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Current density, magnetic field, penetrated magnetic Bux, and magnetic moment are calculated
analytically for a thin strip of a type-II superconductor carrying a transport current I in a per-
pendicular magnetic Geld H . Constant critical current density j is assumed. The exact solutions
reveal interesting features of this often realized perpendicular geometry that qualitatively differ from
the widely used Bean critical state model: At the penetrating Bux front the field and current profiles
have vertical slopes; the initial penetration depth and penetrated Bux are quadratic in H and I; the
initial deviation from a linear magnetic moment is cubic in H; the hysteresis losses are proportional
to the fourth power of a small ac amplitude; the current density j is Pnite over the entire width
of the strip even when Bux has only partly penetrated; in thin Glms, as soon as the direction of
the temporal change of H or I is reversed, j falls below j everywhere, thus stopping Bux creep
effectively; the Lorentz force can drive the vortices "uphill" against the Bux-density gradient. These
analytical results are at variance with the critical-state model for longitudinal geometry and explain
numerous experiments in a natural way without the assumption of a surface barrier.

I. INTRODU CTION

The discovery of high-T oxide superconductors ' has
revived the interest in experimental methods which mea-
sure the electromagnetic properties of these extreme
type-II superconductors, namely, irreversible magneti-
zation curves and critical (maximum loss-&ee) current
densities j, ' nonlinear current-voltage curves and flux
creep, ac losses and ac susceptibility, and the pene-
tration of magnetic flux by means of magneto-optics.
Magnetic flux penetrates type-II superconductors in the
form of Abrikosov vortices that arrange to a more or
less regular flux-line lattice ' (FLL) which is pinned
by inhomogeneities of the material. If the local current
density j exceeds a critical value j, the flux lines move
under the action of a Lorentz force. This flux drift dis-
sipates energy and induces a voltage drop. If the cur-
rent is driven by an external source (via contacts or in-
ductively) this transport current leads to a stationary
dissipative state. If the current is caused by a nonuni-
form flux-line density B(r) yielding a current density
j(r) = (BH/OB)V x B(r) where H(B) = B/po is the
reversible magnetic field which is in equilibrium with B,
then the flux lines rearrange such that j & j, everywhere
in the specimen. When this "critical state" is reached,
the flux-line motion comes to a halt or "creeps" slowly
due to thermally activated depinning or, at low temper-
atures T, due to tunneling of the flux lines out of pins.
This "flux creep" is more pronounced in high-T super-
conductors than in conventional superconductors because
of the shorter coherence length (, which means small pin-
ning energy, and because of the higher temperatures of
application.

Experiments involving critical currents are often in-
terpreted in terms of the Bean model ' ' that origi-

nally applied to long superconductors in a parallel field
where demagnetizing effects are negligible. In a Bean
critical state, which depends on magnetic history, the
current density and flux-density gradient are constant
or zero everywhere in the specimen, j = j or 0, and
~%Bi = po j or 0. Most of the above mentioned exper-
iments, however, use fIat superconductors in a perpen
dicular field H, for example, c-axis-oriented monocrys-
talline platelets or films. In this geometry demagnetiz-
ing efFects are crucial ' ' ' and the Bean model does
not apply. In particular, the screening currents which
shield the specimen's interior from changes of H, in lon-
gitudinal geometry, flow around the specimen only in a
surface layer of thickness ) A (A is the London penetra-
tion depth), but in perpendicular geometry the shield-
ing currents flow along the entire width of the specimen.
Moreover, it is very important that the cross section of
real films or flat specimens be rectangular rather than
ellipsoidal as is often assumed in calculations using a de-
magnetization factor. The realistic assumption of con-
stant thickness d, and thus constont critical sheet current
J = j d, is one reason why the original Bean results do
not apply; see discussion in Sec. VI.

In this paper we show that the current and field pro-
files in thin type-II superconductors in a perpendicular
field H or with transport current I qualitatively differ
from the original Bean model for longitudinal geometry
in many ways. The differences listed below are all
due to perpendicular geometry but they do not question
Bean's main and very useful idea that the flux lines start
to move when the current density reaches a critical value

jc'
(a) The flux penetration initially is quadratic (Bean,

linear) in H or I; i.e. , it looks "delayed" as if there were
a surface barrier or a large lower critical field H q.
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(b) The deviation of the magnetic moment from linear-
ity and the remanent moment initially are cubic (Bean,
quadratic) in H

(c) The ac losses initially grow with the fourth power
(Bean, third) of the amplitude of H or I.

(d) The penetrating flux front has vertical (Bean,
constant finite) slope even in the model where a field-
independent j and vanishing H i are assumed. In the
modified Bean model (with finite H, i) the flux front is
also vertical but due to completely difI'erent reasons.

(e) When the flux has partly penetrated and a critical
state with j = j is established near the edges of the
specimen, the current flows over the entire width of the
disk or strip in order to shield the central flux-free region
(Bean, flux-free region is current free) .

(f) The screening current density is a continuous
(Bean, piecewise constant) function but has a vertical
slope at the flux front where it reaches the saturation
value j .

(g) As soon as the direction of the change of H or
I is reversed, the current density in thin fllms (d & A)
falls below j everywhere (Bean, j =j,); relaxation will
therefore stop efI'ectively.

(h) When H or I are reversed there appears a spatial
region where the driving force on the flux lines acts out-
wards against the pressure of the flux-density gradient
(Bean, driving force = flux pressure).

Some of these features were indicated in numerical cal-
culations of the critical state in circular disks, but
most peculiarities of perpendicular geometry were dis-
covered and proven only by analytical calculations in the
limit of zero thickness d. Such exact solutions are avail-
able for a current carrying strip and for a disk and
strip in a perpendicular Geld. The present paper com-
piles and completes these results and extends them to the
simultaneous presence of an applied field H and trans-
port current I in a strip or flat ring and to arbitrary
magnetic history.

For completeness another particular feature of perpen-
dicular geometry shall be mentioned here. In thin su-
perconductors in a perpendicular field the vortex cur-
rent is predominantly caused by the curvature of the
magnetic field lines and not by the gradient of the
flux density B = ~B~. This may be seen by writing
VxB = (VB) x B+B(V x B) with B = B/B.
Here the first term is the density gradient and the sec-
ond term the curvature of the Geld lines. For exam-
ple, in specimens of half width a and thickness d in a
transverse Geld along x, the current density along z is
(V' x H) = BH„/Bx —OH /Oy; in it the first term is
related to the curvature radius p = H /(OH„/Ox) of the
Geld lines and the second term to the density gradient if
the line tilt is small, ~H„~ && ]H ~. In this typical case
the curvature term BH„/Bx oc 1/d exceeds the gradient
term ctH /Oy oc 1/a by far. However, if H = 0 (Meiss-
ner state) or if ~H

~

&& ~H„~, the field lines are nearly
parallel to the surface and the current density is given by
the gradient BH&/Bx

Even a strong curvature of the magnetic field lines in
current carrying films does not necessarily mean that the
flux lines (defined by the positions of the vortex core)

j(x, y) = J(y) cosh(x/A)/[2A sinh(d/2A) ],
which, for d )) A, flows in two surface layers of thickness
A leaving the central region current free. As soon as the
flux penetrates, the current density is limited to j since
for

~ j~ ) j the flux lines move and rearrange such that
~g~ & j holds everywhere.

From the sheet current J(y) (along —z) the magnetic
field H(2:, y) = B(x,y)/po is obtained by Ampere's law.
To an accuracy of d/a, the field H at the specimen sur-
faces has the parallel components H„(d/2, y) = —

2 J(y)
(upper surface) and H„(—d/2, y) =

2 J(y) (lower sur-
face) and the perpendicular component H (d/2, y)
H (—d/2, y) = H(y) with

1 J(u) du + a. 1.1
27t ~ y —tc

H(y) =

Both components in whole space outside the conductor
follow from

are also strongly curved. In thin films typically the fiux
lines are straight even when transport or shielding cur-
rents curve the field lines very strongly A. s shown in
Refs. 25 and 26 this has three reasons.

(a) The flux lines have to end perpendicular at the sur-
faces and thus are straight or sinusoidal with wavelength
d in thin Glms with not too large anisotropy.

(b) The relationship between the shapes of the vortex
lines and the magnetic field lines is nonlocal; i.e. , on short
lengths ( A the field lines do not have to coincide with
the vortex lines.

(c) In thin films with d & A the current is mainly a
Meissner surface current even if vortices are present.

The shape of the vortices enters microscopic theories
of pinning if the pins are extended along the flux lines,
e.g. , columnar pins generated by irradiation with heavy
ions or flat pins such as grain boundaries or twin
boundaries. These microscopic details do not enter
the macroscopic considerations presented below.

In order to visualize the essential features of perpen-
dicular geometry and to facilitate the correct interpre-
tation of experimental data, the present paper gives
explicit analytical solutions for a thin superconducting
strip carrying a transport current I along —z and shield-
ing an applied perpendicular magnetic field II along x.
The critical current density j is assumed to be con-
stant, i.e. , independent of the local flux density. The
strip fills the space ~x~ ( d/2, ~y~ & a, ~z~ ( oo with
a )) d. The main quantity we calculate is the current
density (along —z) integrated over the specimen thick-

ness, J(y) = I + j(x, y) dx (sheet current, in units A/m
d/2

like H ). For the present purpose it is irrelevant whether
this is a Meissner current or vortex current or both; i.e. ,
d ( A or d ) A are allowed as long as d &( a. Since
only the integrated current enters and we are interested
in a spatial resolution ) d along y, the current distribu-
tion along x does not matter, and the only assumption
for the presented calculations is d (( a. The thickness
d should be finite since J should be finite. Obviously,
in the completely flux-free region the current is a pure
Meissner current
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y J(y) dy, (1.2)

pp C H(y) dy

1=2aH +-
27r

J(u) ln du.a+u
Interestingly, only one-half of the total magnetic moment
iri = —J r x j dsr comes from the currents J(y) flowing
along the strip. The other half originates from the trans-
verse currents (along ky) which occur at the far-away
ends of the strip where the currents perform a U turn.
Both contributions are proportional to the strip length
L )) a and are exactly equal since j = 0. This fact allows
one to express M = m /L —in terms of j, only. The re-
sulting moment, Eq. (1.2), therefore, no longer contains
the factor 1/2 of the original definition.

Equation (1.1) may be inverted to givess

2 H(u) —H (a2 —u lJ y
4 '-y')

(1.4)

where I = J' J(y) dy is the total current through the
strip. This result is obtained by conformal mapping of
the strip cross section onto a circle as shown, e.g. , in
Refs. 22 and 34. The first term in (1.4) originates from
the shielding current induced by an applied field or by
magnetic poles of strength H (y) —H on the surface of
the circle, and the second term comes from a constant
current in the circle of conformal mapping. Note that a
constant current along a cylinder of circular cross section
does not generate a magnetic field inside the cylinder and
thus does not influence the shielding; mapping back then
yields J(y) (a —y )

A general method that inverts Ampere's law for thin
flat conductors or superconductors of arbitrary shape and
determines the current distribution J(y, z) from the mea-
sured perpendicular surface field H (y, z) is given in Ref.
33.

II. STRIP WITH TRANSPORT CURRENT

As long as the strip is in the Meissner state, no mag-
netic flux has penetrated; thus H(y) = 0, for —a & y & a.
The perpendicular components of an applied field H and
of the field caused by an applied current I are then com-
pletely shielded from the strip by appropriate screening
currents J(y), even if d & A, as long as a )& 2A /d. For
the case H = 0, I g 0, one gets from (1.4) the classical
formula

J'~-i(y) = I/[~(a' —y')" ] (2.1)

H(x, y) = — ', du + H. ,
(y —u —x) J(u)

2a y —u 2+x2

since x/(u + x ) —vr b(u) sgn(x) for x -+ 0.
The negative magnetic moment M and the total mag-

netic flux 4' per unit length of the strip are defined by

which inserted in (1.1) gives inside the strip H(lyl & a) =
0 and outside

H;a.-i(lyl & a) =- y/lyl (2.2)

The field (2.2) has the expected far-field behavior

H(lyl » a) = I/(27ry) and at the specimen edges ex-
hibits a square-root infinity H oc (lyl —a) ~ as does
the current density J oc (lyl —a) ~ . As a consequence
of these infinities, flux starts to penetrate at the edges
and the sheet current J(y) is limited to the critical value
J = j d near the edges. Here enters our realistic as-
sumption of constant thickness d(y) = d =const. For
a nonrectangular (say, elliptical) cross section the criti-
cal sheet current depends on y, J,(y) = j,d(y), and the
results derived in this paper do not apply. The general-
ization to arbitrary J,(y) is obvious from the following
derivation.

As stated above, our calculations do not require any
knowledge about the current distribution j(x, y) across
the specimen thickness d (along x). It suffices to know
that the integral sheet current

l
Jl is limited to the value

J . However, to fix ideas, we briefly discuss the current
penetration along x. There are two limiting cases.

(a) If d ( A aild J ( 2H~i [H~i (P/d)H~i —effective
H, i of films in longitudinal field], the current is mainly
a Meissner surface current, which is independent of the
vortex positions and vortex curvature and is nearly uni-
form, j(x, y) —J(y)/d. As shown in Refs. 25 and 26, if
d « A, the vortex lines will be straight and perpendicular
to the film even when the magnetic field lines inside the
superconductor are strongly cumed due to the presence
of a large current density, or tilted due to a tilted applied
field.

(b) If d )) A, the current is a Meissner current only in
the region where no parallel or perpendicular magnetic
flux has penetrated. Else, for J & 2H i, the flux and
current penetration along x is described in the usual way
by the well-known Bean model for longitudinal geometry.
This penetration along the perpendicular coordinate x
is not the subject of this paper, which deals with the
penetration of current and perpendicular flux along the
parallel coordinate y into a strip which has edges and in
which the sheet current is limited to J . The current-
induced Bean critical state across the thickness of our
strip occurs for d &) A, irrespective of whether J(y) is a
transport current (Sec. II), an induced current (Sec. III),
or both (Sec. IV). In this classical Bean critical state
along x, one has j(x, y) = +j, or 0, and thus J(y)
(h+ —6 )j, where 6+ and h are the (history dependent)
integral thicknesses of the regions carrying +j or —j,
respectively (h+ + 6 & d).

The dissipation connected with this irreversible pene-
tration of j(x, y) along x is negligibly small compared to
that of the penetration along y, since the path along x is
much shorter (& d) than the path the vortex lines move
along y.

The problem of current saturation in a thin strip was
solved by Norris by conformal mapping. Flux pene-
trates from the edges such that H(y) = 0 for yl

l J(y) l
& J for lyl & 6 (shielding currents), and J(y) I

=
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J for b & lyl ( a. One first has to find the currents
J(y, yp) which flow in the region lyl & b and shield there
the Beld caused by a current of unit strength flowing
along a line at y = yo ) 6. Gonformal mapping yields

J(y y p) = (yp —b') "/[2~(yp —y) (b' —y') '"] (2.3) 0.5—

Prom (2.3) the shielding currents which in lyl & b com-
pensate the Beld caused by a constant current density
J Bowing in. the strips —a & y & —6 and 6 & y & a
are obtained by integrating J(y, yp) + J(y, —yp) over the
interval 6 & yo & a. To this integral one has to add a
contribution oc (b y—) / [cf. J;g, i (2.1) ] such that
the infinities at y = +6 compensate each other. The final
result is (Fig. 1)

0.0

0

0.

0.8 0.5 0. 1

/' ' —b'&"
~' arcta

b & lyl & a.
(2 4)

Integrating this one gets the total current

(
2 b2) i/2 b (1 I2/I2 )

i/2

where I = 2aJ, is the maximum total current occur-
ring at full penetration b = 0. Inserting (2.4) into (1.1)
we obtain the magnetic Beld component perpendicular to
the strip,

0

FIG. 1. Current density J(y) (2.4) (top) and magnetic
field H(y) (2.6) (bottom) in a superconducting strip of width
2a carrying a transport current I which is increased from zero

(virgin state). The depicted profiles are for I/I „=0.1, 0.5,
0.8, and 0.95. For I/I „=0.8 the penetration width b is

indicated at the top.

H, y
H(y) =

C

H arctanh

2- 1/2
y —6
a —6

- i/2
a —6

2 62 b2q i/2

H(y) =H,
l ly &b.

fb2 2) /

J(y) = J. —J-—
I

7r (a2 —b2)
(2 9)

(2.10)

with H, = J /vr. The distinction of the cases lyl & a and

lyl ( a in (2.6) may be avoided by writing arctanx and
arctan(l/x) in the same form (1/2) ln l(1 + x)/(1 —x) I.
Near the strip edges one has now a logarithmic singularity

H(y) = ' —ln
2 lyl

a —b= aI /2I „, Oh = (a —b)ppH, oc I . (2.8)

For complete penetration 6 = 0 one has 4h ——apoH ln 2.
The current density and the field have vertical slopes at
lyl = b Near lyl = b .one has

The magnetic moment M and total Bux C of the cur-
rent carrying strip are zero due to symmetry. The Bux
through the half strip is

2 2 1/2 Q Q
4h = ppH, (a —b ) ' arccosh ——aln—

6 6

2
' [(1+x) ln(1+ x) + (1 —x) ln(1 —x)],

(2.7)

with x = I/I „. For weak penetration a —b (( a one
obtains from (2.5)—(2.7) a —b —ax /2, C h, = ypH ax /2,
or

For b & a/2 or I/I „&0.7, the elliptical dip (2.9) in

J(y) is a good approximation for all lyl ( b.
The results (2.4)—(2.10) apply to the virgin state where

I is increased from zero. The correspond. ing expressions
for alternating applied current with amplitude Io are ob-
tained by looking, e.g. , at the situation when I is de-
creased monotonically from Io to —Io. One easily shows
that the resulting current and Beld proBles J~ and Hg are
linear superpositions of the form (Fig. 2)

Jg(y, I, J,) = J(y, Ip, J ) —J(y, Ip —I, 2J,),
Ht(y I, J ):H(y, Ip J ) —H(y Ip —I, 2J )

(2.11)
(2.12)

with J(y, I, J,) and H(y, I, J,) given by (2.4) and (2.6)
with b from (2.5). At intermediate applied currents
—Io & I & Io there is a new penetration width 6'

a[1 —(I + Ip)z/4I „] inside which H(y) is frozen like in
the Bean model though J(y) changes everywhere, with
the vertical slope at lyl = b = a(1 —I /I „) per-
sisting and a new saturation to J(y) = —J, occurring at

%'hen I = —Io is reached, the original virgin
state is reestablished, with J and H having changed
sign, J(y, —Ip(i, J ) = —J(y, Ip()i, J,) and H. (y, Ip, J,) =-
—H(y, Ip, J ). In the half period with increasing I one
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O

0

(2.i5)
(2.i6)

P = (vip/67rI „)Ip,
P = (vip/a) (2 ln 2 —1) I Ip ——I

The initial losses are thus very small P I . More
features of this solution are discussed in Sec. VI.

III. STRIP IN A PERPENDICULAR FIELD

0

The current and field profiles in a thin strip in a per-
pendicular field H and with zero transport current I can
be calculated in a similar way as for the current carry-
ing strip in Sec. I. Moreover, the current-induced Bean
critical state in the x direction is the same as in Sec. II.
In the ideal Meissner state one has H(lyl & a) = 0 and
from (1.1), (1.2), (1.4),

Jideal (y) = 2yH. j(a' —y')

H peal(lyl ) a) = lylHa/(y —a )'

(3.1)

(3.2)

Migea& 7t a Hn ~

2 (3 3)
FIG. 2. Current density Jg(y) (2.11) (top) and mag-

netic field Hg(y) (2.12) (bottom) in a superconducting strip
of width 2a when the transport current I is reduced from
0.95I to——0.95I~a„. Shown are the profiles for I/I~a„=
0.95, 0.5, 0, —0.5, —0.8, —0.95.

The current through the half width is I = 2 H
T

is h = Q

he saturation of
l J(y) l

= J, in the region 6 & lyl & a
is accounted for by integrating J(y, yp) —J(y, —yp), Eq.
(2.3), over 6 & yp ( a and adding the shielding currents
caused in the flux-free region lyl & 6 by the applied field
Ha. This gives for lyl & 6

has Jt(y, I, Je) = —Jg(y, I, J,) and—Hg(y, I, J,)
g(y, I, J ). For—general magnetic history I(t) (t =

time) the current and field profiles of the strip are de-
scribed by similar superpositions as (2.11) and (2.12) de-
pending on I(t) and on all previously reached maxima of
lI(t)

l

in such a way that each maximum erases the mem-
ory of all previously reached smaller maxima. The vir-
gin solution (2.4)—(2.6), therefore, completely determines
any possible critical state of a current carryin t '

carrying s rip in
zero field.

The hysteretic losses caused in the strip by an alter-
nating current I(t) with amplitude Ip and frequency v
were calculated by Norris. When I increases from —Irom —

p

to Ip the electric field in the strip is E(y) = 04 (y)/Bt
with fIux C (y) = iMp j H(u) du. The energy dissipated
in the strip during this half cycle is then

2y J,/7r

(62 y2) 1/2

2 62) i/2

2
dD—

tL —g

(3.4)

6 = a/ cosh(H /H, ),
c—:(a —6 ) /a = tanh(H /H ),

(3.5)

(3.6)

where H, = J,/vr and c is a constant needed below. The
resulting current and negative magnetic moment in this
virgin state (for H increased from zero) are (Fig. 3)

The integral in (3.4) may be performed by substituting
z = (u2 —62)i 2, yielding a term vanishing at lyl = 6
and a constant term. This constant term has to compen-
sate the term 7rH jJ; oth—erwise J(y) would have an
unphysical infinity at y = b caused by the factor in front
of the brackets. This condition fixes b )

UHc = t E(y) J(y) dy = 2iapJ dy H(u) du,

(2.13)

' 2J arctan
J( )

Ir (62 2) 1/2 '

, J.y/lyl

lyl & 6

6& lyl (a, (3.7)

since H(lyl & 6) = 0 and J(lyl ) 6) = J,. In (2.13)
H(y) has to be taken at the current maximum I = Ip.
The hysteretic ac losses are thus uniquely determined by
the field profile at peak current. Inserting (2.6) in (2.13)
and performing the integrals one obtains the dissipated
power P = 2vUHc per unit length of the strip,

M = Jea c = J,a tanh(H /H )

From (1.1) and (3.7) the field and the penetrated flux are

f P

P = (vt pI'..j~) J'(Ip /I--) (2.14)

f (x) = (1 —x) ln(1 —x) + (1 + x) ln(1 + x) —x

For small and large amplitudes this gives

, 6 & lyl & a
2 b2)1/2

H(y) ( H, arctanh'"

H, arctanh 2 62) 1/2 "

(3.9)



12 898 D MIKHAIL INDENBOMERNST HELMUT BRANDT AN 48

0

0.5

J (3.7) (top) and magnetic
bottom~ in a superconducting strip o

fi ld H hi h ia er endicular magnetic e
h d ' t d profiles are forcreased from zero (virgin state . T e epic e

H /H = 0.5, 1, 1.5, 2, 2.5.

H
C = 2ppH aln —= 2ppH alncosh (3.10)

arr in strip, the current density andAs in the current carrying s rip, e c
at = b have vertica s opes,

fiit tth dJ H y) (~y~
—b) ~, and the in ni y aJ, H y

logarithmic,

(3.11)
(3.12)
(3.13)

(
' — ')

H (3.9) thus proves a vertiThe analytical solution H(y) (
enetrating flux front for our mo e,del in

= const and a lower critical fie
f t th t the reversible mag-assumed. Interesting y,'n l the ac a

netization curve exve exhibits BH/OB = a
e of the flux profile ats also to a vertical slope o e

front even in longitu ina geome
it '= ~BHB x an

ntain this vanis ing ac or,

metr and t e ver ica sg g
(H = 0) in perpen icu arpie Bean model ~

m letel different physical reasons.

( ) (39) od th 'd 1-e limit J + oo 3.5 — . repr
shielding results (3.1)—(3.3 . or wea p
H ) one gets &om (3.5)—(3.10)

b= a —aH /2H, ,

M=~a H (1 —H /3H),
O = ppaH /Hc.

y

Jg(y H, J)=J(y, p, , —,— 2JH J ) —J(y, Hp —H, 2J,),
(3.20)

g& a) c rH ( H J)=H(y Hp J) — y p——H, Hp —H, 2J,),
(3.21)
(3.22)

(3.23)
Mg(H, J,) = M(Hp()i J,) —M( p——M Hp —H, 2J ),

H J = 4(Hp, J,) —4(Hp —H, 2J,).al c

0

0

sit j y (3.20) (top) and magnetic

ld H ' reduced from 2H owidth 2a when t e apphe a bed 6eld H ss re u
—2H . Shown are the pro6ro6les for H H

H one getsFor almost comp e et lete penetration (H )&,)
b = 2aexp( —H /H ) « a, (3.14)

M = J [1 —2 exp( —2Ha/Hc)] 1 (3.15)

J(~y~ & b) = (2J,/vr) arcsin(y j ),y = b (3.16)
h b (3.17)H(b & ~y~ & a/2) = H, arccosh~y/

H ln a' ' —ll 'i' (3.18)H(2b & ~y( & oo) = H + H, ln)a y

4 = 2ppa(H —0.69H, ). 3.19

the current density of a type-II super-Very recently e cur
lar disk in perpen xcu ar e

h h b lticall . Comparison wit e a oltd 1

p enetration wz t . a

for the strip an e
lacement works alsoJ b 2J m. The same rep acem

ren ~ . . Th netization (3.8) andrent 3.20) below. T e magne i
d'k i 11 i Rf. 23)field (3.9) (obtained for the is numer

H with frequency v, it su ces o c
eriod say, decreasing ~ imisider one half perio

S . II one can showa lied current in ec. , othe oscillating app
H to —Hp the current

t tM
H decreasing from +Hp to —

p

distribution Jg, field
d flux C follow from the "virgin" resu s

e form Fig. 4)b linear superpositions o e
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At H = —Hp the original virgin state is reached again;
J, H, M, and 4 have just changed sign. In the
half period with increasing H one has J~(y, H, J ) =

Jg—(y, H— , J,), Hg(y, H, J,) = H—g(y, H—, J ),
Mg(H, J,) = M—t( H—, J ), and 4g(H, J,)

@t—( H—, J ). At intermediate fields ~H
~

& Ho there
is a new penetration width b' = a/ cosh(~Ho + H~~/2H~)
inside which H is frozen like in the Bean model though
J changes everywhere; the vertical slope of J(y) at ~y~

=
b = a/ cosh(Ho/H, ) remains visible and new saturation
occurs at ~y~ ) b'.

For general magnetic history H (t) (t = time) the crit-
ical state of the strip is described by a similar superposi-
tion as (3.20)—(3.23) which now depends on H (t) and on
all previously reached maximum values of ~H (t) ~

such
that each maximum wipes out the memory of all pre-
vious smaller maxima. Thus, the solution (3.5)—(3.10)
completely determines any possible critical state in the
strip.

When H oscillates with frequency v and amplitude
Hp the negative magnetic moment cycles the hysteretic
magnetization curve (Fig. 5)

Mgg ——+J a tanh + 2tanhHp H ~Hp
H, 2H

(3.24)

The remanent negative magnetic moment observed after
H is decreased to zero from the virgin state is (Fig. 5)

M„(Hp) = J a tanh
C

—2 tanh . (3.25)
Hp

2H

The hysteresis losses P(Ho) are frequency times area of
the hysteresis loop,

P = vpp M H~ dH~ = 4vppa J~Hp g )

f Hp)I
qH. )

(3.26)

g(x) = (2/x) ln cosh x —tanh x.

For small and large amplitude Hp this gives

P = (2'7rvp, o+ /3H ) Ho, H«( H.a,
P = 4vtJ, pa J, (Hp —1.386H, ), Hp )) H .

(3.27)
(3.28)

The energy loss is thus initially very small, P Hp. For
further discussion of flux penetration see Sec. VI.

IV. CURRENT CARRYING STRIP IN A
PERPENDICULAR FIELD

When both a transport current I and a magnetic Geld
H are applied to a thin strip with constant J, a rich
variety of qualitatively diferent current and Geld profiles
occur depending on the history of I(t) and H (t). We
shall visualize this by considering the special case where
I and H are increased. from zero simultaneously. This
situation with constant I(t)/H is realized, e.g. , when a
perpendicular field is applied to a flat superconducting
ring or to a closed double strip as discussed in Sec. V.

The general solution to this nonlinear problem can be
constructed from the "current only" and "Geld only" so-
lutions obtained in Secs. II and III. We denote these
by JI(y), HI(y), and JJI(y), H~(y), respectively. Ob-
viously, by adding these even and odd solutions with
weight 1/2 each, we obtain a "current density" J*(y) =
(JI + J~)/2 which exhibits J*(b & y & a) = J„
J*(—oo & y & b) = 0—, and a flux-free region b& y & b-
(Fig. 6). Note that the auxiliary function J*(y) is for-
mally defined as zero also in the intervall —oo ( y ( —a
outside the strip, where the physical current densities JI
(2.4) and J~ (3.7) are not defined. This property will be
required for superpositions constructed below.

We write this solution as

1.0

J a
C

~\

0.5

0.0

—J a 2
C

I

Q 2

FIG. 5. The negative magnetic moment Mig(H ) (3.24)
per unit length of the strip in a perpendicular magnetic field
H which is cycled with amplitudes Ho ——4H, and Ho
H, . The dashed and solid curves through the origin are the
virgin curves (3.8). The dash-dotted curve gives the negative
remanent moment (3.25).

0

FIG. 6. The universal functions j(y, a, b) (4.3) (top) and
h(y, a, b) (4.4) (bottom) for relative penetration depth (a-
b)/a = 0.1, 0.3, 0.5, 0.7, 0.9.
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J*(y) = (Jl+ J~)/2 = J,j (y, a, b),
H*(y) = (HI + HH ) /2 = H. h(y, a, b),

(4.1)
(4.2)

H(y) = 0 in the flux-free region —bi & y & b2 (Fig.
7). One can show that ~b2~ & bi & a when I/H & 0.
Defining the lengths

where

b&y&a b= b~ + b2 &0, m= &0,
2

' 2
(4.6)

b2j(y o b) = & —arccot7r p

, 0,

—b&y&b
—oo(y+ —b)

(4 3) one obtains the solution in the form (Fig. 7)

J(y) = J, [j (y + tp, a + tp, b) + pj ( y ——tp, a —tU, b)],
(4.7)

h(y, a, b) = ( p
~

arctanh

fy/ &b

b& /y[& oo, ( )
H(y) = H [h(y+to, a+i', b) —ph( —y —tp, a —tp, b)],

(4.8)

with p = [ ly
—b 1(a —b ) ]

/ . In (4.3) arccotx = n/2—
arctanx was used rather than arctan(1/x), which jumps
by Err at y = b /a. The arctanh in (4.4) applies to both
regions ~y~ & a and ~y~ ) a in contrast to the arctanh in
(2.6) and (3.9).

The field (4.2) has an infinity at y = a where h(y =
o) = —in[2(a2 —b2)/b y —a~ ], but no singularity any more
at y = —a where h(y = —a) =

2 1n(a/b). Near ~y~
= b

one has 6 (~y~
—b) / and j —7r (b —y) / near y = b

and j (y + b) / near y = b For—y .—+ Woo one has
2h =arctanh c = H /H„cf. Eq. (3.6). Due to the weight
1/2 in (4.1, 2) this solution carries half the total current
and shields half the applied field of the original solution
[cf. (2.5) and (3.5)],

HI*=J (a —b ) /, H*= arcc soh( /o)b (4.5)

The expressions (4.1)—(4.5) do not describe a real state
of the original strip with width 2a since any such state
requires

~
J(y)

~

= J at the edges, whereas here J*(y) = 0
for y ( —b. J* and H* rather give the current and field
profiles in a strip with width a+b extending from y = —b

to y = a for the specific case where at the left edge the
width of the region with

~

J
~

= J, has shrunk to zero and
thus no Aux has penetrated there. The applied current
and field for this particular case are given by (4.5). For
the Larger ratio I/H one has at the left edge J = +J„
and for the smaller ratio J = —J,. Expressions (4.1)—
(4.4) may also be obtained by integrating J(y, yp) (2.3)
over the interval b ( y ( a.

The property J*(—oo & y & b) =' 0 allows —one to
construct new solutions by superimposing appropriately
mirror-imaged (y ~ —y), stretched (a + b —+ 2n), and
shifted (y —+ y+yp) solutions J* and H*. The conditions
for such superpositions are that their Aux-free regions co-
incide and their current densities vanish outside the strip
and take the values +J at the edges. Furthermore, the
history of the applied I(t) and H (t) has to be accounted
for properly.

As an example we consider the problem where I and
H are increased from zero such that the Aux penetration
proceeds monotonically at both edges. Below it will be
shown what condition this implies on the path in the
I-H plane. In this case we need the superposition of two
of the functions (4.3, 4.4) shown in Fig. 6. Let J(y) = J
in b2 & y & a and J(y) = kJ, in —a & y & bi, and—

H- a+m a —tU
H = arccosh —p arccosh

2
(4.10)

Note the different signs +p and —p in J, I and H, H .
For given I and H the penetration depths a —bi and
a —b2 are obtained by solving the two coupled transcen-
dental equations (4.9) and (4.10) for b and tp to obtain

—a —b
1

I

~.0—
b2

O

0.5

0.0
1.0

0.5

0.0

—0 5

—'t .0

FIG. 7. Current density J(y) (4.7) for a "current-
like" (top) and "fieldlike" (bottom) state in a superconduct-
ing strip of width 2a to which both a transport current I
and a magnetic field 0 are applied with constant ratio

I/(27raH ). Top: r = 2, I/I „=0.1, 0.3, 0.5, 0.7,
0.9. For I/I „=0.7, bi and b2 are indicated by arrows at
the top. Bottom: r = 0.25, I/I „=0.1, 0.2, 0.3, 0.4, 0.48;
here b2 decreases monotonically; the dashed curve I/I
0.7 corresponds to an unphysical case since b& has passed its
minimum and increases again; cf. Eq. (4.34) and text.

with the functions j (4.3) and h (4.4) and p = kl; see
below. The total current I and applied field H of this
solution follow from (2.5), (3.5), and (4.5),

I = J-([( + )' —b']"'+ p[( — )' —b'1")
(4 9)
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H = H*(I) = H, arctanh(I/I „), (4.11)

bi(I, H, a) = b+ iv and 62(I, H, a) = b —iv. Before we
give the solution below we have to discuss the sign factor
p = +1 appearing in (4.6)—(4.10).

From the shape of j(y, a, b) (4.3) it is clear that J(y)
(4.7) at the left edge (y = —a) takes the value —J if
p = —1 and +J if p = 1. At the transition between these
two cases one has a —iv = b (or iv = a —b; in general,
~iv~ & a b)—and therefore the second terms in (4.6)—(4.10)
all vanish. Formally one may thus write p = 0. In this
particular state one has bq ——a; i.e. , the width a —bq of
the current-saturated and Aux-penetrated region at the
left edge vanishes; cf. Fig. 6. With m = a —b inserted one
gets from (4.9) and (4.10) the applied current and field
in the form I = I*(a,6) and H = H*(a, b). Eliminating
b from these two expressions one gets a relation between
H and I for this special case (remember H, = J,/vr,
I „=2aJ):

f = tanh(u + pv), c = tanh(u —pv), (4.17)

u = 2arctanhf + 2g, v = 2arctanhf —2g. (4.18)

After some algebra and putting the strip half width a =
1, we obtain the desired results

(1 f2)1/2(1 c2)1/2 iv= fc, (4.19)

bi 2 ——6+ iv = (1 —f ) / (1 —c ) / + f c, (4.20)

with the intervals —1 & 62 & 1, ~b2~ & bi & 1, 0 & f & 1,
0 & c & 1. Formally, by allowing for negative c, —1 &
c & 1, one has bi(c) = b2( —c) and thus both penetration
depths are given by the same expression

with p = sgn(f —c). Formally, the sign factor p = +1
may be omitted (i.e. , put p = 1) if one allows for negative
v, considering the intervalls —oo & v & oo, 0 & u & oo.
The solution of (4.17) is then

I = I*(H ) = I „tanh(H /H, ) . (4.12) (1 f2)l/2(1 2)1/2 + f (4.21)

In the limiting cases this means

H*(I) = I/2vra, (4.13)

H*(I) = 'ln, I = IH,
2 I „—I'max (4.14)

This is equivalent to

p= —1, H(y = —a) & 0 if H & H(I),
p = +1, H(y = —a) & 0 if H & H*(I).

At y = +a one always has J(y) = J, and H(y) & 0.
The two equations (4.9) and (4.10) may be solved an-

alytically by the substitutions

From (4.13), which may also be written in the symmet-
ric form H*/H, = I/I „,one sees that in the two cases
I = Io, H = 0 (with arbitrary Io (( I „) and I = 0,
H = Io/(27ra) (( H„ the edge singularities in the ideal-
shielding states J;s, ~(y) (2.1) and (3.1) and H;g, ~(y)
(2.2) and (3.2) have the same amplitude, with same sign
at the right edge y = a but opposite sign at the left edge

y = —a. Therefore, if both current and field are increased
in such a way that initially I = 2aaH, and in general
I = I*(H ) = I „tanh(H /H, ), then the penetration
depth at the left edge is zero (bi ——a) and flux penetrates
only from one edge until full penetration is reached when
I = Imax ~

From these arguments one finds that in (4.6)—(4.10)

p= —1, J(y= —a) = —J, if I&I (H ),
p = +1, J(y = —a) = +J, if I & I*(H ).

with i = 1, 2. In fact, Eq. (4.21) with definitions (4.16)
gives the general result for the two penetration depths
1 —bi and 1 —62 for arbitrary sign of current and field if
one allows for —1 & f & 1, —1 & c & 1. For transparency
our discussion will consider positive I and H only.

Which paths in the I-H plane yield the required
monotonically increasing penetration depths 1 —b~ and
1 —b2 is easily seen by plotting the lines bq

——const and
b2 ——const into one plot as shown in Fig. 8 for the I-H
plane. In the f cplane (-Fig. 9) these lines are ellipses,

f(c, h;) = ~ch, + (1 —c ) (1 —h, ) (4.22)

f = I/I „=sinn,
c= tanh(H /H, ) = sinP,

(4.23)
(4.24)

one gets the compact form

hi = cos(cl p), 62 = cos(cK + p). (4.25)

In the n-P plane (Fig. 10) the lines of constant bi or b2
are straight lines of slope +1. The important line bq ——1
in these three planes is, respectively, f = tanh(g) (4.12),
f = c, or n = P. This line divides the current-field
plane into two regions with "currentlike" and "fieldlike"
penetration where at the left edge J = +J or J = —J,
respectively.

The allowed paths for nonincreasing bq and b2 should
never cross this line bq ——1. Some allowed paths are
indicated in Fig. 9. They satisfy the conditions

where b, = bi yields the lines b2 ——const and b; = b2 the
lines bq

——const. Note the high symmetry and Simil'arity
of Eqs. (4.20) and (4.22). Substituting

a+m
b

= cosh(2u), = cosh(2v), (4.15) db, = 'dI+ ' dH &0Ob; Bb,.

BI (4.26)

Imax

H H
g =, c= tanh

C C

yielding the symmetric expressions

(4.16)
(i = 1, 2), equivalent to a nondecreasing of both n —P and
n+P because of Eqs. (9)—(11). Obviously, the slope of the
allowed paths is limited by the slopes of the lines bj
const and b2 ——const. These slopes in all three planes
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I . At I = I full asymmetric penetration is reached
with bi —— —b2 ——tanh(H /H, ) (4.32).

However, if during the increase one has I/H
const ( 2vra then the path in the I-H plane crosses
the line f = tanhg; there, p changes from —1 to +1,
and J at the left edge jumps from —J to J, when I
passes through the value I*(H ) (4.12). In this case the
penetration depth a —bi (4.20) or (4.25) at the left edge
first increases, reaches a maximum, and then decreases
again, reaching zero when I = I*(H ), and then increases
again. For a given ratio r = f/g = I/(27raH ) & 1 this
minimum of bi occurs at a value b (r) which is obtained
by solving the transcendental equation

g + cosh g = 1/r (4.34)

and inserting the resulting g = g = H /H into

b =r+rg tanhg (4.35)

(if a = 1). This yields H = H = g H and bi ——ab
with limiting cases

g = ln(2/r), b = r ln(2e/r), r « 1, (4.36)

g = (1 —r) ~, b = 1 —(1 —r) /2, r = 1. (4 37)

During the decrease of a —bi flux has to exit. How-
ever, this is not possible reversibly due to pinning. As
a consequence, flux with opposite sign enters at the left
edge and annihilates the frozen Bux similarly as shown
in Figs. 2 and 4. When this new flux front meets the
frozen Bux front then the penetration depth a —bq starts
to increase again and the solution (4.7)—(4.10) is again
valid. Therefore, after bi has reached its minimum value
b (4.35), the real current and field profiles look difFer-
ent from those given by Eqs. (4.7) and (4.8) until bi has
reached b again. For small values of r this reentrant be-
havior does not occur; see the cases r = 0.6 and r = 0.25
in Fig. 10.

If I(t) and H (t) are increased such that the penetra-
tion depths a —bi and a —b2, obtained from (4.9) and
(4.10) do not increase monotonically, or if I(t) and H (t)
are cycled, then the field and current profiles of the strip
are linear superpositions of more than two functions of
the type (4.3), (4.4). These profiles look smilar to those
of Eqs. (2.11), (2.12), and (3.20), (3.21), but in general
are more complex. In particular, it may happen that
J(y) gets cusps or even hits the value J at an isolated
point away from the edges. The discussion of such partic-
ular histories of I(t) and H (t) and a general numerical
program will be published elsewhere.

We have omitted here the contribution to the inductivi-
ties L which is caused by the field inside the conductors
since the strip thickness is d (( a. The circulating current
then becomes

I 27r(R —a)H / ln(2R/a)
I —7r(R —a) H /Rln(R/a)

(double strip),
(ring).

(5.1)
(5.2)

2a~ 202

position of the strips is partly shielded from the inte-
rior of the strip. The field H' exceeds H by the Geld
caused by the current I Bowing in the neighboring strip.
If I & I*(H') = I „tanh(H'/H, ) (4.12) then the cur-
rents at the two edges of the strip Bow in opposite di-
rections and flux of the same orientation enters at the
two edges. If I = I*(H') the shielding current along the
inner edge is zero and Bux penetrates the strip only from
the outer edge. If I ) I*(H') the current Bows in the
same direction throughout the strip, and flux of opposite
sign penetrates from the two edges. We shall now discuss
how these diferent situations may be realized.

The transport current I induced by an applied field H
in a long double strip connected at its ends, in principle,
can be calculated exactly by conformal mapping. We
shall use here a more transparent method to estimate
the circulating current and the field at the strip. We
assume that the distance 2R between the centers of the
two strips, or the diameter 2B of a circular ring, is much
larger than the width 2a of the strips. Any closed loop
formed by the superconducting strip shields an applied
field from its interior. Thus the Bux C of the applied field
inside the loop is exactly compensated by the flux caused
by the circulating supercurrent I. From the area A and
the inductivity L of the loop one obtains I = 4/L =
poH A/L For a cl.osed double strip of length l and for
the ring one has

A = 2(R —o) l, L (yol/vr) 1n(2R/a) (double strip),
A = 7r(R —a), L poR [in(8R/a) —2] (ring).

V. DOUBLE STRIPS AND RINGS IN A
PERPENDICULAR FIELD

In this section we discuss the field and current profiles
in a double strip closed at its ends, and in a Bat su-
perconducting ring, and in combinations thereof, when
a perpendicular Beld is applied (Fig. 11). This field H
induces a circulating current I which shields the interior
of the loop such that the total magnetic flux through
it is zero. At the same time, the local field H' at the

FIG. 11. Two suggested configurations of asymmetric
double loops of superconducting Glms. By appropriate choice
of the widths 2a and distances 2R the Aux penetration into
the strip becomes fieldlike or currentlike; see text.
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For the double strip the external field H at each strip
may be approximated by the applied field plus the field
caused at the center of this strip by the current through
the other strip at distance 2B,

I 1 —a/R
(5.3)

(Ri —ai)2 + (R2 —a2)2

Ri ln(R1/ni) + R2 ln(R2 jn2)
(5.4)

Similarly, two loops of a double strip of lengths lq, l2,
separations 2Bq, 2B2, and widths ai, a2 exhibit a cur-
rent

From (5.1)—(5.3) we obtain that the ratio r
I/(2vraH') = 1 if R/a 3.4 for the double strip and
if R/a —5 for the ring. These estimates are crude since
in the derivation of (5.1)—(5.3) R )) a was assumed. A
better estimate for the double strip is obtained by calcu-
lating the total flux between the strips from the Meiss-
ner fields (2.2) and (3.2) and equating this to zero. This
yields a smaller ratio I/H' and gives r = 1 for R/a —5.5.
For smaller R/a the flux penetration into the strip is ini-
tially fieldlike (r & 1), and for larger R/a it is currentlike
(r & 1).

The condition r = 1 means that initially (for H
H, = J,jm) no flux enters at the inner edge since I =
I*(H') = H'/(27ra) If H . is increased, then, even for
an initially small ratio r & 1, the induced current I
H eventually will exceed the value I*(H') since this
saturates to I = 2aJ . Flux with opposite orientation
will then enter from both edges as discussed in Sec. IV.

The interesting low-current situation r & 1 can be re-
alized in various ways by modifying the geometry. Obvi-
ously, if the loop is interrupted then I = 0 and the strip
behaves as described in Sec. III. The opposite case r )) 1
is achieved by choosing B )) a; then I ) I* always holds.
The induced current can be reduced by connecting two
loops such that the current in these circulates in opposite
directions (Fig. 11). In a double ring with the shape of
a symmetric 8 the transport current I induced by a ho-
mogeneous field H is exactly zero. In general, two well
separated rings with radii Bq, B2 and strip widths aq,
a2 connected in phase (+) or in antiphase (—) exhibit an
induced transport current

VI. CONCLUSIONS

The obtained results have important consequences.
The most spectacular feature, which was often seen in
experiments, is that perpendicular flux penetrates into
flat samples delayed as if there were a surface barrier or
an unphysically large H ~. The penetration depth in-
creases first slowly, a —b H, and then almost linearly
(Fig. 12). This was shown for the first time experimen-
tally and theoretically in Ref. 38, where flux penetration
into a thin strip was computed numerically. Extrapolat-
ing the penetration depth a —b(H ) (3.5) in Fig. 12 by a
straight line through the inflection point we may define
a pseudo Brst critical field

H„= H, [ arcsi nh(l) + 2 ~ —2] = 0.296H, . (6.1)

If j is high this penetration field H„exceeds the ther-
modynamic penetration field H, id/a by far. Thus, nu-
merous measurements which for perpendicular H show
an upturn of H, i(T) at low temperatures (where also j,
greatly increases; for references see Ref. 39) can be in-
terpreted in terms of flux penetration controlled simply
by constant volume pinning as calculated in our model.

Moreover, the above obtained cubic deviation of the
magnetic moment from the ideal screening value bM =
M —era H H explains, without the assumption of a
surface barrier, why the "cubic fit" of hM(H ) proposed
by Burlachkov et al. to get the expected BCS temper-
ature dependence of H q works so well. We think that
models of a surface barrier are not required in this case
and all experimental data can be described in a natural
way by the critical-state model. In addition, a wrong
interpretation of the penetration field H„as the lower
critical field H z A in perpendicular geometry gives
a too small value of the London penetration depth A or
A g in e-oriented high-temperature superconductors.

The slow initial penetration of the magnetic flux C
H can be explained by reconsidering the process of cur-
rent saturation near the strip edges as shown in Fig. 13.
The depth where the ideal screening current (3.2) ex-
ceeds 1 and the current saturates is b, t = 2aH /J2 at
H « J . This estimate is smaller by a factor vr /4 = 2.5
than our precise analytical value a —b = aH /2H, and

I = 2vrH
(Ri —ni) t, + (R2 —O2) l2

li ln(2R, /n, ,) + l2 ln(2R2 ja2)
(5.5)

Hl + HH = 2H (y —ra)/(y —a ) ~ (5.6)

which has a minimum if r & 1.

Thus, any desired ratio I/H can be achieved by choos-
ing the size and shape of a double loop appropriately.
Combining this with a suitable increase and decrease of
H (t) one achieves a rich variety of field profiles which
may be observed by magneto-optics or with Hall probes.

Note that for r & 1 the field H near the strip edge
inside the loop varies nonmonotonically (has three ex-
trema). This is easily seen by adding the two ideal shield-
ing fields outside a strip, the = monopolar field HI(y)
(2.2) and the —dipolar field HH (y) (3.2), yielding

H
P

FIG. 12. The penetration depth a —b (3.5) of a magnetic
field H applied perpendicular to a strip of width 2a. The
dashed line through the inHection point defines the penetra-
tion field H„.
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FIG. 13. The saturation of the current density J(y) near
the edge of the strip. The dashed curve gives the ideal J(y)
(3.1) [or (3.7) with b = a]. The solid line gives j(y) (3.7) for
H = H, /4 where b 0.97a. Area 1 ( H ) approximately
equals area 2; the difFerence of these areas is bM/(2a )
H .

should not be used in quantitative calculations as was
done, e.g. , in Ref. 40. The physical reason for this deeper
penetration is a redistribution of the currents after cut-
ting off the area 1 in Fig. 13: In order to compensate for
the decreased screening, more current (area 2 in Fig. 13)
has to be added in the Meissner region. The magnetic
moments of these two areas nearly compensate. There-
fore, the simple cutoff gives a too large decrease of the
magnetization with a wrong H dependence bM„q H
instead of the correct bM H .

The slow flux penetration a —6 H or I,
bM H and the extremely small losses P H
or I result only for the assumed constant thick-
ness d. For ellipsoidal specimen cross section one has
d(y) (a —y2) / and thus a spatially varying criti-
cal sheet current J,(y) = j,d(y) (a —]y]) / near the
edges. In this case one obtains faster penetration of flux,
namely, a —6 ~ H~ or ~ I, bM ~ H, and P ~ H
or I, /ike in the original Bean model. This conclu-
sion for ellipsoids follows kom similar arguments as given
in connection with Fig. 13; see also Norris for applied
current, and the computations for an applied Beld. Ex-
act results for varying J(y) may be obtained along the
lines of this paper, e.g. , by introducing a weight factor
J(y)/J(0) in the integral (3.4). It is our belief that the
rectangular cross section treated in our paper is relevant
to most experiments on superconducting single crystals
and films.

The delayed flux penetration is very important for
the proper function of superconducting quantum inter-
ference devices (SQUID's). The flux concentration de-
creases with the onset of flux penetration at H ) Hz ——

0.0941j d and the response to the magnetic G.eld becomes
nonlinear. Above H„ the presence of Abrikosov flux lines
causes additional noise. High j is, therefore, a key re-
quirement for SQUID's that is not mentioned usually.

A further, seemingly contradictory feature of perpen-
dicular geometry occurs when I or H is reversed or cy-
cled. As can be seen in Figs. 2 and 4, there is a re-
gion immediately inside the outer flux front (at ]y] = 6')
where J(y) has reversed its sign but V'B has not yet. In

this region the driving force on the flux lines is thus op-
posed to the force exerted by the flux-density gradient.
Since here

~
J~ & J, this uphill motion of the flux lines

can occur only as flux creep, which is not considered in
our paper. However, for particular magnetic and current
histories such an uphill motion of flux lines against the
Qux-density gradient really does occur since J(y) reaches
J at an isolated point away from the edges. This un-
expected behavior can be realized even with a monoton-
ically changing Beld, without applying a current, if the
critical current density is nonuniform, J, = J (y). Work
on these interesting situations is in progress.

The Gnding of flux drift against the flux-density gradi-
ent clearly contradicts the original critical-state model for
longitudinal geometry. This seeming paradox is resolved
as follows for thick and thin Glms: If d )) A, our model
considers only the projection of the current-induced clas-
sical Bean critical state across the x direction. If d ( A,
this longitudinal Bean state is absent, but the vortices are
now nearly perpendicular to the surface and the driving
force exerted on the flux lines by the flux-density gradient
is negligibly small since the driving current is a Meissner
current. In both cases, the general statement holds that
for d « a the current is predominantly caused by the
transversaL gradient BH„/Bx, causing also the curvature
of field lines if H P 0, and not by the fiux-density gra-
dient BH /By (Sec. I).

In conclusion, in flat type-II superconductors with
thickness d —+ 0 and critical current density j =const,
when a transport current or a perpendicular magnetic
field, or both, are applied, the penetrating flux front and
also the jump of the current density have vertical slope
and the current density is finite everywhere. A weak
logarithmic singularity of the Beld occurs at the edges,
Hl lnla lyll which for j ~ oo or I (( I „=2aJ.

or H (( H, J /7r becomes stronger, (H( (a —(y (

Finite d smears these singularities over a width = d. As
soon as the current and the applied Geld are reduced, the
sheet current faLLs beLow J, everywhere (Figs. 2 and 4).
In thin films this means that the current density j = J/d
also falls below j, and thus the relaxation comes to a
halt. Such an effect was experimentally observed and ex-
plained recently. + In thick samples (d )) A) the sheet
current J = (h+ —h )j, will continuously relax as usual
in a classical Bean critical-state with Anderson s relax-
ation of j, but this relaxation comes from flux motion
perpendicular to the specimen. During reversal of the
applied Geld or current, the penetrating reversed current
density drives the flux lines "uphill" against the flux-
density gradient.

All these analytical results are in contrast to the widely
used Bean critical-state model for longitudinal fields.
However, Bean's main assumption that the flux lines
start to move only when j reaches j, works very well
also in perpendicular geometry; this is conBrmed by com-
paring the theoretical penetration depth (3.5) and field
profiles (3.9) with experiments, s and by direct measure-
ments of the current distribution in the critical state.
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