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Classical optics in generalized Maxwell Chem-Simons theory
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We consider the propagation of electromagnetic waves in a two-dimensional polarizable medium
endowed with Chem-Simons terms. The dispersion relation (refractive index) of the waves is com-
puted and the existence of linear birefringence and anomalous dispersion is shown. When absorption
is taken into account we find the classic signature of a Voigt eKect. In the case where linearly polar-
ized, three-dimensional waves pass through a two-dimensional plane we show that there is optical
activity and compute the analog of Verdet's constant.

I. INTRODUCTION

The successful application of fractional statistics in the
description of the fractional quantum Hall effect has led
to the study of a large number of models involving anyons
and the Chem-Simons interaction. ' Motivated by this
success some authors have considered efFective Beld theo-
ries for high-temperature superconductors in two dimen-
sions. Such models involve the Chem-Simons interaction
coupled to matter in a planar system in which there is
no residue of the third spacelike direction. The models
describe what is usually referred to as the "anyon su-
perconductor. " The gauge Beld for such an interaction is
not the electromagnetic Beld A& but a "statistical" gauge
field a„which does not have a propagating I' term in the
Lagrangian. Other authors have emphasized the impor-
tance of including electromagnetic interactions as well. '

One of the characteristic features of the Chem-Simons
interaction is the breaking of parity and time reversal
symmetries. This has prompted a number of optical
experiments to determine whether such a phenomenon
might be observed in the high-temperature supercon-
ducting materials. The experiments use the fact that
anyons would induce a Faraday effect (also called circular
birefringence) resulting in optical rotation of plane polar-
ized waves impinging normal to the layers. The anyon or
Chem-Simons Beld generates an efFective magnetic Beld
which points in a particular direction in space, breaking
P and T invariance. A theoretical model for this sce-
nario has been studied by Wen and Zee. They look at a
system which describes a model superconductor in which
two independent gauge invariances are broken by con-
densate effects. A more general discussion of P and T
breaking effects in the relation to the experiments may
be found in Refs. 10—13. More literature may be found
in Refs. 14 and 15.

However, optical activity (circular birefringence) is not
the only characteristic feature of wave propagation in a
medium with anyons. P and T breaking effects should
show up in wave modes which travel along the layers
and not merely perpendicular to them. In particular one
should have the Voigt effect which implies a splitting in

the absorption spectrum due to the presence of an ef-
fective magnetic Beld. It is therefore of great interest
to examine the propagation of waves in two-dimensional
systems, including the effects of a Chem-Simons interac-
tion.

In this paper we consider waves both in a two-
dimensional system and in three dimensions impinging
normally on a layered structure of two-dimensional sys-
tems. In the latter case our setup differs from that of
Wen and Zee. Rather than considering the model of an
anyon superconductor we investigate the magneto-optical
effects for a Maxwell field coupled to a classical polariz-
able medium with Chem-Simons interactions included.
For the medium we use a standard model with a contin-
uum of charged particles bound to their sites by harmonic
oscillator forces. In the interest of generality we include
two types of gauge field: an electromagnetic A& and a sta-
tistical gauge field a„and include the most general array
of Chem-Simons terms for these. The arguments for in-
cluding both flavors of gauge Beld have been presented a
number of times ' though few authors have considered a
general array of Chem-Simons terms. One could think of
these terms as effective interactions due to (microscopic)
degrees of freedom which are not explicitly taken into
account.

We derive the dispersion relation and absorption spec-
trum of the purely two-dimensional system and discuss
the characteristics of wave propagation in this system.
For the (3+1)-dimensional system in which a layered
structure of (2+1)-dimensional systems is embedded, we
derive the dispersion relation and examine the rotation
of the polarization plane (circular birefringence) of this
medium.

II. IN THE PLANK

We begin with a Lagrangian of general form:

I'„„E" + s„qA—"0 A—+ Ps„„qA"0"a
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with n, P, and p as Chem-Simons parameters. A„and a„
are electromagnetic and statistical gauge fields, respec-
tively, with E~ = B„A —8 A~, and ZM is a Lagrangian
for matter. J"and j"are conserved currents. We assume
that J = j since the currents arise from a single species of
particle, but that J g j in general. It is clearly impor-
tant to identify which of the gauge fields various charges
couple to. Models of the anyon superconductor take into
account a neutralizing background charge density for the
electromagnetic gauge field A~: the zeroth components
of the currents do therefore difFer in a general model. We
assume that all the three Chem-Simons terms, in princi-
ple, can be generated by microscopic variables. With a
change of variables, a„—+ a~,

Ial+ —Ai
/

P& (
~r

(2)

JP JP ~P~P'~ ] '~ ~P
'Yr

(4)

We note that P = p is a special case, since the coupling
between the gauge Belds and currents then vanishes and
the statistics field disappears, leaving only a free, massive
Maxwell-Chem-Simons field A„. If n = P = p, this
is simply a free, massless Maxwell field. However in the
following we shall assume that we do not have this special
situation. We work with the transformed parameters and
fields, but use the original notation of Eq. (1). The
only efI'ect of the transformation then is to put the mixed
Chem-Simons term to zero, i.e. , P = 0.

With P = 0 the field equations are decoupled:

the Lagrangian is kept in the same form, but with trans-
formed parameters,

, P=O, &=~1 ——
~ &,

( p)'
w)

and renormalized charge and current,

cal or moving charges. For the A„ field, this density may
be fully or partially neutralized by a background charge
density enb. For generality we also include a neutraliz-
ing background pb for the anyonic charges coupling to
a„, though this may be small compared to —enp. The
currents may be written

= P+Pb

J' = p+nbe,

J=j=ps (10)

Since the Chem-Simons (CS) field is nondynamical, it
can be eliminated from the equations by means of Eq.
(6), giving

ms' + mpds' + moos' = —e E* + e,~
s~

~

B ——
&)

(12)

The limit p ~ oo corresponds to the situation with
only the Maxwell-Chem-Simons field A~ present, and the
additional efFective magnetic field then vanishes.

In order to obtain self-consistent wave solutions we as-
sume the following form for the waves:

F E i(kx —cot)oe
i(kx —(ut) + B

P+ Pb

y y

We approximate the charge density and current by con-
tinuous functions. For the CS Beld this corresponds to a
mean field approximation. The efI'ect of the CS field is to
introduce an additional efFective magnetic field, —pb/p.
Note that the nonstatic part of the charge density p does
not contribute to this efI'ective field since it cancels in the
contributions from E' and b. The equation of motion for
the charges becomes

i(ka —wt)oe
Jp i(kx —~t) += ppe pc )

with f p = 0 a~ —Opa . Thus we have one Maxwell-
Chern-Simons field of mass o. and one pure Chem-Simons
field, both coupled to essentially the same current. In
addition to the field equations, the equation of motion
for microscopic charges should be specified. Here we take
the simplest classical model for a polarizable medium:

ms' + mpds* + moos' = —e [E' + F' + e;~ s~ (B + 6)j,
(7)

s is a displacement vector, pp is a damping factor, and cop

is the resonant frequency. E' and B are the electric and
magnetic parts of the field E„and F and 6 the corre-
sponding components of f„We introduce .parameters
which distinguish between the dynamical or "optically
active" charges and the static or "background" charges
in the material. —eno is the (charge) density of the opti-

where p, = (n~ —no)e and propagation is along the x
axis. The constant part of the magnetic field is related
to the charge density by

B, =— (14)

Thus for n g 0 the average charge density is linked to the
average magnetic field. However when n = 0 (a massless
Maxwell field) B is independent of p, . In order for Eq.
(13) to be correct we must then require that p, also be
zero. Following Ref. 16 we disregard the oscillating part
of B in the particle equation, since it is small by a rel-
ativistic factor v jc. The approximation leads to linear
equations for the oscillating fields.

Note that the efI'ect of the Chem-Simons interaction
is to render the waves massive and thus there is loss of
transversality. Parallel and transverse components of the
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vectors may be defined by

Epi(
—= k, Ep/k,

Ep~ = s,~k'E~p/k. (16)

After eliminating B, p, and 3 from the field equations,
two equations are obtained with Ep~~ and Eo~ unknown.
Nontrivial solutions of this matrix equation are obtained
when the determinant of the matrix for the coefFicients of
Eo~ Eo~~ vanishes. This gives immediately the dispersion
relation:

~

~

~

(—M —1 QM + M()) (1 + —2) + ld —2&(dc

td (
—Id —Igdld + &D) + td (

—K —2+dfd + &D) —fd td

where w2 = ¹2/m and tu, = —'(B, —ps/p). These
are the plasma frequency and cyclotron frequency, re-
spectively. The mean refractive index is thus n = k/w.
The solutions are further characterized by

This implies two areas of anomalous dispersion (i.e. ,
the wave number decreases as the frequency increases),
which then is associated with absorption. When (do p)
(cu„+ w, )/w„ the anomalous dispersion and absorption
are close to the resonances at

where

Eo~ ——iAEO~I.
1

(d+ ~ (do + —(d~
2

(22)

(d —'((d —k —o! ) + (d

Ck (—M —
Z +Cd + Ctf() ) ——((d —k )

When we are not too close to the natural frequency wo,
we have A —and the electrical field propagates like

E = Ep([ [e cos(kx —~t) —Ae„sin(k2: —art)]. (20)

2 2(d + ld
(d~ =&0+

2

12~2 + (~2 + ~2)2 (21)

Thus, the waves are elliptically polarized in the plane,
and away from the resonances the two main axes of the
ellipse are defined by the longitudinal and transverse di-
rections of the wave propagation.

Let us now summarize the physical consequences of
these solutions. Going back to the dispersion relation,
we see that there are two resonances, which for pg

——0
are located at

See Figs. 1 and 2. This is the two-dimensional version of
the Voigt e6'ect. Normally, in three-space dimensions,
this efFect is found when plane waves are sent perpen-
dicular to a constant B field. Linear birefringence and
absorption are known to result. When the plane con-
taining E is perpendicular to B, the dispersion relation
and absorption curve look qualitatively like the figures.
However in three dimensions, we may also send the plane
waves with E in the same plane as B (but still k J B)
and then we only have one area of anomalous disper-
sion, lying between the two others. Thus, in three di-
mensions, one has two diferent wave numbers, say k~~

and A:~, for a given frequency, and an absorption triplet.
In the present two-dimensional case, there is only a sin-
gle wave number k~~, but two absorption lines. Therefore
the two-dimensional analog of the Voigt eKect yields an
absorption doublet in the presence of an effective mag-
netic Beld. Note that, for pg g 0, this eKect is present
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FIG. 1. Dispersion in the neighorhood of the resonant fre-
quency. This is the real part of the complex refractive index,
for o. = 0.6, pq ——5 x 10, coo ——1, cu = 0, u„= 0.005.

FIG. 2. Absorbtion in the neighborhood of the resonant
frequency. This is the imaginary part of the complex refrac-
tive index for the same parameter values as in Fig. 1. Note
that one peak is significantly higher than the other, as pre-
dicted in Eq. (18).
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even with B, = 0, due to the effect of the Chem-Simons
interactions. On the other hand, when B, = pb/p there
is a cancellation between the CS and the magnetic Belds
which gives w = 0. But even in this case there is a small
splitting of the absorption line with resonances at

Cdp

Mp+&2 2 (23)

(d +&p c (24)

The frequency of the second resonance tends to zero with
wp, and also the strength of this resonance tends to zero,
due to the prefactor cu2 in Eq. (17).

From the discussion above we note the different effects
of the two P and T breaking Chem-Simons terms in the
Lagrangian, proportional to o. and p, respectively. The
p term introduces a shift in the resonance frequencies,
like the effect of an external magnetic field. The a term,
on the other hand, only afFects the strength of the res-
onances. In the general case there are two absorption
lines associated with the resonances, but in the P and T
symmetric case, o. = w = 0, the strength of the second
line goes to zero, and only the one at wp survives.

Only when o. ~ 0 will the resonance at wp + u„disap-
pear, since the strength of this resonance is proportional
to o. . Thus, in this limit, with no P and T breaking
effects, only the absorption line at up survives.

For a conducting medium, with a vanishingly small
binding constant and frequency up, we find only one res-
onance at

pinging normally on a structure with two-dimensional
layers. In a continuum description of the system, the
effect of the layers is to constrain the currents to the
two (x, y) directions in the layers and to include Chern-
Simons terms involving only these two directions. The
Lagrangian density then has the form (with indices now
running from 0 to 3)

l. = ——I'"„F""+ —c~ p3A"8 A + —E;„p3a~B"a
4 " 2 P

—J"A„—j"a„+ZM . (25)

i(k z —cut) j k;~zpe

= Eo e*f""' 'i(cosk;, z+ jsink, ,z). (26)

The combination ij ensures conservation of energy. (We
do not consider a damping term pg in this section. As-
suming wave solutions of the form e'(" ~, we find the
dispersion relation to be

We consider waves propagating in the z direction, i.e,
in the direction normal to the layers. We use the same
equation as before (7) for the motion of the charges and
disregard in this equation, once again, the oscillating part
of the magnetic field. It is of some utility to introduce a
new imaginary unit j which corresponds to the unit vec-
tor in the y direction in the plane. This leads to doubly
complex numbers, is with j2 = i = —1 and ij g —1.
We write E = E + jE", S = 8 + j8", etc. Proof of
optical rotation reduces to showing that the wave vector
is a doubly complex number of the form k = k„—ij k;j.
When k (and thus k) is ij complex, we have for the
electrical field

III. FARADAY EFFECT IN THREE
DIMENSIONS

We now consider the situation which is closest to the
experiments referred to earlier, namely with waves im-

2= 2 ~ ~

~

QJ
k =~ 1 —ij —+ p

—~2 + ~p + ij~~~

which may be cast in an alternative form:

(27)

+ MpI p ~ 2

~
0~ ~

c

I
2 2 (n1+m„—ij

~

—+w')- '+ ')'- * * 'I- '+ ')*- ' *J) (28)

and compared to k = k„—i jk;~.
It is most usual in the literature to decompose the sys-

tem into contra-rotating circular polarizations. In this
formalism we have E& ——kiE, corresponding to two
different wave numbers k~. It is easy to get the disper-
sion relation in this form too; one simply writes ij —+ ~1
in (27). The different wave numbers are connected by
k+ = k„+k;j.

We briefly discuss some characteristic features of this
expression. First, we note that the Faraday effect is
present both for w, g 0 and for n g 0. In other words,
both Chem-Simons terms introduce efFects similar to
that of an external magnetic Beld, as one would expect.
The Faraday effect only disappears when n = ~ = 0.
Note that, in general this does not imply a vanishing

y=EVB, ,

Ne3~2
~2 ~2

(29)

where n = k„/w, the mean refractive index and V is
Verdet's constant. A similar expression is valid for finite
p and vanishing o. , but with B' then replaced by the
efFective field R, —pb/p. If on the other hand n g 0, but

external magnetic field, but rather a cancellation of the
effects of the magnetic field and the p term.

After propagating a length E through the medium, the
polarization plane is rotated by an angle y = k;jE. For
pure Maxwell theory (n ~ 0, p —+ oo) we recover for w

small, the standard expressions
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ur, = iso ——0 (a conducting medium with no magnetic
field), we have the simple expression

2= 2 2k = cd —M —ZQO!(dp (31)

When nw &( ~w
—w„~ this gives a rotation angle for a

propagating wave

(32)

We note that the dispersion relation (31) has the same
form as that found by Wen and Zee for their model of
the T and P breaking superconductor [io„and n then
correspond, in their Eq. (14) to the parameters p and P,
respectivelyj. For small frequencies, w &( io„, there is an
exponential damping of both oscillation modes. This cor-
responds to a situation with a total reflection of the waves
at the boundary of the medium, with a corresponding ex-
pression for the rotation angle for the reflected wave as
given by Wen and Zee.

IV. SUMMARY

We have examined the optical effects of Chem-Simons
interactions in the case of a classical polarizable medium.
For wave propagation in a (2+1)-dimensional system we
find in general elliptically polarized waves. When the
charges are bound to sites by harmonic oscillator forces,
we find an absorption doublet in the frequency spectrum,
similar to that of the Voigt efFect for waves propagation
in a magnetic field.

We have also determined the dispersion relation of
waves in a layered (3+1)-dimensional system, with
Chem-Simons interactions defined in the planes associ-
ated with the layered structure. As expected we find
a Faraday rotation of the polarization plane for waves
propagating in the direction normal to the planes. The
effect is present even without a magnetic field.

Considered as a macroscopic model for a system of
(microscopic) anyons there clearly are some approxima-
tions involved in this model. In particular, the "smearing
out" of the charge density implicitly involves a mean field
approximation to the Chem-Simons interaction. This ex-
plains that a pure CS field affects the charges even in a
purely classical treatment.

Clearly, the model discussed is not a very realis-
tic model for the systems normally associated with
anyons, namely the quantum Hall system and the high-
temperature superconductors. But due to the P and T
breaking effects of the Chem-Simons interactions, we ex-
pect optical effects similar to what we have discussed in
any layered structure with anyonic excitations. This is
particularly so for the Faraday rotation of waves imping-
ing normal to a layered anyonic structure. But even the
two-dimensional effects which we have discussed may be
of some relevance for such a layered system. The two-
dimensional waves then would correspond to waves in
three dimensions propagating along the planes, with the
electric field polarized in the plane and the magnetic field
polarized normal to the planes. In a three-dimensional
structure, in addition to these waves, there would be
waves traveling along the planes with the electric field
normal to these. But these waves will propagate as free
Maxwell waves when the currents of the medium are con-
fined to the planes. This difference in velocities leads to
linear birefringence.

We have clearly not exhausted classical optics in this
letter. It is natural to try to extend the solutions here
to cope with boundaries. What is the analog of Fresnel's
equations for these solutions? Reflection and refraction
are also, in principle, ways of detecting a Chem-Simons
term. In view of the nature of the Chem-Simons field it
is likely that an external magnetic field would have some
interplay with the effect of a nonzero CS coefFicient, as
we have observed here, perhaps leading to some new type
of experiment for determining the value of the coe%cient.
We shall return to this and other questions.
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