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A Hamiltonian for two interacting electrons coupled with longitudinal phonons and plasmons is set

up. The phonons are treated in the Frohlich scheme and the plasmons in the single-pole approximation.
We are interested in systems with low electron density (n ( 10 —10 ') such as high-T, superconductors.
It is shown that, in this density range, the electron dynamics do not simply screen the electrostatic in-

teraction but, also, cooperates to the bipolaron formation. Furthermore we find that the binding ener-

gies and the e6'ective mass depend on the electronic density. The features of the e8'ective electron-

electron potential are discussed, mainly for what concerns the self-energy terms and the long-range tail;
the former depends on the pair state and the second shows that the plasmon field tends to screen all the

electrostatic interactions, even the electron-phonon one. It is also shown that the Hamiltonian formula-

tion is equivalent to a dielectric formulation where the total dielectric function of the system is the sum

of the dielectric function appropriate for an ionic of the system is the sum of the dielectric function ap-

propriate for an ionic material and that appropriate for the electron gas. Within this model we calculate
the Bose-condensation critical temperature of a system of correlated pairs and free carriers in a two-Quid

model at thermodynamical equilibrium.

I. INTRODUCTION

For many years the BCS theory' for phonon-mediated
pairing has represented the theoretical framework for su-
perconductivity. Only recently, with the discovery of
high-T, superconductors have BCS theory and the mech-
anism responsible for the pairing been questioned.

In the last years many alternative theories have been
proposed such as the resonating-valence-bond theory,
the exciton coupling, the spin fluctuation models, and
bipolaron mode1. ' It has also emphasized the specific
roles of holes and dimensionality. Recently, there have
been attempts to review Eliashberg theory for strong
electron-phonon couplings going beyond Migdal-theorem
limitations. ' '"

One of the most remarkable characteristics of the
high-T, materials is a small coherence length of the order
of a few angstroms. For this reason the Bose condensa-
tion of charged bosons, ' which had been proposed even
before BCS theory, has attracted much attention. In this
approach many properties of the superconductivity can
also be recovered. '

Important developments of the theory were obtained
when it was shown that, considering a many-body system
with an effective electron-electron attractive interaction,
it is possible to go from a Bose condensation (bipolaron
mechanism) to a BCS theory changing only the dilution
parameter of the system (nRb «1 and nRb ))1, respec-

tively, where n is the electronic density and Rb the bipo-
laron radius). ' Moreover, it was also shown that, in two
dimensions, the existence of a bipolaron bound state
makes the many-particle system unstable versus a super-
conductivity state; furthermore, if the binding energy is
large with respect to the Fermi energy, we have a Bose
condensation and in the opposite limit a BCS state. '

The conclusion is that the bipolaron mechanism and BCS
theory are complementary treatments of the same
phenomenon.

In this scenario it is clear that a crucial problem is to
understand whether or not two electrons can form a
bound state through interactions with the phonon
field. ' In a previous paper we presented results
concerning the binding energy of two electrons interact-
ing with a phonon and plasmon field. The idea was that,
at low electron densities, the conduction electrons parti-
cipate in the binding energy of the bipolaron not only by
the screening of the electrostatic interactions, but also by
a cooperative effect.

In this work we extend this theory in such a way to cal-
culate both binding energy and effective mass. We dis-
cuss the features of the effective electron-electron interac-
tion and show the equivalence of the approach to a
dielectric formulation. The electron-phonon interaction
is treated in the Frohlich approximation, and the sea of
other electrons is studied in the single-pole approxima-
tion. We find that the problem reduces to that of two
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electrons interacting with the phonon and plasmon boson
fields and repelling each other with a Coulomb force;
moreover, a phonon-plasmon interaction is introduced.
Since the part of the Hamiltonian referring to the boson
fields is exactly diagonalized, we reduce the problem to
that of two charges interacting with two independent re-
normalized fields. The binding energy and effective mass
of the bi-plasma-polaron (BPP), i.e., the bound or meta-
stable state formed by two electrons in interaction with
the renormalized boson fields, are calculated with a self-
consistent variational procedure. The main result is that
these quantities depend on the electronic density (the di-
mensionless parameter which controls different density is

A=co~/Qe co&, where co~, col, and e are the plasma fre-
quency, the longitudinal optical-phonon frequency, and
the high-frequency dielectric constant, respectively) and
that in the regime of low density (k ~ l) the phonon and
plasmon give cooperative effects to make more bound the
BPP, whereas in the opposite regime all the interactions
are completely screened by the electrons and the BPP
cannot form even in a metastable state. The effective
electron-electron interaction can be also calculated; the
self-energy terms show explicitly the dynamical and static
screening effects played by the electronic density. ' ' Fi-
nally, if the BPP radius becomes large, the total energy
and the effective mass of the system reduce to those of
two free plasma polarons (PP's), i.e. , a particle in interac-
tion with the two renormalized boson fields.

We show also that the results regarding the interaction
of the external charges with the renormalized fields can
be also obtained through a dielectric formulation of the
problem in which the total dielectric function contains
the sum of the contributions of the ionic part and the
electronic one. The two formulations have different ad-
vantages, so that the effective electron-electron interac-
tion is easy to calculate in the Hamiltonian formulation,
whereas any improvement in the knowledge of the dielec-
tric function allows us to know more realistic renormal-
ized frequencies and consequently more reliable coupling
of the external charges with the boson fields.

It can be also shown that the random-phase approxi-
mation for an electronic interaction given by the sum of
the bare electron-electron and electron-phonon interac-
tion gives the total dielectric function considered above;
consequently, our approach is not as poor as it would ap-
pear.

In all our results it appears that the corrections to the
PP and BPP masses with respect to the band mass are
very large. The total momentum, i.e., the sum of the
center of the mass momentum of the pair and that of the
phonons and plasmons, is conserved, whereas in the BCS
(Ref. l) and Eliashberg treatments the pair momentum is
zero. The consequence is that, in our case, the pairing,
even in the case of zero total momentum, does not occur
between particles with exactly opposite momenta.

All our calculations are done for k ~ 2, so that the con-
dition nRb 1 is verified, and therefore it is meaningful
to consider only one pair of electrons in interaction with
the others.

Finally, we calculate the critical temperature T, for the
Bose condensation of the BPP gas at thermodynamical

equilibrium with the PP one, using a two-Quid model.
Since our calculations are physically reliable for A, ~ 2, the
highest density considered is n —10 cm . We find that
T, increases with A, , and it is about 50 K for X=2.

We believe that the described effects could be relevant
for the high-T, superconductors, because their electronic
density is small, the correlation length is comparable with
the polaron radius, and their high-frequency dielectric
constant is small with respect to the static one. A reason-
able estimate of the electron-phonon coupling constant a
for the high-T, materials gives u-8. Such a value is
near the upper (lower) limit for which the intermediate-
(strong-) coupling polaronic theory applies. This means
that a complete theory of the electron-phonon coupling
in high-T, superconductors should take into account
both features. This work is complementary to those in
which the strong-coupling electron-phonon scheme is
used.

In Secs. II and III the model and its equivalence with
the dielectric formulation are discussed. In Sec. IV the
variational self-consistent procedure for the calculation
of the ground-state energy and of the effective mass is
presented. In Sec. V the fehtures of the effective
electron-electron potential are shown. Finally, in Sec. VI
the numerical results are discussed and in Sec. VII the
critical temperature is calculated.

II. THE MODEL

In this section we set up a Hamiltonian describing two
external electrons or holes (without loss of generality, in
the following we will assume that the charge carriers are
electrons) interacting with each other through a Coulomb
repulsion and with both longitudinal optical phonons and
plasma oscillations. The physics we have in mind is the
following. By singling out of an electron gas two elec-
trons interacting through long-range plasma excitations,
we reduce the many-electron problem to a two-electron
problem where the action of the whole electron gas is
taken into account in terms of plasmon exchange between
the singled out electrons. In doing this we are dealing
with a sort of mean-field approximation in which the
long-range part of the electron-electron interaction is
correctly represented. We have to stress that in this pa-
per the exchange effects are not considered.

Our approach is based on a set of motion equations
which describe the dynamics of the optical phonons in
the Frohlich scheme and that of the electrons in the
plasmon pole approximation. As far as the phonons are
concerned, we introduce the classical quantity W(r, t),
which represents the relative ionic displacement in the
elementary cells of the lattice. Within the Frohlich
scheme the classical motion equation for the spatial
Fourier transform W&(t) is given by

2 Wj,(t)=b„Wq(t)+b, ~Eq,dt2

where b» and b, 2 are constants to be fixed and Ek is the
spatial Fourier transform of the total electric field. We
also introduce the ionic polarization P(r, t), whose spatial
Fourier transform Pz(t) is related to the ionic displace-
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ment and to the total electric field by the constitutive re-
lation

d zk coI, copb, 2 cope2 2 2 2

2
= — zi, + ui, —. exp( —ik.r),

e
(7)

Pi,(t) =b, 2Wi, (t)+ b2zEi, , (2)

where again the constants b, 2 and b22 are to be fixed.
As far as the plasmons are concerned, the effect on the

dynamics of the two external electrons will be taken into
account only through the electron-density fIuctuation
p(r, t), which characterizes the collective excitations of
the charged gas. In the plasmon pole approximation or,
equivalently, in the hydrodynamic approximation, the
spatial Fourier transform of the density fluctuation
satisfies the equation

2 2
d p . n

4' mpi = — ik Ew —
(to&,

—a' )p

where to =(4irne )/m, ai& is the k-dependent plasmon
frequency, n is the average electron density, and m and
—e are the band mass and the electronic charge, respec-
tively. The coupling between the ionic motion and the
electron-density fluctuations is given by the total electric
field Ek. This field must satisfy the equations

ik E&=4ir[pi, —ik.P&—e exp( —ik r)],
kXEk=0 .

(4)

(5)

Qk 2

dt
COI Q k +

4vrb i2
Z

4~b, 2e
exp( ik —r),ike

(6)

Equation (4) is the Gauss law, in which the total elec-
tron density is given by the sum of the electron-density
fluctuation, the charge density arising from the ionic po-
larization, and the external electron localized at r. Equa-
tion (5) assumes that the total electric field has com-
ponents only along the wave-vector direction. This as-
sumption fixes b&] = —~„where co, is the frequency of
the transverse optical phonon. Moreover, if the driving
field has a frequency larger than those of the phonons,
the ions cannot follow the variation of the electric field,
so that w& =0 and consequently b2z = (e —1 ) /(4ir ),
where e is the background high-frequency dielectric
constant.

From Eqs. (2), (4), and (5), it is possible to calculate
k.Pk and k.Ek as a function of k-wk and pk. By substitu-
tion in Eqs. (1) and (3), we obtain for the quantities
ui, =k wi, /k and zi, =pi, /(ik) the equations

where ~& is the longitudinal optical frequency and

b&2=[(e /4m)(co& —co, )]'~ . The classical Hamiltonian
which gives the motion equations (6) and (7) and the
equation of motion of the electron can be quantized. The
result is

%COD

Ha= g &a'i( i i +—)+ (bib) +—)

k Qe„
+Zi, (ai, +a i )(b i, bi, )—

+( Vi, e'"'ai, +H. c. )

2

+(U e' 'b +H. c. ) +k k (8)

where

iA
ZI, 2

1
V = ——

k k

l
U = ——

k k

2

(1—il)
( cubi +e~
2~e2~

(1 —ii)
Ve

1/2
2&e cop A

3/2
COI 6'~

1/2

1/2

and where V is the volume. The operators ai, (ai, ) and

bi, (bi, ) are the annihilation (creation) boson operators for
phonons and plasmons, respectively.

The term containing Z& gives the interaction between
phonons and plasmons; the term whose coefficient is VI,

gives the Frohlich electron-phonon interaction, and the
term whose coefficient is UI, gives the electron-plasmon
interaction. Summarizing, Eq. (8) gives the Hamiltoni-
an of an electron, a phonon, and plasmon fields in in-
teraction.

If we have two electrons interacting with the two bo-
son fields and repelling each other through the Coulomb
force, the Hamiltonian (8) becomes

H = g Picot(ai,ai,+ —,')+A' (bi,bi + —,')+Zi, (ai, +a i )(b i
—bi )

k e~

+ [ V&(e '+e ')a&+H. c. ]+[U&(e '+e ')bi, +H. c. ] + + +
2m 2m

e2

e r, —r2

The Coulomb repulsion between the two external electrons is statically screened by the background high-frequency
dielectric constant e . Introducing the coordinates R of the center of mass of the pair, the relative position r=r, —r2,
and the conjugate variables P and p, the Hamiltonian becomes
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k
H = g Aco, (atkak+ —,')+A' (b"„b„+—,')+Z„(ait+a k)(bt „—b„}

k

p2 2 e2
+[p„(r)e'"' ( V„a„+U„b„)+H.c. ] + + +

2M 2p e r
(10)

with M =2m, p=m/2, and pk(r)=2cos[(k r)/2].
Hamiltonian (10) commutes with

P=P+A'g k(atkak+btkbk),
k

Zik

Tki

(cok —Q, )(co, —Q, )

2Tkc "}/ cok Qc
1/2

k
cok co) + ( co 1 Q; )

1/2

(20)

(21)
which is the total momentum of the system. Our goal is
to construct the ground state of Eq. (10), taking into ac-
count the conservation law (11}. We consider first the
Hamiltonian

The above canonical transformation applied to the Ham-
iltonian (9) gives

Ho = g fico((akak+ —,
' )+

flCt) k
(bkbk+ —,

'
)

+Zk(ak+a k)(b k bk)— (12)

H = y I A'Q1(ak ak + —,
' )+fiQ2(ak ak + —,

'
)

k

+ [pk(r)e'" "(Vkak, + Ukak, )+H. c ] j

p2 2 2P p e
2M 2p e r

(22)

and note that its structure is similar to that considered by
Hopfield for the polariton problem. It can be shown
that the constants &1k, x,/„y, k, z1k, &2k, x2k, y2/„and
z2k can be fixed in such a way that the canonical transfor-
mations

where

Vk —Vk(W lk 3 1k )+ Uk(X 1k +Z1k )

Uk Vk(W2k 3 2k )+ Uk(X 2k +Z2k )

(23)

(24)

+k ~1k k+x1kbk+y kQ k+z1k6

k 2k k +x2k ~k +y2k —k + 2k b —k

+—k y1kak+ 1k~k+ ~1ka —k +x 1k~ —k
)fc )fc

(13)

—k y2k k+ 2k~k+ ~2k —k +x 2k —k

satisfy the relations

[ak;, at ]=6; 5k, [a„;,a ]=0,
[ak;,Ho]=AQ;(k)ak;, [ak;,Ho]= —fiQ;(k)a

(14)

+ ( —1 ) Q(co k coi ) + 16cokcoi ~Zk /fi~

(cok+Q; )(coi —Q; )

(16)

where Q; are the new frequencies to calculate. The above
problem has been solved; defining cok=cok/Qe, we
obtain, where i = 1,2,

2Q, (k) =co k +co(

Q, (k)~co([1+I, (1—rl)]'

Q2(k)

~Co(A�(sk

—1+2) )
'

Vk ~iVk,
1/2

$/G

Uk '9 Uk 2 1/4
(sk —I + 21 )

(25)

(26)

(27)

(28)

It can be seen from these equations that 01 goes to the
phonon longitudinal frequency and the corresponding
coupling reduces to the Frohlich term, while A2 and Uk

go to limits whose meaning is clear when the plasma fre-
quency is not dispersive (Q2~co~/Qeo, Uk ~Uk' ).

In the opposite limit A, && 1, we have

In the transformed Hamiltonian (22) the problem is re-
duced to that of two particles interacting through a
Coulomb field and with two independent renormalized
boson fields. The coupling of the electrons with the new
fields is through Vk and Uk, which are functions of the
two old coupling constants Vk and Uk. The features
of the new frequencies Q;(k) and of Vk and Uk can be
studied introducing the dimensionless parameters
A=co~/+e„co&, sk =cok/co~, and il=e„/eo. We obtain
for A, ~O, i.e., for small electronic density,

Zkcok(co( Q )

ATki "1/ Cok Qc

Zkcok(co/ +Q/ )
~ik =

ATk Qcok Q

(18)

(19)
1 —g

2
$/G

A2~co& 1—

22+1~~1 ~ $k +
$/G

1/2

1/2

(29)

(30)
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Vk ~Uk (31)

Uk ~—i-
2 ig4[1—(1—q)/sk ]'~ (32)

From Eqs. (29) and (31) it is seen that Q, goes to cok and

Vk to the electron-plasmon interaction; 02 and Uk go to
complicated limits whose physical meaning can be ex-
tracted setting sk =1. In this case, Q2~~, and Uk ~0,
indicating a complete screening.

III. DIELECTRIC I'ORMULATION

(33)

An alternative and fruitful approach to the Hamiltoni-
an discussed above makes use of the knowledge of a.

dielectric function appropriate to the specific system un-
der investigation. The line of reasoning is the foHowing.
First, let us consider the model Hamiltonian

H = g ~„„b',„b,„+y c„„(s,„e""'"+H.c.),

1
Im

e(k, co)

2 2
COI Ct) t

5(co cot ) .
2 6~CO

6) pe(k, co) =e„ 1—
co +co co (k)

where co(k) is the plasmon dispersion and co =co /Qe„.
The zeros of e(k, co) give the eigenfrequencies Q, of the

coupled phonon-plasrnon system, which are the same as
those found in Eq. (16). It is convenient to rewrite (38) in
the form

(38)

By using Eq. (36) and noting that our model dielectric
constant has only one zero at co=col, we can recover the
usual electron-phonon Frohlich coupling constant. The
same scheme can be used to derive the electron-plasmon
coupling constant within the plasmon-pole approxima-
tion for the electron-gas dielectric function.

The case we are interested in is the interaction of an
external particle with a bath of phonons and plasmons.
A widely used approximation for the dielectric function
1S

where C„k and co„k are parameters to be determined,
and assume that the external charge is moving along an
arbitrary path r (t). The Fermi golden rule leads immedi-
ately to the energy transfer AE from the external charge
to the boson field,

R i(k) R~(k)

E(k, co) & co —Q, (k) co —Q2(k)
1+

2 2
+

where

(39)

AE = f "dco, f d'k g col C„„I'lp,„(lc,co)l'
(2~)'

X 5( co„ t co )

where

(34)

R;(k) =( —1)'

so that it is immediate to have

i =1,2, (40)

1XIm-
e(k, co)

(35)

Comparing Eqs. (34) and (35), we obtain

g l C„k l 5(co„k —co ) = Im
4eA 1

Vk' ~(k, ~) (36)

Note that e(k, co) does not include the effects of the exter-
nal particle.

As an example of the utility of (36), let us consider the
case of an electron in a polar material. If the material is
described by the approximate dielectric function

2 2

e(k, co) =e„ 1—
CO CO

(37)

it is easy to show that

f dr et[It r(t) cotj—
Let us now calculate the same quantity hE starting from
the Maxwell equations and considering a medium charac-
terized by a dielectric function e( k, co). We have

d3k
b,E =See'f,f, l p,„(&,co) l'

(2~)3 o 2~ k~

Im
1

e(k, co)
[R, (k)5(co —Q, ( k) )

+R~(k)5(co —Q2(k))] . (41)

From (36) the coupling coeKcients are

2~e'X R (k)
yk2~ Q, (k)

It is worth pointing out that the two equivalent formula-

It is only a matter of lengthy algebra to show that these
coupling coefficients are identical with those derived in

the previous section. The reason for this identity lies on
the internal consistency between the model dielectric
function of Eq. (38) and the equations of motion (1) and
(3).

The equivalence shown gives the possibility, using im-

proved total dielectric functions, to know more realistic
coupling coefficients between the external charge and the
renormalized fields. In particular, the knowledge of the
dielectric function for the free electrons e,I(k, co) permits
one to calculate the plasmon dispersion relation. In fact,
from Eq. (38), neglecting the ionic contribution, we ob-
tain

e„(k,O)/e„
~ e„(k,O)/e —1
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tions of the problem have different advantages. Whereas
the dielectric formulation, summarized in Eq. (36), pro-
vides us with the ability to obtain more reliable renormal-
ized frequencies 0, and coupling coefficients of the fields
with the external charge any time a better model dielec-
tric function is available, the Hamiltonian formulation
permits us to construct reliable PP and BPP states and
effective electron-electron potentials, as we will see in the
following sections.

The equivalence indicates also that our Hamiltonian
formulation has good physical grounds, because a dielec-
tric function written as sum of the ionic and electronic

I

IV. VARIATIONAL METHOD

The conservation law of the total momentum [Eq. (11)]
is taken into account through the unitary transformation

U=exp i Q —gka„a„—gka"„a„R (44)

The transformed Hamiltonian reads

parts is the random-phase approximation for an electron-
ic interaction sum of the bare electron-electron and
electron-phonon interactions.

H= U 'HU = Q —g kakt ak —g kakt ak + +

+ rf [~+1(ak ak + )+~+2(ak ak + )+ [Pk(r)( ~kak + Ukak )+H'c' ] I
k

where A'Q is the eigenvalue of P. The trial ground state is

ly& = U, (r) U (r)lo&y(r),

(45)

(46)

where l0& is the vacuum of ak and ak . The envelope function p is chosen to be as a ls hydrogeniclike wave function
1 2

and the operators U, and Uz are given by

U, (r) =exp g [fk(r)ak fk (r)ak ]— (47)

Uz(r) =exp g [gk(r)ak —gk (r)ak ] (48)

The set of functions p, fk(r), and gk(r) are determined variationally minimizing the total energy

E (Q)=(QIHlg&

(Q —K, —Kz) + (j,+j~) + + + g [lVf„(r)l +lVg„(r)l ]2M 2p 2p e r 2p

$2+
2M & [&'lfk«)l'+&'lgk«)l']+ g [&&glfk«)l'+&&Plgk«)l']

k k

X [Pkl~kfk~l~+Ukgk~l~j+~ +. ) 0l (49)

where we have de6ned

Kg= gklfk(r)l', (50)

Kz= gklgk(r)l
k

j,=—g [f„(r)Vfk (r) —f„*(r)Vfk(r)],fi

l

(51)

(52)

j =—.g [g„(r)Vg„*(r)—g„*(r)Vg„(r)] . (53)

The functional variation of ET(Q) with respect to fk (r) and gk (r) gives difFerential equations

1 A' k
V fk(r)+ VP Vfk(r) + fiQ, , + — k.(Q —K, —Kz) fk(r)

2ip p~, [V [(j]+jp)y'fk(r)]+/'(j]+ jp).Vfk(r)] = &/, pk (54)
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and

A'k'
V gj, (r)+ VP Vgz(r) + A'Q2+ — k (Q —K, —Kz) gq(r)

2ip p2
tV [(j,+j2)P gz(r)]+/ (j,+j2)Vgz(r)} = Ukpk . (55)

These differential equations are nonlinear and coupled through j, z and K i 2. Setting Q =0 and assuming

j,=j2=K, =K&=0, it is seen that the solutions fl, (r) and gz(r) are consistent with this assumption. However, this is
not true when QWO. In this case we use an approximation borrowed from polaron theory, which allows us to linearize
the equations. This approximation consists in substituting K, and K2 with their average values on P,

(56)

1—g f& I(r)YI* (cok)Yt (co,),
I, m

where the assumed proportionality to Q allows the self-consistent evaluation of the constants o. , z. The contributions
from j, 2 are negligible.

Solutions to Eqs. (54) and (55) can be searched for in the form of series of spherical harmonics,
1/2

f~(r)= (2~)'
V

(57)

1/2
(2~)'

g), (r) =
V

1

k y gg, t(r) Yt*,m(~g) Yt, ~(~, )

1, m

(5g)

The envelope function P is chosen to be of the form

)P+3/2
(r) = y rt'e

&r(2P+3)
(59)

with y and p variational parameters. With these approximations it is possible to find an exact solution of both Eqs. (54)
and (55),

2p V

fi (2m. )

' 1/2 —
g r/2 r(ai)

V„4~i'gf 'r&e

X @(ai,b, fir) f dt t ~e ' 'jt(kt/2/i)[1+( —I)']qi(ai, b, g&t)
fir

lr
XqI(ai, b, g, r) I dt t e ' 'j&(kt/2(, )[1+(—1)']@(a„b,g, t)

0
(60)

where

[(2P+1) +4l(l+1)]'/ —(2P+1)
2

(61)

Ak
g = 4 '+ " rn +1 X ~2 1

1/2
$2

M
k Q(1 —cr)

(62)

(63)

b =2(P+1+g),
E1

a, =g+ (P+1),

(64)

(65)

0 —0 1+02 (66)

The solution for gz &
is identical in form to Eq. (60) and is

obtained by changing the subscript 1 with 2.
The actual calculation of the BPP binding energies and

I

e6'ective mass is organized in several steps. The first step
is the self-consistent determination of o.

1 and o.
2 for

chosen values of the variational parameters y and p. The
second step consists in the calculation of the total energy
[Eq. (49)] corresponding to a given Q. This procedure is
repeated for several y's and p's until a minimum in the
total energy is found.

It can be shown analytically that for y =0 and p=0
the total energy ET(Q) reduces to that of two free PP's,
E„(Q), so that it is correct to define the BPP binding en-

ergy Eb as the difference between the total energy and
that of two separated PP's both calculated at Q=O.

When Eb ~0 the BPP can form and it is in a bound
state. Physically, this is due to the competition between
the polarization energy and the Coulomb repulsion. The
choice of the envelope function [Eq. (59)] refiects this
competition.

In the limit Q ~0, ET(Q) and E„(Q)can be written in
the form



PHONON-PLASMON COOPERATIVE EFFECTS IN THE DILUTE. . . 12 973

ET(Q)=Er, o+ Q2M*
(67)

E„(Q)=E„()+ Q
4m

(68)

where M* and m are the BPP and PP effective masses,
respectively. Their estimation is obtained by fitting Eqs.
(67) and (68) to the numerical data. It is found that M'
and m' are independent on Q for a large range of this
quantity in the Brillouin zone.

V. EFFECTIVE POTENTIAL

rf [Pk [ Vkfk(r)+ Ukgk(r)]+c'c' ]
k

(69)

This quantity has very interesting properties. It will be
studied systematically in a future work, showing here
only that it contains many important physical features.
We consider only the case Q=O.

In the limit r ~~, V,(r can be calculated from (69) tak-
ing for fk(r) and gk(r) the corresponding asymptotic ex-
pression

e((k r)/2+e —((k.r)/2
(r) = y„

fi [ +(2 /))1)Q +—'k ]'
i(k r)/2+ —i(k r)/2

(r)= "U„
[ +(2 /A')II +—'k ]'

(70)

(71)

The V,~ obtained in this way contains a constant term
E„o, which represents the self-energy of the pair. This
conclusion is similar to that obtained by other authors for
the excitons. ' ' To understand the features of V,~, it is
useful to calculate it using for fk(r) and gk(r) Eqs. (70)
and (71) with y =0 and assuming that the plasma fre-
quency is not dispersive.

The terms not depending on r give E„o,i.e.,
F2 F2

E„o= —2akco) + (72)
QR, QR

The minimization of Eq. (49) with respect to the state P
shows that it is an eigenstate of the Schrodinger-like
equation of a particle of mass p with the effective self-
consistent electron-electron potential

e2 $2
V,(r(r) = + g [IVfk(r) I'+

I Vgk(r) I']
E'~ p 2p

fi+ ~~ g [k'Ifk«) I'+k'lgk(r) I']
k

+ & [&&)Ifk(r)l'+&&plgk(r)l']
k

2

(74)

whose properties are the following.
(a) For A.—&0, it becomes e /eor. This means that,

p

0
p Q

O
C4

C$
Al

pg

-0.8

—1 I I I ~ I ~ ~ I k I j ~ I l ~ E I I ~ 4 ~ a k L 4 a a ~

0 1 2 3 4 5 4

and R&=Q)/fico&, Rz=Qz/A'co&. From this result some
particular cases can be studied.

(a) If A, ~O, —2aA'co& is found, which is the self-energy
of two free electrons interacting only with the phonon
field.

(b) If q~ 1, which means that the ionicity of the crys-
tal is not considered, E„o +E )

—= —e /e„R ), with

R„)=(fi+e /2m'~~)' . This is the self-energy of two
electrons interacting with the plasmon field in an approx-
imation similar to that of Frohlich for the phonon field.
This value, as that for se polaron, is due to the dynamics
of the external electrons and plasmons.

(c) If A, ~Do, we obtain the same limit as point (b).
This means that the increase of the electron density
screens the ionic effects, but the self-energy due to the
plasrnon field tends to —~. In Fig. 1 we show the quan-
tity 6=E„p—E

&
as function of X. 6 can be interpreted

as the phonon contribution to the self-energy of the pair,
including the effects due to the dynamics of other elec-
trons. We see that for A, ~2 (i.e., n ~10 cm ) the dy-
namics of the electrons tends to screen partially the
electron-phonon interaction. This fact is relevant for bi-
plasma-polaron formation. On the other hand, for metal-
lic densities (n —10 cm ), the electron screening is

complete, as expected.
In V,z there is also a long-range tail given by

2 F
VLR(r) = — +

e r e r R& R2

where

Q(1 r})/R, +(R, —I )/—Q(1 —g)R,
Fj =A,

[( 1 R 2 )2+/2(1 ~)])/2

Q(1—r})/R~+(R ~
—I )/Q(1 g)R~—

[(1—R~) +A. (1—g)]'/

(73)

FIG. 1. Difference between the pair self-energy in the pho-
non and plasmon field and that of the plasmon pair self-energy,
b, /2a, as a function of A, (6 measures only the ionic contribu-
tion). We see that the phonon effects are meaningful for elec-
tronic densities less than A, =4 (i.e, n —10 cm '). We stress
that in the high-T, superconductors the densities are only
slightly higher.
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which is approximated by the expression

k
co(k) =co 1+ 2k'0

(76)

when there is only the phonon field, the electron-electron
potential, at large distance, is screened by the static
dielectric constant. This result has been also obtained in
the case of the excitons.

(b) For g —+I, the long-range tail V„R is zero. This
means that, if we have only the plasmon field, the
electron-electron potential is screened by the other elec-
trons.

(c) For A, ~~, we obtain the same result as point (b),
which means that, in the large density limit, the free elec-
trons screen completely the electron-phonon and
electron-electron interactions.

The remaining terms are exponentially decaying with
screening constant given by R ' = (2m co& /R )

' ~ and
R

&&
~ The relative weight of these depends on A, : For

A, ~O, the screening factor is R and in the opposite
limit is R &'.

In the above discussion it appears that, also when the
electronic density is large, the self-energy of the polarons
is always due to dynamical effects, whereas in the exciton
case ' ' it has been shown that it is —e kp/e„, where kp
is the Thomas-Fermi screening constant. We do not dis-
cuss such problems in detail in this work, but we show
only that, taking for example for e,&(k, O) the Thomas-
Fermi expression to calculate through Eq. (43) the disper-
sion of the plasmon branch, such a limit is contained in
our model. In fact, we obtain

1/2

co(k) =co 1+ (75)
ko

self-energy E„(Q) of two single PP's, the effective mass
M, the radius Rb of the BPP, and the mass m* of the
PP. Using as units for energies and lengths %co& and R,
respectively, and for the effective masses M* and I the
band mass I, the above quantities are functions of A, , cx,

and g. The first parameter is connected to the electronic
density through the plasma frequency; its value depends
on the electronic density, but also on the band mass of
the electron, on the energy Ace& of the longitudinal optical
phonon, and on e . Although the results of this section
are independent on the values of these quantities, we need
to fix them for the calculations of the next one. We take
then m =5m„m, being the free-electron mass, %co& =70
meV, and e =2.5, so that X=1 means an electronic den-
sity of n =4.45 X 10' cm

We minimize the total energy (49) with respect to P
and y, using, for f&(r) and gz(r), Eqs. (57) and (58). In
Figs. 2 and 3 we report the binding energies
Eg =ET p E+& p and the self-energy E«p/2 of one free
PP for fixed values of a and g as a function of k. The
value of 0. chosen is 8 and those of g are 0.01 and 0.05.
These choices are reliable for high-T, superconductor
materials. We know that when the bipolaron exists
(a ~ a, ) there is a maximum value of g, g, such that for
g ~ q„ the bipolaron cannot form. The values of g con-
sidered are such that, for a=8, g=0.01 and 0.05 are
smaller and larger than g„respectively.

We see that, for g=0.01, the binding energy Eb is neg-
ative for small A, (the BPP can form), but becomes posi-
tive with increasing A, . In these last cases there is a rela-
tive minimum for ET o so that the BPP exists in a meta-
stable state. It appears clearly from the numerical results
for A, ~ 1 that cooperative effects between plasmons and
phonons increase the stability of the BPP; for larger A, ,
the screening effects become more important and the

for small k to permit analytical calculations. Neglecting
ionicity effects, the self-energy is given by

1/2

1+ 1

2R )ko

1

&ZR„k,
e

e R )

E„o=—

(77)

From this expression we see that in the limit of high den-
sity, i.e., R,kp «1, E„p~—e kp/+2@„, and in the
opposite limit E„p~—e /e R &, which clearly shows
that in our model the dynamical effects are more impor-
tant than the static one in the low-density limit and vice
versa. We note that in the high-density limits E„o is a
fraction of that usually found in the literature. This is
due to the development of co(k) done in Eq. (76). Finally,
we find that, also in this case, the long-range tail of the
electron-electron potential is always zero and that the
short-range part decreases exponentially with the
Thomas-Fermi screening factor ko in the high-density
limit and with R „& in the opposite limit.

0.1
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0.05

On 0.025

0

~—0.025

—0.05
CQ

—0.075

—0.1

0 0.25 0.5 0,75 1 I.25 1.5 1.75 2

VI. RESULTS AND DISCUSSION

Assuming the plasma frequency not dispersive, we
have calculated the total energy ET(Q) of the BPP, the

FICz. 2. Binding energies of the bi-plasma-polaron are shown
as function of A, for xx=8 and g=0.01 and 0.05. A, = 1 indicates
an electronic density of 4.45X10' cm . The energies are in
units of %~I.
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FIG. 3. Since the self-energy of a free plasma polaron is pro-
portional to a, the quantity E„o/2a is drawn as function of k
for g =0.01 and 0.05. The energies are in units of %co&.

FIG. 4. Bi-plasma-polaron effective mass M* are shown as
function of A, for a = 8 and g.=0.01 and 0.05.

BPP state becomes metastable. From Fig. 3 it can be
seen that the PP self-energy increases going from q=0.01
to 0.05. Since a larger q implies a smaller ionicity of the
lattice, the increase of the self-energy is ascribed to
plasmon exchange. A similar behavior can also be seen
in Fig. 2 where, for g=0.05, Eb, for small A, , is larger
with respect to g=0.01; the BPP state starts out as meta-
stable and then becomes bound. Increasing A, , Eb be-
comes comparable in the two cases while the states are
found. Finally, increasing further A., Eb increases and be-
comes zero or slightly positive. We have done our calcu-
lations for A, ~ 2 because the dilution parameter nRb does
not become larger than 1, as we will see later.

The BPP radius is calculated through

3/2 3/26 Ri R~

From Fig. 4 it can be seen that m' is divergent for A, I 0.
This divergence deserves a comment. First of all, we ob-
serve that the branch Qz vanishes for A, ~O. It is well

known from the polaron theory that when the boson
frequency vanishes an unphysical divergency of the mass
is introduced which can be removed by taking into ac-
count two or more boson processes. As far as our calcu-
lation is concerned, we do not attempt to account for
those high-order processes. As a consequence, the results

Rb= J r P(r) dr, 2.25-

so that also the dilution parameter nRb can be known.
We find that the BPP radii are nearly constant for given
a and g as function of A, ; their values, for a=8, are 3.7
and 3.9 for g=0.01 and g=0.05, respectively. The dilu-
tion parameter ranges from 10 for A, =0.01 to 1 for
k=2, and t here are no significant variations with g. We
see that the BPP radius and the dilution parameter are so
small as to justify the hypothesis to consider only one
electron pair and to neglect the correlation and exchange
terms. We can also see that the Pippard coherence
length go= (&3/2m. )R& is small (tens of A) and that k~g&&,

where kz is the Fermi wave number, is always ~ 1, in
agreement with the results for the high-T, superconduc-
tors.

Finally, in Figs. 4 and 5 we show M* and m, as func-
tions of A, , for fixed a and g. Since the plasmon branch is
assumed not dispersive, m *, the PP effective mass, can be
calculated analytically. We find

1.75

1.5 -':

1.25 '-.

g=0.05

0.75— q=0.01

~ I ~ I I I I ~ I I I I I I I I i I I ~ ~ I i I I I I ~ I I ~ I I I I ~ I

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

FICx. 5. Quantity 6(m —t)/a is shown as function of A, for
g=0.01 and 0.05.
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concerning the PP and BPP cannot be trusted for A, (0.1.
From Fig. 4 it can be seen that M* behaves in a way

similar to m *. In particular, for large A, it tends to 2m
as we expect. On the other hand, m* is a decreasing
function of A, and for k —+ ~ goes to m.

VII. BPP BOSK CONDENSATION

Since we have found that the BPP radii are so small
that, for any density considered, nlrb ~1, we consider
these composite particles as well-defined bosons responsi-
ble for the supercurrent in the high-T, materials. The
properties of the system can be studied following the ap-
proach introduced by Blatt, who considered a two-Auid
model where PP's, and BPP's are in thermodynamical
equilibrium, respectively. We calculate both the Bose-
condensation critical temperature and the PP and BPP
relative populations as follows. Because of the particle
conservation, the total number of particles, X, in the sys-
tem can be written as the sum of the PP's and BPP's
present,

X te"pt. A(&k —V) }+l }
k

U

4P

V
CP

25—

10

0 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

FIG. 6. T, is drawn as a function of A, for a=8 and g=0.01.
We assume m =5m„%co& =70 meV, and e =2.5.

+2 X fe ptPb(nk —
2C )}—I }

k

(80)
VIII. CONCLUSIONS

where pz = I /Kb T (ICb and T are the Boltzmann constant
and the temperature, respectively) and ek and gk are the
excitation spectra of the PP and BPP, respectively. On
the basis of the results of the previous sections, the spec-
tra for both kinds of particles are

g2k 2 g2k 2

k ~ Qk Eb+
2m * 2M*

(8l)

In Eq. (80) we have used the condition for the chemical
equilibrium which fixes the relation between the two
chemical potentials p=ppp:papp/2. From Eq. (80) we
obtain p=p(X, Pb). In particular, the critical tempera-
ture T, is found from the same Eq. (80), setting p=Eb/2.

In Fig. 6 we show the critical temperature versus the
normalized total particle density k, for o.= 8 and g =0.01.
We note that T, is near to the Bose-condensation temper-
ature T„

g 2 2/3
T.= 5.224~k~ M* (82)

of a gas of density n =X/V for small A, ; for higher A, , we
have small deviations due to the increase of the fermion's
population.

Our rough estimate of the critical temperature suffers
from an overestimation of the screening effects. This fol-
lows from the fact that the binding energy Eb is always
calculated as if all the particles participate in the screen-
ing as unbound PP's. In reality, as soon as BPP's are
formed, the number of PP's participating in the screening
reduces, leading to a reduction of the screening itself.
This effect is known in the case of the excitons when the
screening associated with them ' is negligible compared
to that of the electrons.

In this work we have constructed a Hamiltonian in
which two repelling external charges are interacting with
a longitudinal optical-phonon field and with a sea of oth-
er electrons. The interaction of the phonons with the
external charges is treated in the Frohlich scheme, the
sea of the free electrons is treated in the single-pole ap-
proximation, and its interaction with the external
charges is described through an electron-plasmon term.
The dispersion of the plasmon branch is taken also into
account.

It is shown that the model is equivalent to a descrip-
tion of the system through a dielectric function in which
the ionic and electronic contributions are simply
summed. Such a dielectric function is the random-phase
approximation of the sum of the bare Coulomb and the
electron-phonon interaction.

The boson fields terms in the Hamiltonian and their in-
teraction can be diagonalized and new interactions be-
tween the external charges and the renormalized fields
can be defined. The couplings depend now on the density
of the electrons through the plasma frequency.

The Hamiltonian commutes with the total momentum
of the system, i.e., the sum of the center-of-mass momen-
tum of the pair and the phonons and plasmons momenta.
The ground state takes into account such a conservation
law, and it is found using a self-consistent variational
method. The envelope function of this state depends on
the two parameters p and y such that, if they tend to
zero, the energy of the state and the wave function be-
come that of two free PP's. It is then physically reliable
to define the binding energy of the pair as the difference
between the total energy and that of two free PP's at zero
total momentum. We find that there are absolute or local
minima of the total energy, so that the pair can be in a
bound or a metastable state. Since the total momentum
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is conserved, it is possible to define the effective BPP
mass and compare it with that of two PP's.

We find that for small density (A, ~ 1) the phonons and
plasmons give cooperative effects to make more stable the
BPP and to increase its effective mass with respect to
those of two free PP's. For larger A, screening effects be-
come more important, so that the binding energy be-
comes positive and the effective BPP mass tends to that
of two free PP's. On the other hand, the PP effective
mass decreases monotonically increasing the density (it
goes from the polaron mass to band mass), because the
screening effects are more important for increasing X.

It is possible to define an effective electron-electron po-
tential which takes into account the polarization effects
due to the phonons and plasmons. Its asymptotic limit is
the self-energy of the pair; furthermore, the phonons con-
tribute to a Coulomb long-range tail for the potential and
the electrons tend to screen the interactions.

In the case considered of a nondispersive plasma
branch, the self-energy terms are due only to the dynami-
cal screening. We have also found that, using a Thomas-
Fermi screening for the plasmons, there is a competition
between the static and dynamical screening effects such
that for small electronic density the dynamical effects are
more important and for high density static effects are.

Using these results, it is possible, in a two-Quid mod-
el, to calculate the Bose-condensation temperature of
the BPP gas in thermodynamical equilibrium with the PP
gas. We find that T, increases with A, and becomes of the

order of 50 K for n —10" cm . For all the electronic
densities considered, the dilution parameter nlrb is not
longer than 1, so that it is physically meaningful to con-
sider a pair as a defined single excitation.

If we would apply the obtained results to the high-T,
super conductors, we stress that such materials are
strongly ionic ' (tl((1) and the effective carrier mass
and longitudinal optical-phonon frequency are large, as
we assumed. Many of them are strongly anisotropic, but
there are also isotropic materials such as the fullerene
and Ba, „K Bi03 . Our theory refers to the last. We
predict an increase of the critical temperature with the
density, whereas the experimental data show that for
larger density the critical temperature decreases. We are
not able to consider, in our single-pair approximation,
larger densities and consequently calculate the critical
temperature because we need to construct a many-body
wave function for the system.

It appears that, at the electronic densities studied in
this work, the electron dynamics is relevant both for bi-
plasma-polar on formation and the effective mass. A
reasonable estimate of the electron-phonon coupling con-
stant gives a value near to the upper (lower) limit for
which the intermediate (strong) coupling is valid. The
conclusion is that in high-T, superconductors a complete
treatment of the electron-phonon interaction should in-
clude both features. This work is therefore complemen-
tary to those in which the strong electron-phonon cou-
pling scheme is used.
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