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The leading contributions to the c-axis conductivity of layered superconductors arising from super-
conducting fluctuations of the order parameter are discussed for arbitrary intralayer scattering. The
contributions from fluctuations of the normal quasiparticle density of states are shown to be opposite in
sign to the Aslamazov-Larkin and Maki-Thompson contributions, leading to a peak in the overall c-axis
resistivity p, ( T) above T, . This peak is enhanced by a magnetic field H~~c. With increasing H, the rela-
tive peak maximum in p, (T,H) increases in magnitude and is shifted to lower temperatures by an
amount proportional to H for weak fields and to H for strong fields. For comparison, the fluctuation
conductivity parallel to the layers has been calculated including the fluctuations of the normal density of
states. Our results are discussed in regard to recent experiments with YBa~Cu307 z and
Bi2Sr2CaCu208+ q.

I. INTRODUCTION

One of the main characteristics of a superconductor is
the temperature T dependence of the resistivity in the vi-
cinity of the superconducting transition temperature T, .
In layered superconductors, the zero-field resistivity is a
diagonal tensor, and care must be taken to extract the
tensor components p;;(T) from the data obtained using
various current and voltage configurations. ' The first
measurements of the anisotropic resistivity tensor in the
vicinity of T, in a layered superconductor were made on
TaS2 (pyridine), 2. In this material, intercalation with
pyridine suppressed the charge-density wave present in
the unintercalated 2H-TaS2, as well as increased its an-
isotropy greatly. In addition, the c-axis resistivity ele-
ment p„(T)—=p, (T) in some samples was found to in-
crease with decreasing T, exhibiting a peak just above T„
before falling rapidly to zero at T, . This peak became
more pronounced in a magnetic field H~~c, with p, (T,H)
continuing to rise with decreasing T(T, (0) before
falling rapidly to zero as T~T, (H). Such a peak was
not observed in the in-plane resistivity p, b ( T). Except for
one theoretical paper, this effect generated little interest
at the time.

More recently, the resistivities of many high-T, cu-
prates have been studied by numerous groups. ' Al-
though early measurements were usually made on ceram-
ic samples or imperfect crystals, reliable results on
untwinned samples of YBa2Cu307 s (YBCO) (Refs. 4—6)
and on BizSrzCaCuzOs+s (BSCCO) have since been
presented. ' Generally, it has been found that fully oxy-
genated YBCO appears metallic along all three crystal

axis directions, although oxygen-deficient YBCO can ex-
hibit a peak in p, (T). The main difference between

p, ( T) and p, b ( T) in fully oxygenated YBCO is that

p,b(T) exhibits dimensional crossover from 2D to 3D at
To) T„whereas p, (T) exhibits dimensional crossover
from OD to 3D at To. ' ' In BSCCO, on the other hand,

p, (T) reproducibly exhibits a peak, which increases in
magnitude with decreasing oxygen concentration. ' In
addition, a rather weak magnetic field H~~c causes the rel-
ative magnitude of the peak to increase, and its position
to shift dramatically to lower T)T, (H) values.

Recently, it was proposed that such a peak in p, (T)
could arise from superconducting fluctuations, and the
calculations were found to be in agreement with experi-
ments on epitaxially grown thin films of BSCCO. ' The
main idea of this explanation is that the positive contri-
butions to the Auctuation conductivity in the c-axis direc-
tion are weak above To, arising from the hopping or tun-
neling nature of the single quasiparticle c-axis propaga-
tion. Hence, the less-singular contribution of the opposite
sign to the conductivity arising from the Auctuation de-
crease of the single quasiparticle density of states (DOS)
at the Fermi energy e~ becomes dominant above To. The
competition between these contributions gives rise to the
peak, or maximum in p, (T) just above T, . In some cir-
cumstances, the Maki-Thompson (MT) diagrams can be
relevant, but such contributions were omitted in that
treatment, as the assumption of strong pair breaking was
made.

Nevertheless, the question of the strong increase of the
magnitude of this peak and its shift to lower tempera-
tures in a magnetic field was not addressed in the above
treatment. Some ideas were proposed as possible ex-

0163-1829/93/48(17)/12951(15)/$06. 00 48 12 951 1993 The American Physical Society



12 952 DORIN, KLEMM, VARLAMOV, BUZDIN, AND LIVANOV

planations for this effect, most of them depending upon
some revision of the theory of the fluctuation conductivi-
ty to account for the broadening of the resistive transi-
tion in the high-T, superconductors in a magnetic
field. "' In these papers, the effect of the magnetic field
upon the superconducting fluctuations of the order pa-
rameter was treated in a self-consistent way, removing
the divergence of the Auctuation conductivity at the
mean-field T, (H). We will not discuss the validity of
such approximations, except to note that just below the
mean-field T, (H), the structure of the fiuctuation propa-
gator is considerably more complicated' than assumed
by those authors. " However, all such papers used the
time-dependent Ginzburg-Landau (TDGL) or equivalent
approximations to the paraconductivity, treating the
magnetic-field dependence of T, (H) in some self-
consistent approximation. None of these papers con-
sidered the effect of the fluctuation corrections to the
quasiparticle density of states, which occurs in the same
(first) order in the fiuctuation propagator' ' as do the
contributions leading to the TDGI. approximation.
Hence, such treatments cannot explain the peak in p, (T).
Furthermore, the MT contributions were ignored in all
such treatments.

Very recently, a phenomenological model of the c-axis
conduction in highly anisotropic layered materials has
been proposed, ' and found to account for the peak in

p, (T,H) observed in BSCCO. In this model, there is a
competition between the decrease in the quasiparticle
current density with decreasing temperature and the in-
crease in the interlayer currents due to the appearance of
Josephson-like shorts in a magnetic field below T, . With
respect to the increase in the resistance with decreasing
temperature above T„ this model has the same physical
origin as in Ref. 9. However, the decrease in the resistivi-
ty below the peak was attributed to different mechanisms
in Refs. 9 and 16. In Ref. 9, the zero-field decrease above
T, was attributed to paraconductivity. On the other
hand, in Ref. 16, the magnetic field itself was responsible
for the increase in the interlayer Josephson coupling.

In this work, we have studied the leading contributions
to p, (T,H) arising from superconducting fiuctuations of
the order parameter in the presence of a perpendicular
magnetic field H~~c. In Sec. II, we review the existing
zero-field results for the various contributions, ' ' ' ' '
examine the MT contributions in detail, and discuss pos-
sible higher-order contributions. All contributions are
evaluated for arbitrary intralayer impurity scattering. In
Sec. III, we consider the effect of a perpendicular magnet-
ic field upon these contributions, using existing results
for the Aslamazov-Larkin (AL) diagram, and evaluating
analytically the remaining contributions to the extent
possible. As mentioned above, we shall show that the
peak in p, (T,H) increases with increasing H, and shifts
to lower T values. In Sec. IV, results for the Auctuation
conductivity parallel to the layers are given, including the
DOS contribution, which has always been neglected pre-
viously, but which is relevant for rather clean materials.
In Sec. V, we summarize and discuss our results, com-
paring them with recent experiments on YBCO and
BSCCQ. We use units in which A= kz =c = 1.

II. ZERO-FIELD RESULTS

A. The model

We begin by discussing the quasiparticle normal-state
energy spectrum. While models with several conducting
layers per unit cell and with either intralayer or interlayer
pairing have been considered, ' it has recently been
shown that all of these models give rise to a Josephson
pair potential that is periodic in k„ the wave vector corn-
ponent parallel to the c axis, with period s, the c-axis re-
peat distance. While such models give rise to distinct
differences in the superconducting densities of states, they
all give rise to qualitatively similar Auctuation propaga-
tors, which differ only in the precise definitions of the pa-
rameters and in the precise form of the Josephson cou-
pling potential. Ignoring the rather unimportant
differences between such models in the Gaussian Auctua-
tion regime above T, (H), we therefore consider the sim-
plest model of a layered superconductor, in which there
is one layer per unit cell, with intralayer singlet s-wave
pairing, ' '

g(p) =eo(p)+ J cos(p, s) E~, —

where eo(p)=p /(2m), p=—(p,p, ), p=(p, p ) is a two-
dimensional, intralayer wave vector, and J is an effective
quasiparticle nearest-neighbor interlayer hopping energy.
The Fermi surface defined by g(pz)=0 is a corrugated
cylinder, and E~ is the Fermi energy. As described previ-
ously, ' this model is most appropriate for highly aniso-
tropic layered materials, for which J/E~ (( l.

We remark that the paraconductivity obtained in zero
field in this model has a leading contribution above To of
second order in the interlayer pair transmittance
( ~ J ).3 6 9 In this regime, tunneling processes in which
the quasiparticles can propagate to next-nearest-neighbor
layers with probability proportional to J would be of
comparable magnitude. Such processes can be included
by adding a correction to (l) of the form Juncos(2p, s),
where J2 ~ J . However, it turns out that such processes
give rise to a paraconductivity above To of second order
in the pair transmittance of this higher-order process
(i.e., ~ J2 o- J ) due to the orthogonality of the cos(p, s)
and cos(2p, s) wave functions, and can therefore be
neglected.

In addition, some remark regarding the normal-state
quasiparticle momentum relaxation time is in order. In
the "old" layered superconductors such as TaSz (pyri-
dine), &2, the materials were generally assumed to be in
the dirty limit. ' In the high-T, cuprates, however, both
single crystals and epitaxial thin films are nominally in
the "clean" limit, with l/g, b values generally exceeding
unity, where I and g, b are the intralayer mean-free path
and BCS coherence length, respectively. However, as
I/g, b =2—5 for most of the cuprates, these materials are
not extremely clean. In addition, the situation in the cu-
prates is complicated by the presence of phonons for
T=T, =100 K, the nearly localized magnetic moments
on the Cu sites, and by other unspecified inelastic pro-
cesses. Experiments on high-T, cuprates have shown
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G(p, co„)=
i co„—g(p)

(2)

that the excess "in-plane" conductivity can usually be ex-
plained in terms of the fIuctuation paraconductivity
alone.

Finally, magnetoresistance measurements in
YBa2Cu307 & have been interpreted ' as giving an ex-
tremely small value of the phase pair-breaking lifetime
&&=1/T. We note, however, that such an interpretation
was based upon the extraction of ~& from the fluctuation
conductivity for Hlc, for which it was assumed that the
orbital pair breaking could be neglected, leaving the Pauli
(or Zeeman) contribution to the MT diagram as the lead-
ing contribution to o. . ' As will be shown else-
where, such an extraction is suspect, as the procedure
followed does not give the correct result for the upper
critical field parallel to a thin film or to the layers in a
layered superconductor, ' which in both cases is dom-
inated by orbital pair breaking for weak fields (H ((100
T), and Pauli pair breaking only for fields comparable to
H =1.86(T/K)T, =150 T. Hence, it is possible that the
true ~& could be much larger than inferred in either of
those fits

In the following, we assume simple elastic intralayer
scattering, ' keeping the impurity concentration n; and
the resulting scattering rate 1/r arbitrary, and allowing
for an arbitrary phase pair-breaking rate 1/r& ( I /r

We now consider the various diagrams for the elec-
tromagnetic response operator Q &(co ), which may con-
tribute to the c-axis fluctuation conductivity of layered
superconductors. Some of these diagrams are presented
in Fig. 1. In this notation, the subscripts a and P refer to
polarization directions and thus to the conductivity ten-
sor elements, and the co =(2v+ 1)m T are the Matsubara
frequencies. Intralayer quasiparticle scattering is includ-
ed in the Born approximation, giving rise to a scattering
lifetime r and resulting in a renormalization of the single
quasiparticle normal-state Green's function to '

10

FIG. 1 ~ Shown are the leading Feynman diagrams for the
fluctuation conductivity. %'avy lines are fluctuation propaga-
tors, thin solid lines with arrows are impurity-averages normal-
state Green's functions (2). Shaded partial circles are vertex
corrections arising froxn impurities, dashed curves with central
crosses are additional impurity renormalizations, and shaded
thick lines are additional impurity vertex corrections. Diagram
1 is the Aslamazov-Larkin diagram, diagrams 3—5 are Maki-
Thompson diagrams, and diagrams 5 —10 are the leading dia-
grams giving corrections to the normal density of states. Dia-
gram 11 is a higher-order correction to the density of states.

where

to„=co„[1+I/(2ico„ ir)] .

Such renormalizations are indicated in the vertices of
Fig. 1 by shadowing. The resulting expression for the
triangle vertex, valid for arbitrary impurity concentration
nI, is

C(q, co„,co„)= 1— ( [g(p) —g(q —p) ]')
r(to„—~o„) (to„—co„.)

(3)

where 8(x) is the Heaviside step function, and ( . )
denotes an average over the Fermi surface. Performing
the Fermi surface average, we find

I

where e is the quasiparticle electronic charge, and

([g(p) —g(q —p)] ) =
—,'[u~q +4J sin (q,s/2)]

(4)

where u~ =
~ pz ~

/m is the magnitude of the Fermi velocity
parallel to the layers. In (3), we have made the assump-
tion rDQ ((1, which we make throughout this
manuscript. Hence, we neglect nonlocal corrections.
This approximation is described in detail in Sec. V.

With each external entrance to the diagrams of the
electromagnetic field component o. with electromagnetic
coupling eA, we associate the external vertex eu (p),

For longitudinal conductivity tensor elements (parallel to
the layers, for which a=x,y), the resulting vertex is sim-

ply ep /m. For the c-axis conductivity, the vertex eu, (p)
is obtained from [3]

u, (p) = = —Js sin(p, s) .
& (p)

Bpz

Each wavy line in the diagrams is a fluctuation propa
gator L (q, co„), which is a chain of superconducting bub-
ble diagrams. We integrate over the internal momenta q
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and sum over the internal Matsubara frequencies co,
with momentum and energy conservation at each internal
vertex (fiuctuation propagator endpoint). At H =0 in the
vicinity of T„the inverse of L (q, co„) has the form

L (q, co )=—p e+g —+ +a—1
COp 1

p 2 4~T ~ 2

(6)

where

e=ln(T/T, )=(T—T, )/T,

for T —T, « T„g(x) is the digamma function,
p=N(0)=m/(2~s) is the single-spin quasiparticle nor-
mal density of states,

portional to J to leading order in J. In the vicinity of
T„ the leading contribution to the c-axis conductivity
response Q„"arises from the fiuctuation propagators in
(9) rather than from the frequency dependences of the
vertices B„so it suffices to neglect the co„and co depen-
dences of 8, . This approximation leads to

B,(q) = —2p sJ sin(q, s) .
UF

Using this expression in (9) followed by analytic con-
tinuation of the external Matsubara frequencies to the
imaginary axis [to obtain the appropriate retarded
response Q (co)] and integration over q„ the zero-
frequency AL contribution to the c-axis fluctuation con-
ductivity was found in the static limit to be ' '

and

4rlDQ
q 772v 27-F

(7) o AL —hm (QAL)R(~)1

co~0 LCt)

77-e sp. d q
(2~) [(rlq +e)(rlq +e+r)]'

1 1—+
2 4~~T

e s
3271

e s

64'

e+r/2
[e(e+ r) ]'~

(r/e)', for E«r,
[r/(2e)], for e&)r, (12)

zvF~ 1 for zT &&1,

16T 7g(3)/(2' rT) for rT)&1

is the positive constant which enters into the current ex-
pression in the phenomenological GL theory in two di-
mensions, where it'(x) is the derivative of the digamma
function and g(x) is the Riemann zeta function.

B. Aslamazov-Larkin contribution

g
Q p(co„)=2e Tg f B (q, co„,~ )L(q, co„)

(2m )

where

XL (q, co„+co,)B&(q,co, co ), (9)

fd'q = fd'q f" dq,

is the appropriate integral for a layered superconduc-
tor, ' ' and

B (q, co„,co )

= T g u (p)C(q, co„+,co„„)C(q,co„,co„„)d p
(2m. )

We first examine the AL contribution Q„(co ) (dia-
gram 1 of Fig. 1) to the c-axis fiuctuation conductivity,
where

where

r =4gJ /u~

1 for ~T &&1,

4T 7g(3)/(2' rT) =0.1357/(rT)

for r T ))1, (13)

where r(T, )=4/~(0)/s is the usual anisotropy parame-
ter characterizing the dimensional crossover from the
2D to the 3D regimes in the thermodynamic fluctuation
behavior at To (except for cr„, for which the crossover is
from OD to 3D at To), and g~(0) is the zero-temperature
Ginzburg-Landau coherence length in the c-axis direc-
tion. Although dynamic corrections were found to be
significant for the AL fluctuation conductivity parallel to
the layers in the 2D regime above To, ' such correc-
tions to the c-axis fluctuation conductivity were found to
be negligible, so (12) is accurate in the entire temperature
range above T, . We remark that with the expression (8)
for g, both the clean (4~rT, ))1) and dirty (4nrT, && 1)
limit results can be expressed using the same formulas, as
in (12) above.

In the region g'~(T) &&s/2 of two-dimensional fiuctua-
tion behavior, o.„"is suppressed from the static in-plane
fluctuation conductivity o. by the factor

[2g,( T)/~]'(o „/o ),
XG(p, co„+ )G(p, co„)G(q —p, co„„),

(10)
so that the other contributions to the transverse Auctua-
tion conductivity need to be considered as well. The
normal-state conductivities in this model are

where C(q, co„,co„.) is given by (3), and co„+ =co„+co,
etc. Since u, (p) is odd in p, from (5), B,(q, co„,co ) is pro- o„=N(0)e uzi/2=EFre /(2ms),
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and o„/o „„=J s /vF is the square of the ratio of
effective Fermi velocities in the parallel and perpendicu-
lar directions, respectively.

C. Contributions from fluctuations of the density of states

The specific forms of the AL and, as shown below, MT
contributions to the fluctuation conductivity, which are
suppressed for small interlayer transmittance, suggest
that one should compare these terms with those arising
from other, less divergent, diagrams which are of lower
order in the transmittance. Such diagrams are pictured
in diagrams 5 —10 of Fig. 1. These (DOS) diagrams arise
from corrections to the normal quasiparticle density of
states due to Auctuations of the normal quasiparticles
into the superconducting state. In the dirty limit, the cal-
culation of the contributions to the longitudinal Auctua-
tion conductivity (o.„„,parallel to the layers) from such
diagrams was discussed previously. ' Diagrams 9 and 10

I

arise from averaging diagrams 5 and 6 over impurity po-
sitions. It was shown ' for the longitudinal fluctuation
conductivity that diagrams 9 and 10 are less temperature
dependent than diagrams 5 and 6, and can therefore be
neglected. In the dirty limit, diagrams 7 and 8 were
shown ' to be equal to —

—,
' times diagrams 5 and 6, which

are evidently equal to each other. In the clean limit, dia-
grams 7 and 8 can be neglected relative to diagrams 5 and
6. For general impurity scattering, the ratio of these dia-
grams depends upon ~. It is easy to generalize those ar-
guments to the case of the c-axis (transverse) Iluctuation
conductivity, by replacing the electromagnetic vertices
ev (p) (which were approximated in Ref. 31 by evF) by
the appropriate components [ev, (p)]. As we are interest-
ed in the results for arbitrary impurity concentration, we
shall evaluate these diagrams separately. The contribu-
tion to the c-axis Auctuation conductivity due to diagram
5 is

d
Q„(co )=2e T g I I.(q, co„)Tg J v, (p)C (q, co„,1v„„)G (p, co„)G(q —p, co„„)G(p,co„+ ),

(2~) " „(21r)
(14)

and diagram 6 gives an identical contribution. Evaluation of the integrations over the internal momenta p and the sum-
mation over the internal frequencies ~„are straightforward. Treatment of the other internal frequencies co„ is less obvi-
ous, but in order to obtain the leading singular behavior in e«1 of g„, it is possible to set cv„=0. This point is non-
trivial, as the same approximation in the AL diagram would lead to a result that would differ from the correct one (12)
by a factor of 2. After integration over q„we have

5+6
ZZ

e SII
ln

8g

eS~rl d q
2

1

4 lql —qmax 2w 2 &+gq2 g+ r +gq2 1/2

( +egq, „)' +(e+r+gq, „)'/
el/2+ (e+ )1/2

e $T)
ln

2
el/2+ ( e+ r)1/2

(15)

where where

2(Jv), 1 + 1

41rTr 4mT~ 2
(16) 1

2
In the clean limit, (15) reduces to that obtained in Ref. 9.
In (15), we have introduced a cutoff in the integral at
~q~ =q,„, where 1)q,„=1, as in Refs. 9 and 10. This
cutoff arises from the q dependence of the vertices and of
the Green's function, which had been neglected in com-
parison with the contribution from the propagator, and is
appropriate for both the clean and dirty limits.

In the similar manner, the equal contributions from di-
agrams 7 and 8 sum to

7+8
2

ZZ

Comparing (15) and (17), we see that in the clean limit the
main contributions from the DOS fluctuations arise from
diagrams 5 and 6. In the dirty limit, diagrams 7 and 8
are also important, having —

—,
' the value of diagrams 5

and 6, as for o. . Diagrams 9 and 10 are not singular in
e «1 in the 2D regime above To and can be neglected.
The total DOS contributions to the c-axis conductivity
are therefore

q 1

~q -~ - (2') [(e+gq )(e+r+2)q ))'

e $7"2 2
111

g11 1/2+ ( + )
1/2

o-Do'=- —— ~ ln
Sg

(17)
where

2
e' +(e+r)' (19)
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ri +rp
—+1 1

2 4~~T
L

+
27T7-T 2

4 1 1 1vr' P —+
2 4vr&T 2

T

56((3)/~ =0.691, for Tr &&1,

Srr (rT) /[7$(3)]=9.384(rT) ' for Tr»1,
is a function of ~T only.

D. The Maki-Thompson contribution

We now consider the Maki-Thompson (MT) contribu-
tion (diagram 2 of Fig. 1) to the c-axis fiuctuation conduc-
tivity. The contributions from the two other diagrams of
the MT type (diagrams 3 and 4 of Fig. 1) are negligible,
because they are of the same order in transmittance as is
this diagram, but are less singular in e. As was stated in
Ref. 9, even when the pair lifetime ~& is short, this con-
tribution is proportional to J for small J above To, but is
less singular above To than the AL diagram, and was
therefore excluded from that treatment. As we shall
show in the following, the approximation of neglecting
the MT diagram is usually justified. Nevertheless, there

I

1

2

(20)

I

are a variety of possibilities relevant to the importance of
the MT diagram, depending upon the material parame-
ters. Depending upon ~&, the MT contribution to the
transverse conductivity can have different temperature
dependences, and its order in the interlayer transmittance
can vary. For completeness, we consider the scattering
lifetime ~ and the pair-breaking lifetime ~& to be arbi-
trary, but satisfying ~& & ~. We write

d
Q & (co )=2e Tg J L(q, co„)I~ls(q, co„,co ), (21)

(27r )'

where

I &(q, co, co )=Tg, v (p)v&(q p)C(q, —~„+,~„„)C(q,~„,~„„)d p
(2m. )

The MT contribution to the in-plane Auctuation conduc-
tivity o. was calculated in the dirty limit for a layered
superconductor without pair breaking in Ref. 27,

e e' +(e+ r)'
XX r 1/2

XG(p, co„+ )G(p, co„)G(q —p, ~ „.)G(q —p, ~„„). (22)

limit is correct very close to T„as shown in Refs. 29 and
30.

We now consider the calculation of the MT contribu-
tion to the transverse conductivity. From the forms of

(23) v, (p) and v, (q —p) in (22) obtained from (5), the bare
electromagnetic vertices are proportional to

Equation (23) indicates that in the weak pair-breaking
limit, the MT diagram makes an important contribution
to the longitudinal fluctuation conductivity: it is of the
same order as the AL contribution in the 3D regime, but
is larger than the AL contribution in the 2D regime
above To. For finite pair breaking, (23) is reduced in

magnitude, however. As for the DOS contribution, in
the vicinity of T„ it is possible to take the static limit of
the MT diagram simply by setting co„=0 in (21). Al-

though dynamic effects can be important for the longitu-
dinal fluctuation conductivity well above To, the static

I

sin(p, s)sin(q, —p, )s .

After integration over the momentum p=(p, p, ), the
nonvanishing contribution is proportional to cosq, s. We
take the limit J~&&1 in evaluating the remaining in-
tegrals, which may then be performed exactly.

In evaluating the sums over the remaining Matsubara
frequencies co„ in (22), it is useful to break up the sum
into two parts. In the first part, cu„ is in the domains

]—~, —co [ and [0,oo [. This gives rise to the regular part
of the MT diagram,

e s 77rK d cosq s

4 (2m ) e+gq +(r/2)(1 —cosq, s)

esmK dq e+gq +r/2
2 2~ e+qq e+gq +r

2
e sr K ( + e) re
16' j. /2

e~srk 1 for e &(r,
r/(4e) for e»r, (24)
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where

1 1—+
2 4mTr

+f' —+1 1 „1
2 4m Tv 2

28$(3)/m. =0.3455 for Tr«1,
m~/[14$(3)]=0. 5865 for Tr&&1 (25)

is another function only of ~T. We note that this regular
MT term is negative, as is the overall DOS contribution.

I

However, it is smaller in magnitude than is the DOS con-
tribution, and therefore Inakes a relatively small contri-
bution to the overall Auctuation conductivity and to the
temperature of the resistive maximum. In the 3D regime
below To, it is proportional to J and, in the 2D regime
above To, it is proportional to J .

The second (anomalous) part of the MT diagram arises
from the summation over co„ in the domain [ —co„0[. In
this domain, analytic continuation leads to an additional
diffusive pole in the integration over q, with a characteris-
tic pair-breaking lifetime ~&. This anomalous part of the
MT diagram gives rise to

~~(,„& me Jsr dq cosqzs

4 (2m. ) ( I /r&+DQ )[e+rlq +(r/2)(1 —cosq, s)]

ries d q y+gq +r/2
4(e —y ) (2m )z [(y+gq )(y+ rIq +r) ]'

e+gq +r/2
[(e+gq )(e+gq +r)]'~

e s y+r+e
16' [e(e+r)]'~ +[y(y+r)]'

(26)

MT(an)
zz

( r /y ) for e « y (& r,
e s (r/e)' for y «E«r,
16'

r/(2e) if y &(r &(e . (28)

In this case, there is the usual 3D to 2D dimensional
crossover in the anomalous MT contribution at To, for
which e(To)=r There is .an additional crossover at T,
(where T, & T, & To), characterized by e( T, ) =y, below
which the anomalous MT term saturates. Below To, the
MT contribution is proportional to J, but in the 2D re-
gime above To it is proportional to J .

For strong pair breaking,

My( ) e s r/y for & «r «y
32' r /(4ye) for r «min(e, y) . (29)

In this case, the 3D regime (below To) is not singular, and
the anomalous MT contribution is proportional to J,
rather than J for weak pair breaking. In the 2D regime,
it is proportional to J for strong pair breaking, as op-
posed to J for weak pair breaking. In addition, the
overall magnitude of the anomalous MT contribution
with strong pair breaking is greatly reduced from that for
weak pair breaking.

where

y=, "2

UF'T7
y

1 for T~&&1,

8Tr& 7$(3)/(2m Tr) for Tr »1 . (27)

In examining the limiting cases of (26), it is useful to
consider the cases of weak (y «r or J rr&» —,') and

strong (y»r or J rr&(& —,') pair breaking separately.
For weak pair-breaking, we have

Let us now compare the regular and anomalous MT
contributions. Since these contributions are opposite in
sign, it is important to determine which will dominate.
Since we expect ~&)&~, strong pair breaking is most like-

ly applicable to the dirty limit. When the pair breaking is
weak, the anomalous term is always of lower order in J
than is the regu1ar term, so the regular term can be
neglected. This is true for both the clean and dirty limits.
The most important regime for the regular MT term is
the dirty limit with strong pair breaking. In this case,
when ~&T-1, the regular and anomalous terms are corn-
parable in magnitude. In short, it is usually a good ap-
proximation to neglect the regular term, except in the
dirty limit with relatively strong pair breaking. However,
we include it for generality.

As discussed in greater detail in Sec. V, when J~&&1,
the effective interlayer tunneling rate is on the order of
J w. When 1/~&«J'~&&1/z, the quasiparticles scatter
many times before tunneling to the neighboring layers, '

and the pairs live long enough for them to tunnel
coherently. When J'«&1/~&, the pairs decay before
both paired quasiparticles tunnel.

It is interesting to compare the anomalous MT contri-
bution with the DOS and AL contributions. This com-
parison is best made in the 2D regime above To. For
weak pair breaking, the anomalous MT and DOS terms
are proportional to J, but opposite in sign, and the form-
er has a stronger temperature dependence than the latter.
With strong pair breaking, the anomalous MT and AL
contributions are proportional to J, but the former is
less singular in e «1 than is the latter. Hence, the MT
contribution is in some sense intermediate between the
DOS and AL contributions. Nevertheless, as shown in
the following, the MT contribution can be important in
the overall temperature dependence of the resistivity, el-
iminating the peak for weak pair breaking.
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E. Full transverse fluctuation conductivity

From the previous sections, the full zero-field transverse fluctuation conductivity is found to be

fl AL+ DOS+ MT(reg) + MT(an)
zz zz zz zz Ozz

2
e s
16'

2—rKln e' +(e+r)' +[(+ )1/2 ei/2]2 1

4[e(e+r)]'

@+y+r
[e(@+r)]'/ + [y(y+r)]'/

(30)

We note that the second term in (30) contains both the
AL and the regular MT contributions. Writing the AL
term in this fashion, it is easy to see that the AL term is
generally larger in magnitude than is the regular MT
term, except for r «v=1.

Since there is a competition between the negative (DOS
and regular MT) and positive (AL and anomalous MT)
terms, there can be a maximum in the fluctuation resis-
tivity (minimum in the fiuctuation conductivity). Since
the temperature dependences of r, K, and K are weak com-
pared with that present in e, to obtain the position of the
maximum, it suffices to optimize (30) with respect to e.
Using the restriction J~ && 1 for the validity of our
theory, it suffices to consider the cases in which the resis-
tive maximum occurs in the 2D regime. Setting e=e at
T=T, we have

I

tures well above the transition (i.e. , for T&1.03T,O), we

have chosen Ez/T, 0=300 for r (T,o) =0.1 and 0.01 [Figs.
2(a) and 2(b)], but E./T, O=SOO for r(T 0) =0.001 [Fig.
2(c)]. As can be seen from each of these figures, for a
fixed amount of pair breaking and intralayer scattering,
strong pair breaking (e.g., r&T,O= 1) gives rise to a peak,
or maximum in p„/p„. A small, broad peak in p„„/p„„
can also occur, but only for weak anisotropy
[r(T,o)=0. 1] and for such strong pair breaking

(~&T o=l). Increasing the anisotropy [or decreasing

r(T,o)] greatly enhances the magnitude of the peak in

p„/p„. Decreasing the amount of pair breaking de-

creases the amplitude of the peak, as seen in each figure.

1

(Sr~)'/
1 1

K
8K 2y

(31)

I I 11
i

I I I I I4
r=0. 1

which is satisfied for rK « 1 and yK & 1.
As can be seen from the above analysis, the regular MT

term decreases the position of the maximum somewhat,
but the anomalous term increases it somewhat. It is then
qualitatively correct to neglect the MT terms altogether,
but quantitatively, they can change the overall shape of
the fluctuation resistivity. We remark that there may be
cases in which T could occur in the 3D regime, but
such cases cannot be addressed by our theory, as they
would require a proper treatment of nonlocal effects, as
well as the removal of the restriction Jw « 1.

In Figs. 2 and 3, we have plotted p„/p„versus T/T, o
for various values of the scattering lifetime 7 T o and the
pair-breaking lifetime ~yT o. In these figures, we have
taken p„= ,'N(0) J e s w, as—described at the end of Sec.
II B. In these and subsequent figures, the solid curves are
plots of I „/p„. For comparison, the dashed curves are
plots of p /p„, for the same sets of parameters. The
formulas relevant for the in-plane conductivities (and
hence p ) are given in Sec. IV. In Fig. 2, we have chosen
~T,O=1, which is relevant for the high-T, cuprates. In
each of these figures, curves for ~&T,o= I, 10, and 100 are
shown. We have chosen r(T )=00.1, 0.01, and 0.001 in
Figs. 2(a), 2(b), and 2(c), respectively. These values corre-
spond roughly to those expected for YBCO, BSCCO, and
T12Ba2CaCu20s+s (TBCCO), respectively. In order that
the overall Auctuation conductivity not give a large
correction to the normal-state conductivity at tempera-

0.8
I I I I

0.5

0
. 5

I I I I I I

I ' I I I I I

r=0.001

0 ' 5

1.03 1.06

FIG. 2. Shown are plots of the zero-field normalized resistivi-
ties p /p „(dashed curves) and p„/p„(solid curves) versus
T/T, p for ~T p=1 and for ~yT p=1 (top curves}, ~&T,p=10
(middle curves), and &&T p=100 (bottom curves). In aH plots,
temperatures shown are for 1~ T/T, p~1.06. (a) r(T,p}=0.1,
Z, /T„= 300. (b) r ( T„)=0.01, ZF /T;p= 300. (c)
r(T p)=0.001 EI;/T p=500.
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1 6 r=0. 01
CL.

0.8

I0
1 ~(~ 1.03

CO

1.06

FIG. 3. Plots of the zero-field p„/p„(solid curves) and

p„ /p (dashed curves) vs T/T, o for r ( T,o) =O. 01,
EF/T o= 300 7 T p=0. 1, and ~yT o= 1, 10, and 100, in order
from top to bottom.

In Fig. 3, plots with the same parameters as in Fig. 2(b)
are shown, except that the intralayer scattering lifetime
has been decreased to ~T,p=0. 1, which is in the dirty
limit. Hence, it can be seen that the magnitude of the
peak in p„/p„ is reduced by interlayer hopping, by in-
tralayer scattering, and by pair breaking. For highly an-
isotropic materials, no peak in p /p„ is expected for
any amount of pair breaking shown in these figures.

We remark that these zero-field results are at least
qualitatively consistent with experiments on cuprate su-
perconductors. In YBCO, the best samples showed no
peak (or at best, a very small peak ) in p„, which is con-
sistent with our ~T,p=1

TENT
p=10 curve with

r(T,o)=0.1 [Fig. 2(a)]. In BSCCO, the substantial peak
observed in Ref. 7 is consistent with our ~T,p=1 and

r&T,o= 1,10 curves for r( T,o) =0.01 [Fig. 2(b)]. To eluci-
date which of these curves give a better representation of
the data, it is useful to examine the magnetic field depen-
dence, which will be done in the following.

III. MAGNETIC-FIELD EFFECTS

We now consider the effect of a magnetic field parallel
to the c axis, or normal to the layers. For a more general

I

e~rP 1

'9 „=o [(ee +pn )(e~ +pn +r) ]

16'g „=o [(ee+pn)(e~+pn+r)]'~
e2skp " ea+Pn+ r/2

8'q „=o [(e~+pn)(ee+pn+r)]'
MT(reg)
zz

F. Higher-order corrections

For completeness, we have considered the possible role
of diagram 11 of Fig. 1. This term can become important
in extremely anisotropic layered superconductors, espe-
cially in high-T, materials if the mechanism proves to be
electronic in origin. Specifically, diagram 11 is important
for

J'r/T„«1/(E~ r )'"
in the dirty limit, ' which can occur if r(T,O) is extremely
small. In this paper, we have neglected such diagrams,
and have chosen compensatingly rather large values of
E~w.

field direction, the situation is considerably more compli-
cated, and will be discussed elsewhere. For this particu-
lar field direction, however, the vertices do not depend
upon the magnetic field, and both the quasiparticles and
the pairs form Landau orbits within the layers. The c-
axis dispersion remains unchanged from the zero-field
form. Such a configuration was discussed previously. ' '

For this simple field direction, it is elementary to gen-
eralize our zero-field results to finite field strengths. ' '
In the integral expressions for the various diagrammatic
contributions, one replaces

rjq ~ ir(V/i —2e A) (32)

E„=P(n + 1/2) (34)

2Bg
T,gl r IdH„, ( T)/dTI z-

(35)

and

T, IdH, 2 j(T)/dTI r =4O/[2mgll(0)]

is the extrapolation of the upper critical field perpendicu-
lar to the layers to zero temperature from its slope near
T„written in terms of the Aux quantum Np and the
zero-temperature Ginzburg-Landau coherence length
parallel to the layers g~~(0). The two-dimensional integra-
tion over q is replaced by a summation over the Landau
levels (indexed by n), taking account of the Landau de-
generacy factor in the usual way [32],

d q T P
4m

(36)

where n =0, 1,2, . . . . The 1/2 in (34) can be incorporat-
ed into e, by measuring temperature with respect to the
mean-field T, (B). This results in

e~ =e+P/2=ln[T/T, (B)) .

For completeness, we write the full expressions in the
presence of an arbitrary field in the c-axis direction. We
have

(37)

(38)

(39)

in each of the integral expressions for the contributions
to the fluctuation conductivity. With B=Bz, we may
choose A= —,'B( —y, x, 0), and hence gq becomes the
Hamiltonian of the simple harmonic oscillator. The pair
wave functions ~P„(r) ) are the usual harmonic-oscillator
eigenfunctions, satisfying

f [ri(V/i —2e A) ]~/„(r)) =f (E„)~P„(r)), (33)

where
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and

MT(an)
ZZ

e sp y s +Pn + r /2
16'g(& y) „=o [(ys+pn)(ys+pn+r)]'~

es+Pn + r /2

[(es +pn )(es +pn + r) ]'~ (40)

where ys =y+p/2 is defined analogously to es for simplicity of expression. We note that (37) was obtained previous-
ly. In numerical evaluation of (40), it is useful to manipulate the expression algebraically, in order to remove the ap-
parent (but spurious) singularity when e—y =0. In order that the DOS term have a smooth temperature dependence at
fixed field strength, we have used a Gaussian cutoff instead of a sharp cutoff in our numerical evaluations of (38). Ex-
pansions of (37)—(40) for weak and strong fields are given in the Appendix.

IV. FLUCTUATION CONDUCTIVITY PARALLEL TO THE LAYERS

In Sec. III, we showed that the resistivity transverse to the layers can exhibit a peak above T, (B), which peak is
enhanced in magnitude (as well as shifted to lower temperatures) in a magnetic field. Since the experiments which show
this effect for the transverse resistivity do not show the same effect for the parallel resistivity, the question arises as to
whether the density of states diagram might also lead to such a peak in the parallel resistivity. In order to check this
point, we have evaluated the same diagrams as above for the parallel fluctuation conductivity in a field perpendicular to
the layers. Since all but the density of states diagram (which is simply proportional to that calculated above) have been
evaluated previously, we shall simply list the results. We have

~L 1o.,„= (n +1)
4s „ [(eii+pn)(es+pn +r)]'

2

I [e~+p(n + —,
' )][es+p(n + —,

' )+r]J'

1

I[ e+P(n+1)][ ez+P(n+1)+r]J'~

Dos+ MT(res) e p(++ +)2 — 1 /P 1

4s „0 [(es+pn)(es+pn+r)]'~

(41)

(42)

and

MT(an) e P ~ 1

8s(&—y) „=o [(ys+pn)(y~+pn+r)]'~
1

[(es +p„)(es +pn + r) ]'i (43)

Note that we have included the DOS and regular MT
terms together, as they are proportional to each other for
this conductivity tensor element, and the DOS diagram
diff'ers from that for the transverse conductivity by the
factor (uF/sJ), which measures the square of the ratio of
the effective Fermi velocities. The same factor enters into
the normal-state conductivity, leading to the standard

o „=,'N(0)e uzr=EF—re /(2vrs) .

We note that (41) was given previously in Ref. 3, using
standard procedures, and rederived in Ref. 33, and (43)
was also given previously. ' As in (38), we have used a
Gaussian cutoff in (42) in our numerical evaluations, in
order to insure a smooth temperature dependence of the
parallel conductivity at fixed field strength. In addition,
it is useful to manipulate (43) algebraically, in order to re-
move the apparent (but spurious) singularity at e= y, as
was done in (40), leading to the zero-field result (26). The
low-field expansions of (41)—(43) are given in the Appen-
dlX.

We note that the new (DOS) correction we have in-
cluded gives rise to the term proportional to v in (42). In

I

the dirty limit, since ~~0.691 and @~0.3455, the DOS
contribution is not much larger than the (relatively
small) regular MT term, and was therefore neglected
by all previous workers. However, when ~T p 1,
I~( T,o) = 14.3123, which is much larger than
K( T,o) =0.5578, so the DOS contribution cannot be
neglected relative to the other terms. Hence, fits to data
in which the DOS term has been neglected can only be
trusted for systems which are in the dirty limit. Since the
cuprates are thought to have ~T p 1, it is necessary to
include the DOS contribution in the fits. This term
dramatically alters the shape of the overall parallel resis-
tivity, even for zero magnetic field. This change in p
due to the inclusion of the DOS contribution is pictured
in Fig. 4. In this figure, we have plotted p„ /p for
7 Tcp 1 7 yT p= 10 and Eg/T p= 300 for both
r ( T,o) =0. 1 (dashed curves), and r ( T,o) =0.01 (solid
curves), both with and without the DOS contribution.
As is easily seen from Fig. 4, the DOS contribution great-
ly alters the overall resistivity, with the main aspect of
the alteration being an overall increase in the resistivity.
However, as can be seen by comparing all four curves,
there is an additional nontrivial temperature dependence
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FIG. 4. Plots of p „/p vs T/T, p in zero magnetic field, for
EF/T p=300 7 T p= 1 TENT

p= 10, and for r( T,p)=0. 1 (dashed
curves) and 0.01 (solid curves}, with (top curves) and without
(bottom curves) the density of states contribution.

which enters into the fluctuation resistivity, which is
significant enough to alter all fits to experimental data.
Since to date no fits to any data for p„have included the
DOS contribution, all such fits could require substantial
revision.

V. DISCUSSION

In comparison of our theory with experiment, it is im-
portant to keep in mind that we have included the lead-
ing contributions to the conductivity arising from Auc-

tuations of the order parameter about its mean-field value
[which vanishes at T, (B)],but have not included the crit-
ical fluctuations of the order parameter, which cause the
order parameter to be nonvanishing at the mean-field

T, (B). In treatments of the critical fluctuations such as
the self-consistent Hartree approximation' and more
complete treatments, " the main effect is a shift of the
mean-field T, (B) to zero, with a corresponding broaden-
ing of the transition. This broadening of the transition
increases strongly with increasing magnetic field strength,
in qualitative agreement with experiments on the cu-
prates. Hence, in examining the calculations we have
performed, one should mentally broaden the transitions,
the amount of broadening increasing strongly with the
field strength.

While it is dificult to know precisely what values of
EF/T, o to choose, one would like to be able to choose
values consistent either with band structure calculations
or with photoemission experiments. Unfortunately, we
are limited by the restriction that the fluctuation conduc-
tivity makes a small correction to the overall conductivi-
ty. Since we have neglected higher-order density of states
corrections (such as diagram 11 of Fig. 1), we are thus
forced to choose values for EF/T, o corresponding to
EF-1—5 eV, larger than expected from such extrac-
tions. Choosing EF/T, o in closer agreement with band-
structure calculations or photoemission experiments
would greatly enhance the DOS corrections from those
exhibited in our calculations.

We note that the pair-breaking parameter ~&T,o which
enters the anomalous MT contributions also affects the
zero-field transition temperature, which is then obtained
from the vanishing of the inverse propagator (6) by re-
placing ~co„~ with 1/r& and setting a~=0 at T=T,o. For
moderate pair-breaking strengths (r T,o-10), such

corrections can be incorporated with reasonable accuracy
by redefining T,o to be the actual zero-field transition
temperature, rather than the zero-field transition temper-
ature in the absence of pair breaking. For strong pair
breaking (r&T,o-l), inclusion of the pair-breaking pa-
rameter in the fiuctuation propagator (6) with a~%0
enhances the effect of the magnetic field present in u .
We have neglected such enhancement effects in our nu-
merical calculations, treating T,o as the effective zero-
field transition temperature.

In Figs. 5 —7, we have plotted p„/p„and p /p
versus T/T, o in zero field and at fields corresponding to
P(T,o) =0.05 and 0.10. In these figures, we have chosen
r(T,o)=0.01 and EF/T, o=300, which corresponds
roughly to the cuprate BSCCO. Similar calculations
have been carried out (but are not pictured) for
r ( T, )o=0. 1 and E+ IT,o

=300, and for r ( T,o) =0.001
with EF/T, o=500, which correspond roughly to YBCO
and TBCCO, respectively. In Fig. 5, the additional pa-
rameters are 7T O=~yT&o=l, which is appropriate for
the case of strong pair breaking. We note that the peak
in p„/p„ increases dramatically with increasing field, but
the curves do not coincide with each other above the
peaks, in contrast to the experiments. Even with the ex-
pected field broadening due to critical fluctuations, it is
difficult to imagine how the behavior of p„ /p in Fig. 5

could be consistent with experiments on BSCCO. In ad-
dition, the falloff in p /p just below the peak in the
P(T,o) =0.10 curve is very sharp, unlike the experiments.
Similar but more pronounced behavior for p„/p„ is
found for r(T,o)=0.001, but for r(T,o) =0. 1, the in-
crease in the peak in p„/p„with increasing field is al-
most negligible. For both r ( T,o) =0. 1 and 0.001,
p„ /p „at P(T,o) =0.10 has a sharp falloff', as in Fig. 5.
Hence, we argue that such strong pair breaking (as has
been suggested previously, ' is inconsistent with the
strong-field experiments on both YBCO and BSCCO.

Note that in previous fits, ' the authors used the
low-field expansion and neglected the DOS contribution,
but included the very small Zeeman (or Pauli) correc-
tions, which we have omitted. We used the full perpen-
dicular field expressions (37)—(43), which are accurate for
larger field strengths. Another difference in the theories
is that nonlocal corrections were included in Ref. 24,
which corrections we have neglected. In addition, fits in

0
0.94 0.97

T/T
CO

1.03

FIG. 5. Plots of the normalized resistivities p„/p„(solid
curves) and p /p „(dashed curves) vs T/T, p, for r(T,p) =0.01,
EI; /T, p= 300, and ~T,p=~&T,p= 1, at field values corresponding
to P( T,o) =0, 0.05, and 0.10.
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FIG. 6. Plots of p„/p„(solid curves) and p„ /p„(dashed
curves) vs T/T, p, for r(T,p)=0.01, EF/T, p=300, ~T,p=1, and

TENT p
= 10, at field values corresponding to P{T o) =0, 0.05, and

0.10.
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FICx. 7. Plots of p„/p„(solid curves) and p /p „(dashed
curves) vs T/T, p, for r(T,p)=0.01 EF/T p=300 ~T p=0. 1,
and r&T,o=10, at field values corresponding to P{T,o) =0, 0.05,
and 0.10.

Refs. 24 and 25 included the case of the field parallel to
the layers. However, in those fits the orbital magnetic-
field pair breaking (the dominant term for weak fields
such as in the experiments ) was omitted, so the extracted
pair-breaking strength was assumed to originate from the
Zeeman energy splitting. However, we argue that for
p(T,o) =0.10, we are still in the regime H «H~ —150 T
where such Zeeman corrections are negligible, regardless
of the field direction. '

In Fig. 6, we have plotted p„/p„and p„ /p„„ for the
same parameters as in Fig. 5, except that w&T,o=10,
which corresponds to intermediate strength pair break-
ing. We note that the p„/p„curves do not fall exactly
on top of one another, but come closer to one another
than in the strong pair-breaking case (Fig. 5). In addi-
tion, the p„ /p curve for P(T,o)=0.10 is much more
rounded than in Fig. 5, further suggesting that
intermediate-strength pair breaking is more consistent
with the experiments on BSCCO than is weak pair break-
ing. While we are not aware of similar experiments on
TBCCO, assuming r(T, )o=0.001 and the same values
for v T,o and 7 yT p our calculations (not pictured) suggest
that the peak in p„/p„will be much stronger than in
BSCCO, but that the curves will probably not lie on top
of one another above the peak temperatures. In addition,
our calculation for r (T,o) =0. 1 (not pictured) also shows
more rounded p /p at 8 (T,o) =0.10, more consistent
with experiments on YBCO than the strong pair-breaking
calculations.

In Fig. 7, we have made similar plots for the dirty limit

case ~T,O=0.1, with moderate pair-breaking ~yT o=10.
In this case the importance of the DOS contribution is
considerably reduced. In all such curves we have ob-
tained, there is no peak in p„ /p„„, and both p„/p„and
p„„/p„„curves broaden similarly in a field. Note that for
such strong scattering, p „/p „exhibits a great deal of
fluctuations above T,o. In addition, the peak in p„/p„ is
much weaker than for ~T,O= 1, being absent for
r ( T,o) =0. 1 (not pictured). Furthermore, for
r ( T,o) =0.01 (Fig. 7) and 0.001 (not pictured), the p„/)o+
curves for different field values nearly fall on top of one
another.

While the field broadening of p„„/p in the dirty limit
(Fig. 7) appears very similar to that observed in experi-
ment (taking into account the further broadening due to
critical fiuctuations), one should not take these figures too
seriously in regard to the cuprates, for which normal-
state measurements are more consistent with relatively
clean values ~T,o- 1, such as for Figs. 5 and 6. Hence,
our calculations show that for rT,0=1, the best agree-
ment with experiments on YBCO and BSCCO is for
moderate pair breaking (r&T,o-10), rather than strong
pair breaking (r&T,o 1). -

In this work, the model described by (1) assumes
coherent quasiparticle interlayer propagation, which is
reasonable in materials such as fully oxygenated YBCO,
but could be questionable in highly anisotropic materials
such as BSCCO. However, incoherent quasiparticle pro-
cesses at randomly located positions r; can be included
by adding a term to the single quasiparticle Hamiltonian
of the form

plus its Hermitian conjugate, where 5J.(r; ) is the random
part of the interlayer tunneling energy arising from mi-
croscopic electrical shorts, and g.(r;) is a Nambu spinor
that annihilates a quasiparticle at the random position r;
between the jth and (j+1)th layers. Such processes
complicate the situation considerably, but to leading or-
der in ((5J) ), where ( . ) is an average over the ran-
dom tunneling positions, lead to the replacement of J by
J +((5J) ). Those authors were able to derive the
effective Lawrence-Doniach free energy, but did not
evaluate the fluctuation propagator, which involves mul-
tiple hopping (or interlayer scattering processes). In Ref.
37, the normal-state conductivity parallel to the layers
was found to have a Drude-like frequency dependence,
but o'„(co) was found for J=0 to be independent of fre-
quency, to lowest order in the random interlayer scatter-
ing. Otherwise, interlayer scattering and interlayer
coherent tunneling gave nearly identical results for lay-
ered (periodic) superconductors. Hence, it is likely that
the question of coherent versus incoherent tunneling is
primarily a semantic one, as it may be dificult to distin-
guish these microscopic models, without accurate deter-
mination of the frequency dependence of the normal-state
conductivity tensor, and accurate evaluation of the Auc-
tuation propagator in the random short (or interlayer
tunneling) model.
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A recent treatment of a single superconductor-
insulator-superconductor junction is related to the
coherent tunneling model. That treatment was similar
to that of Ref. 9, but involved the exact transmittance
from one superconductor to the other, through the insu-
lating barrier. They also obtained a peak in p„at tem-
peratures above T„ in substantial agreement with our
zero-field results obtained assuming coherent tunneling of
periodic structures, using the perturbative approach in
the fluctuation propagator. Thus, it appears that our per-
turbative approach gives the correction physics of the
layered systems. However, we have not included higher-
order diagrams, such as diagram 11 in Fig. 1. When the
leading DOS contributions (diagrams 5 —8) are compara-
ble in magnitude to the normal-state conductivity, one
must include all such higher-order processes, ' which will
modify the quantitative details of our results, but prob-
ably not the qualitative physics arising from our pertur-
bative approach.

In this treatment, the normal state resistivities p and
p„are both assumed to have diffusive character, with
effective diffusion constants Dii=u~~/2 parallel to the
layers and Di =J s r/2 normal to the layers. Ordinarily,
if one expands DQ in (4) for small q, s «1, the propaga-
tion normal to the layers would be anisotropic, but
diffusive in that direction as well as within the layers.
However, for larger values of q, s —1, the c-axis propaga-
tion is not diffusive, due to the hopping character of the
c-axis quasiparticle transport for lengths on the order of
s. One might then wonder why Di turned out to be pro-
portional to the intralayer scattering lifetime. This
dependence can be understood by the following uncer-
tainty argument. Intralayer scattering with diffusion
constant D~i leads to a smearing of the intralayer momen-
tum

ibpi —1/(Diib. t)'/

within the time interval At. Such an uncertainty in the
intralayer momentum then leads to an uncertainty in the
quasiparticle energy AE on the order of

vi; ibpi —I /(rbt)'/

When bE) J, or for times b, t such that b.t —1/(J r),
hopping to the next layer a distance s away is possible.
Writing s —(D~ibt)', we then have Di -J s r, as in our
model.

We have not taken into account the effects of weak lo-
calization arising either from predominantely two-
dimensional propagation in the presence of disorder, or
from disorder in the c-axis propagation. Two-
dimensional localization can be included, but will be dis-

I

cussed elsewhere. Such corrections are likely to be im-
portant in highly oxygen-deficient cuprates, for which the
upturn in the c-axis resistivity occurs over a wide temper-
ature range.

In conclusion, we have shown that the upturn in the c-
axis resistivity just above T, in highly anisotropic layered
superconductors does not necessarily imply incoherent
tunneling between the layers, as has been widely adver-
tised. ' Such behavior and its strong enhancement in a
magnetic field normal to the layers are natural conse-
quences of layered superconductors, even when the c-axis
propagation is by coherent tunneling. Specifically, it
arises from the decrease in the normal quasiparticle den-
sity of states due to Auctuations. In addition, our numer-
ical calculations suggest that the pair-breaking rates in
the cuprate superconductors are considerably less than
those obtained previously. ' This conclusion is
significant, suggesting that the cuprate superconductors
are not likely to be gapless at low temperatures (as sug-
gested recently from transmission experiments ), at least
from conventional pair-breaking mechanisms.
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+ —,', [f'(N) —f '(0) ]+ (Al)

If one writes the expressions in terms of ez, then terms
linear in B will appear. However, writing the expressions
in terms of the zero field e, all terms linear in B vanish
identically, leaving the leading terms of order B . To or-
der B2, we find

APPENDIX

There are two regions of relevant field strengths, the
"weak"-field regime (p(&eii) and the "strong"-field re-
gime (equi (&p « 1). In this appendix, we list analytic ex-
pressions for the contributions to the fluctuation conduc-
tivity in these field regimes. In the weak-field regime, we
expand the various conductivity contributions in powers
of B. Such expansions are facilitated by use of the Euler-
Maclaurin approximation formula,

1g f (n) = f f (x)dx+ —[f(N)+f (0)]
0 2

AL

32~
F.+r/2 P r (e+r/2)

[e(e+ r) ]'/ 32[a(~+ r) ]'/ (A2)

DQs e sr K2 2
0zz ln 1/2+ ( + )

i/2

2
p (E+r/2)

24[@(e+r) ]
(A3)

MT(reg ) e SrK

16'
( 6+ r )

i /2 El /2

1/2
pr

48[@(e+r)] / (A4)
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and

MT(aII )

16'
a+y+r

[e(e+r)]'/ + [y(y+r)]'/2

p r (e+y+r)[e(e+r)+y(y+r)+[e(e+r)y(y+r)]' ]
96[e(e+r)y(y+r)] / [[e(e+r)]'/ +[y(y+r)]'/ ]

(A5)

In (A3), we have assumed e ((1 and p((1, as in (15).
Using (A2) —(A5), expression (31) for the position of the

resistive maximum becomes modified to

1 5P~
(8r~)'

K 1

8K 16yK
(A6)

Note that the magnetic field reduces T by an amount
proportional to 8 .

We now consider the "strong"-field regime
e~ ((p(&1. In this case, the suins over n in (37), (39),
and (40) converge rapidly, and it suffices to keep only the
n =0 term in the sums. For the DOS contribution, the
formal logarithmic divergence of the sum requires that-
we treat (38) a bit differently. In this case, we separate
out the n =0 term, and cut off the remaining sum at
n =n,„—1/p. In this high-field limit, we clearly have

yB &)eB. In most circumstances, the combined zero field
and magnetic pair breaking present in y~ =y +p/2 is

sufficiently strong that r ((yB. Hence, we may approxi-
mate the anomalous MT term for ys))max(e~, r). In
this limit, the regular and anomalous MT terms are pro-
portional to each other and may be combined. We find

&L esr p 1

128' [e~(e~ + I ) ]3/~

e srKp
16'

1 1+ln-
[ ~e( ~e+r)] p

DOS
ZZ

(A7)

(A8)

8g 2y

eg +r/2 —1 . (A9)
[e~(eii+r)]'/

Assuming the resistive maximum occurs in the 2D re-
gime, we have

Bm

' 1/2
3

SrK
1--+

2K 4PBK
(A 10)

Note that (A10) is very similar to (A6), the leading term
differing by v'3, and the zero-field correction terms by a
factor of 4. However, since both eB and yB depend
linearly upon P, the magnetic field decreases T by an
amount linear in 8.

We now present the low-field expansions for the contri-
butions to the Auctuation conductivity parallel to the lay-
ers. Using the Euler-Maclaurin approximation formula,
we obtain

~L e 1 P [8e(e+r)+3r ]
[e(e+r)]' 32[e(e+r)]

r

(A 1 1)

2o + r'i' '= —e (~+ ) 210 xx ~xx n
%$

2
e'/2+(e+ r)'"

P (e+r/2)
24[e(e+r)] / (A12)

and

MT(an)
2

8s (e—y)
e' '+(6+r)' '
y 1/2+ ( y +r )1/2

P y+ r/2
24 [y(y+r)]'"

e+r/2
[e(e+r)] / (A13)

The zero-field term in o was first given by Lawrence and Doniach, and the term of order p was first obtained ex-
plicitly in Ref. 34, by inverting the order of the summation over n and the integration over q, . Here we merely
confirmed that it can be obtained from the full expression given in Ref. 3 using the Euler-Maclaurin formula. In addi-
tion, (Al 1) was given to order p |n Ref. 34. However, in our numerical calculations, we have used the full formulas
(41)—(43), as was done for o „,with the modifications mentioned in the text.
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