).
Upon comparing Eqs. (C5) and (CS), we see that the
probability distribution is more spread out at the surface
($0-e ") than in the bulk (Po-e ""), because the
free-boundary conditions are less constraining. This sur-
face spreading of the probability distribution persists for
a distance of order

In the limit I.~~, the ground state dominates; the
probability P(ri) becomes

I, =T/(E, —Eo)

into the bulk.

(C9)

fd rico(r~)
(C5)

APPENDIX D:
ESTIMATES OF PHYSICAL QUANTITIES

where E& is the energy of the first excited states. Because
the ground wave function is nodeless, P(ri) is always
positive and well defined.

Consider now a more general problem of a vortex
which enters the sample at r;, exits at rf, and passes
through rz at a height z which is far from the boundaries.
The normalized probability distribution is now

P(ri;L )=Z'(ri;L ) f d r&Z(ri;L),

In this appendix we estimate the characteristic ener-
gies, fields, and crossover temperatures for columnar pins
using parameters typical of the cuprate high-temperature
superconductors. These estimates are necessarily approx-
imate, because we often neglect factors of order unity and
because a number of results depends sensitively on the
parameter choices.

The first and most straightforward quantity is the
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crossover temperature To such that the microscopic pin
radius co =&2/, b( To ), which determines the formula for
the pinning energy Uo in Eq. (1.9a) and the e+ectiue de-
fect rod radius bo in Eq. (2.3). Upon using a mean-field
parametrization of g,b(T),

—1/2

g,b(T) =go 1—
T.

(D 1)

where T, is the zero-field superconducting transition tem-
perature, we readily obtain

To

T
=1—2ko

(D2)

0

Upon taking, for example, a rod radius c0=3S A and
zero-temperature coherence length in the ab plane go= 12
A, we find To/T, =0.76.

Consider now the temperature dependence of the single
column pinning energy T*(T)=+UoEibo. If T ) To,
then we find using Eqs. (1.9a) and (2.3) that

1/2
M~

—coco Inl~
2

(D3)

Mi T, go
Eo=

M, 8Gipb

to find

o inl~

4go Gi

1/2

(T, —T) .

(D5)

(D6)

We next estimate the temperature T, at which the en-

tropy of flux-line wandering plays a significant role in
determining the localization length and binding free ener-

gy of a Auxon interacting with a single columnar pin.
The self-consistency relation T*(T,)= T, leads immedi-
ately via Eq. (D6) to

T1

Tc

(co /4/o) &in~/Gi

1+(co/4g'o)&ln~/Gi

Upon taking co=35 A, go=12 A, ~=10, and Gi=10

where we have used E, =(Mi/M, )coin~. Except for a
change in prefactor of order unity, the same result holds
for T(T0. For numerical estimates it is convenient to
eliminate so=[go/4vrk, ,b(T)] in favor of the "Ginzburg
number, "

M, T,G'=— (D4)
2 Mi

where H, =&2$o/4+i, ,b (0)go is the thermodynamic criti-
cal field at T=O. The Ginzburg number is the reduced
temperature (T, —T)/T, at which fiuctuations in the
BCS order parameter 6$Bcs become comparable to
( 1l Bcs ) . Although small even in high T, m-aterials
(Gi-0.01), the Ginzburg number is many orders of mag-
nitude larger than in conventional superconductors. We
can then use Eq. (D 1) and the relation

X exp

2
4ko Gi 7'
co lnl~ (7' —7 )2

(D8)

The depinning temperature T& is defined by the condi-
tion li(T)=d, where d is the average spacing between
columnar pins. This leads to a self-consistent equation
for x =T& /T„namely,

4
(D9)

Co

Gl x' =1 d
(1 )

1/2

Ina (1—x)2 v 2(o

Upon replacing T& by T1 ~ T& inside the logarithm, we
find a formula similar to (D7),

with

(co/4')&ins/Gia
1+( c /4/o )V'inc. /Gia

(D10)

1/2
1~=ln'" d

v'2g, T,

With d=300 A and the parameters used for YBCO
above, we find T& /T, =0.95. For a highly anisotropic
BSCCO-like material we take Gi=10 ' and keep all oth-
er parameters fixed to estimate T& /T, =0.87.

When T & T&, collective pinning of a single Aux line

by an ensemble of columnar pins leads to a localization
length which grows according to Eq. (3.32b). Equation
(D6) then leads immediately to

(D 1 1)

li(T) =d
24' Gi T'

co Inx (7;—7 )

For very low fields B &P/A, ,b, the Bose-glass transition
field BBo(T) occurs when this localization length equals
the vortex spacing ao. Equation (D12) then leads to

4-
C

T
T

'
1—

T.
co

BBo(T) =B~
4ko

(D13)

where B&=Po/d is the matching field. A di6'erent
power law should arise for 1 —T/T, ~Gi, because of
fluctuation effects.

We also present explicit forms for the interaction field
B*(T) above which interactions between vortices modify
columnar pinning in an important way. Upon combining
Eqs. (3.28a), (3.28b), and (3.33b) with the results in this
appendix, we find

typical parameters for YBCO, we find that T1 /T =0.94.
As a rough model of a highly anisotropic material such as
Bi2SrzCaCuzO& (BSCCO), we substitute instead Gi=10
and find Ti/T, =0.83.

The temperature dependence of the localization length
li(T) for T) Ti is given by Eq. (2.23a). Since Ti )To,
we set bo =&2$,b ( T) and use (D6) to find

—1/2

li(T) =&2(o 1—
Tc
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8 (T)=8~ (T & To),
2

(D14)

B*(T)=B~ T1—
T.

(To&T&Ti), (D15)

T GiB*(T)=48~ exp
T, (T, —T) 1ntc

'2
4ko ai T'—2
co lntc (T —T)

(T, &T&Td ), (D16)

8*(T)=2 ' 8
ko

6
Cp (T, —T)

(Td & T& T, ),T6 (D17)

where, again, a different power law obtains for 1 —T /T, & Gi.
Estimates for the characteristic energies and temperatures for pinning by families of twin boundaries can be obtained

in a similar fashion.
Finally, we write the field corresponding to the melting temperature T =cl QEoe, ao [see Eq. (3.41)] in terms of the

parameters defined above:

H, ~(0) T, —T8 (T)=—cL 1ntc
4 Gi (D18)

where H, z(0) =go/2vrgo is the upper critical field at T=0.
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