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Bose condensation and relaxation explosion in magnetically trapped atomic hydrogen
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We predict and analyze nontrivial relaxational behavior of magnetically trapped gases near the
Bose-condensation temperature T, . Due to strong compression of the condensate by the inhomo-
geneous trapping field, particularly at low densities, the relaxation rate shows a strong, almost
jumplike, increase below T . As a consequence the maximum fraction of condensate particles is
limited to a few percent. This phenomenon can be called a "relaxation explosion. " We discuss its
implication for the detectability of Bose-Einstein condensation in atomic hydrogen.

I. INTRODUCTION

The problem of Bose-Einstein condensation (BEC)
in weakly interacting systems, such as low-temperature
gases and metastable excitons in crystals, attracts a great
deal of interest in view of the possibility to observe new
quantum phenomena which allow a transparent physi-
cal description. In this respect, dilute gases of spin-
polarized atoms in static magnetic traps are of partic-
ular interest as examples of purely self-interacting sys-
tems. In these traps, proposed for atomic hydrogen (H)
by Hess, the effective elimination of physical boundaries
is accomplished by creating a magnetic field minimum
in free space. This minimum forms a potential well for
electron spin-up polarized atoms (Ht), called low-field
seekers. Due to spin relaxation in pair collisions, and
subsequent ejection of the spin fiipped (H$) atoms (high-
field seekers) from the trap, the densities attainable in
Ht are limited to n & 10 —10 cm, when the char-
acteristic time of relaxational decay is of the order of sec-
onds. Such densities are considerably higher than those
typically encountered in cold gases of neutral atoms as
studied in, e.g. , optical molasses, but at the same time
low compared to densities reached with H$ in conven-
tional environments (confinement with walls).

The critical BEC temperature is expressed by the re-
lation:

52
T. =3.31" -/

m

Here n is the density of the gas at the trap center and m
is the mass of the atom. In Hg the maximum achievable
densities are of the order of 10 cm corresponding to
T = 100 pK. In other trapped gases this temperature
should be much lower. For H, the technique which has
proved most proficient in producing these low temper-
atures is evaporative cooling, which is based on the
preferential removal of the most energetic atoms. Cur-
rently the lowest temperature reported using this method
is 100 pK at n = 8 x 10i cm (T/T, = 3). Recently,
optical cooling techniques were applied to trapped H, us-

ing a narrow-band pulsed I yman-o. source. In these ex-
periments both Doppler cooling, as well as light-induced
evaporative cooling were demonstrated. In the latter
method, an optical analogue of evaporative cooling, the
preferential removal of energetic atoms is accomplished
by optical pumping to nontrapped states (Hg).

In spite of the promising results of evaporative and op-
tical cooling experiments, one may expect to encounter
many underwater stones when attempting to achieve
BEC in trapped gases. In this paper, we predict and an-
alyze the nontrivial relaxational behavior of the trapped
gas near the BEC point and address the question of how
the appearance of the condensate will manifest itself. In
this context, two features of the system are of prime
importance; namely, the inhomogeneity of the magnetic
field, and the low density of the gas. Due to strong com-
pression by the inhomogeneous field, the condensate will
be confined to a very small spatial region near the cen-
ter of the trap, ' the condensate density being much
higher than the density of above condensate particles.
Similarly to the eKect predicted for three body recom-
bination in high density H$ gas, this should lead to a
strong increase of the relaxation rate v„, as v„ is propor-
tional to n . Moreover, due to the low density of the
gas, the compression of the condensate will be so strong,
that v„can exhibit a strong, almost jumplike, increase
below T, a "relaxation explosion, " even when the frac-
tion of particles in the condensate is small. As we will
show, this relaxation explosion prevents one from pene-
trating deeply into the BEC regime. In the case of H,
the maximum fraction of particles in the condensate will
remain very small. Concomitantly, the temperature will
never be lower than a few percent below T . We will ar-
gue that even in such a situation the relaxation explosion
may manifest itself through increased production of H$
atoms which may provide a method to detect the pres-
ence of the condensate in atomic hydrogen.

II. SPIN RELAXATION RATE: RELAXATION
EXPLOSION BELOW Tc

We first consider collisional spin relaxation to non-
trapped states in a trapped gas of N spin-up polarized
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atoms at temperature T. We assume that the decay rate
due to this process, as well as the cooling or heating rate,
is much smaller than the rate of thermalizing elastic col-
lisions. At suKciently low T the atoms are concentrated
near the center of the trap, and their potential energy is
found by expanding the trapping potential near the field
minimum. For many types of traps we have a parabolic
expansion. Without loss of generality, we can restrict
ourselves to a spherical trap:

V(r) = Ij,gyBp+ ~ r,
2

where r is the distance to the trap center, and cu is os-
cillation frequency. The case where the radial and axial
oscillation frequencies are different is obtained by apply-
ing a simple scaling. The first term in Eq. (2), which
represents the Zeeman energy of atoms located at r = 0,
will henceforth be omitted.

We erst discuss relaxation at temperatures above T,
considering the motion of the atoms in the potential V(r)
as classical (T )) Ru). The loss of atoms from the trap
occurs in two channels:

OO

ge(u) = ).—,.

drn(r) = N. (8)

In the classical regime we find the well-known expres-
sion:

p = T ln—
(2~62) N

where

In the density range under consideration we have n U &(
T„and since in the classical regime (T » T,) the max-
imum density n (( n, we can neglect the interac-
tion term 2n(r)U in Eq. (6) in this region. Near the
BEC point we can replace n(r) by n, in the exponent of
Eq. (6).

The chemical potential can be obtained from Eq. (6)
by using the expression

A /+A g-+ A /+A $
At+A pm A/+A/,

(3)
(4)

f 2vrTI 1

(m) (io)

where the symbol A g stands for atoms in trapped states
and A $ for atoms in nontrapped states. It should be
emphasized that the process described by Eq. (3) can
lead to heating of the gas, as the particle which remains
in the trap suffers a recoil which at low incident energy
equals the energy difference between A g and A $. This
recoil can be substantial and depends on the value of Bo
in Eq. (2). However, often the process leading to evapo-
ration is such that these recoiling particles are rapidly re-
moved, before they thermalize with the remaining atoms.
We shall assume this to be the case and, hence, the total
rate v„of atom loss can be written in the form:

v, = 2n drn (r),

where n(r) is the density distribution and n is the sum
of the rate constants governing the processes in Eqs. (3)
and (4). For hydrogen n 10 is cm js.i3 i4

The density distribution above T is determined by the
following expression:

dsk t'sk + V(r) + 2n(r) U —p 5

(2 )'

is the classical characteristic effective volume of the
trapped gas: n(r) = (1V/V, ) exp[ —V(r)/T]. From Eq. (5)
we find

o.%2
v, =vi=, T))T,.

2V,

The BEC point (the first appearance of the condensate
at r = 0) is determined by the condition:

p=2n U.

The critical BEC temperature was calculated for var-
ious power law potentials by Bagnato, Pritchard, and
Kleppner. For the potential given by Eq. (2) the result
1s

T. = Wgs(1)l "~.
This result, following from Eqs. (6), (8), and (12), clearly
shows that the inequality T )) Lu is satisfied for T )T,
and the motion of the particles is classical.

At temperatures close to but still above T, Eqs. (5),
(6), and (8) yield

1 ( V(r) + 2n(r)U —pl
!

—= n~(T) g3/2 exp!—
g3/2 1 T )

(6)

v„= v,iG((); T & T,
where ( = exp(/J, —2n, U)/T with the chemical potential
determined by the equation

IIere sI, = h2k2/2m, p is the chemical potential, 2nU is
the mean field potential energy originating from elastic
pair interaction between atoms, U = 4nh2a /m where a
is the scattering length (for spin polarized H U = 4.3 x
10 22 K cm3). n = g3/2 (1)( z, )

3/2 is the critical BEC
density for temperature T, and

and

(T.'i '
g3(&) =

I

—
I g. (1)ET)

3j2 m+n
G(~) =

g2(y) ) ~ n3/2m3/2(m + n)3/2
)

(16)
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v, = 2n dr —& it t(r)@t(r)g(r)g(r) ),
2

where g is the field operator of the atoms and
A A A A

& g"@t@g) is the local two-particle correlator. We
assume to be outside the region of critical fluctuations,
which is the case when

AT = T. —T )& n.U. (18)

Confining ourselves to temperatures

The coeKcient G slowly changes from 1 in the classical
regime to 1.3 at T = T . Thus, the quantity v„Ts~2/N2
remains practically unchanged for temperatures down to
T

Let us now turn to the relaxation below T . The ap-
pearance of the condensate leads to a fundamental change
in the symmetry and correlation properties of the sys-
tem, which also manifests itself in the rate of inelastic
processes. ' Therefore, we should replace Eq. (5) by a
more general expression:

n'(r) —n everywhere inside this region.
As will be shown below, in cases of practical interest

we are necessarily restricted to small condensate fractions
and, hence, when considering the relaxation below T we
may confine ourselves to the case where

AT «T. (24)

The condition Eq. (18) for the absence of critical fluctu-
ations leads to the inequality

p —2nU»n U, (2s)

which ensures a pronounced condensate peak in the den-
sity distribution since we have: np —(p —2n U)/U ))
n, ) n'(r). In this case we may neglect above-condensate
particles inside the spatial BEC region. Then the num-
ber of condensate particles Np —N —N'(T), where
N'(T) = (T/T, ) N is the number of above-condensate
particles outside the BEC region, following from the den-
sity distribution Eq. (6). Hence, under condition Eq. (24)
we obtain

T»n .U,
No AT
N T, (26)

we may neglect the phonon branch of the excitation spec-
trum and, hence, the anomalous averages in Eq. (17).
This equation then reduces to the form

On the other hand, from the condensate density profile,
given by Eq. (21), and taking into account Eq. (13), we
find

v„= 2n dr [
—np(r) + 2npn'(r) + n' (r)], (20)

np(r)U+ 2n'(r)U+ V(r) = p,

where

n'(r) = n, (T) gsy2(exp[ —npU/T]).
gs~2 (1)

(22)

The condensate will exist in a finite region of space
determined by the condition

where no and n' are the densities of condensate and
above-condensate particles, respectively.

The problem of the spatial distribution of condensate
and above-condensate particles in the inhomogeneous
field, addressed by Walraven and Silvera, was investi-
gated by Goldman, Silvera, and Leggett, and by Huse
and Siggia. We assume that the space occupied by the
condensate is much larger than the correlation radius of
the condensate wave function, which is equivalent to the
condition npU )) her (this will be valid everywhere in the
BEC spatial region with the exception of a very small
neighborhood of boundary of this region). In this case
the kinetic energy term in the equation for the conden-
sate wave function can be neglected and the equation for
the condensate density takes the form (see Refs. 10 and
11):

8~ (& —2n. U)'~'
1S (m/2)'~'(u'U

8 gs(2(1) (p —2n.UI' ' T.
!1S~vr g, (1) q T. ) ri.U

(27)

Equations (26) and (27) allow us to obtain p as a func-
tion of LT. The volume occupied by the condensate is
determined by the expression

( 3/2
P

3+(vr) (

(,Ui ' ' (AT) ' '
= 2.01

"
I I I

v, .
ET. )

Clearly, we have Vo « V .
Under the conditions just described there are two dom-

inant contributions to the relaxation rate of the gas: the
process in which two condensate particles are involved,
and the mechanism involving two above-condensate par-
ticles outside the BEC spatial region. The processes
involving above-condensate particles inside the spatial
BEC region are negligible compared to the first process
as no &) n = n'. Let us denote the loss rate due to the
process involving two condensate particles as vo and that
due to above-condensate particles as v'. From Eqs. (21)
and (20) we find

V(r) & p, —2n U.

At the boundary of the condensate region no ——0 and
n' = n . Moreover, under condition Eq. (19) we obtain

32am (p —2n, U) i
105U2 (m/2)s~

Since AT )) n U, the difference v' —v (T )

(29)
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above, it is at all possible to cool the gas to temperatures
T ( T and get a measurable fraction of the condensate.
The discussion will be rather general and in principle
applicable to a variety of cooling methods. In Sec. IV
we will apply the concepts developed in this section to
atomic H and discuss whether it is possible to use the
relaxation explosion for detecting the onset of BEC.

In order to obtain a conceptually clear picture, we as-
sume that the cooling of the gas proceeds suFiciently slow
to ensure that the system can be described as evolving in
quasiequilibrium, i.e. , the cooling should proceed much
slower than the event rate of elastic collisions per particle,
which for T )) T is given by

R, = 40.vga/V, .
PIG. 1. Number of relaxation events per unit time for a

fixed number of atoms, normalized to the value at T, . The
solid line corresponds to n, = 10 cm and the dashed line
ton, =10 cm

AT[dv(T)/dT] is small compared to vo. Thus, v„
v„(T,) + vo(T) Hence. , substituting the chemical poten-
tial p from Eqs. (27) and (26) into Eq. (29), and using
Eq. (14) with Eq. (13) in mind, we obtain

Here 0 is the cross section of elastic collisions, which
is independent of T in the temperature range considered.
(for Hg o = 8vra = 1.3x10 cm ), and vz = /ST/7rm,
is the thermal velocity.

Using Eq. (6) and neglecting the interaction between
atoms, we find the following expressions for the internal
energy of the trapped gas at temperatures above and
below T,:

~ T. q
'~' i ~Ti '~'

v-(T) = v. (T) 1+751
& .U)

T &T. U=3NT; T &T„
»(u) '

(30)

In Fig. 1 the value of v, (T) /v„(T, ) is given for hydrogen
atoms for n, = 10 s cm (T = 150 pK, and n, = 10
cm (T, = 8 pK). Clearly a large, almost jumplike, in-
crease in v„can be seen, inspite of the fact that Np ¹

The occurrence of this phenomenon, which can be called
a relaxation explosion, is related to the large value of

—j./3(T,/n, U) n, . It is this parameter, especially large
for the small densities characteristic of the trapped gas,
that determines the large compression of the condensate
by the inhomogeneous field. The ratio of the maximum
condensate density to the characteristic density of above-
condensate particles is

no „(p—2n U) ( T ) /AT t

&n, U)

U = 3NT
~

—
~

= 3g4(1); T & T„f T ) 'g4(1) T4

(Tc) gs 1

(35)

where u = exp(p/T). From this we obtain relations be-
tween the time derivatives of T, U, and ¹

g4(u)g2(u) ) T U g2(u)g4(u) N
gs2(u) ) T U gs2(u)

T &T.T 1U
T 4U

(36)

(37)

If we parametrize the cooling process by an energy re-
moval rate R~ = —U/U, and an accompanying rate R~
of particle removal, we can write the rate of change of
particle number as

Although the condensate fraction is small, the quadratic
dependence of v„on density, in particular, vp ~ np Vp

and v' ~ n V, ensures that the condensate particles
dominate the relaxation when

N V7—= —R~ ——",
N N' (38)

AT (n Ul
& 0.2

)
(32)

For trapped atomic H, with n 10 —10 cm and
T, 10 —100 pK, the inequality in Eq. (32) is already
satis6ed for AT/T & 10

III. KINETICS OF COOLING: PENETRATION
INTO THE BEC REGIME

In this section, we first address the question whether,
in view of the relaxation explosion phenomenon discussed

where v„ is given by Eqs. (14) or (30). For the rate of
energy change we have

U U„
+U +

U U
(39)

Here U„ is the rate of energy change associated with
relaxation. As the relaxing particles have a finite en-

ergy, the internal energy decreases with decreasing parti-
cle number. Hence, U„ is always negative. From Eq. (37)
one thus find. s that when T & T, because the energy
does not explicitly depend on N, relaxation does not lead
to heating. In contrast, from Eq. (36) we see that for
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U„= —2o. dr
dkxd A:

n ek, , r

xn(zg„r) [sI„+V(r)]. (40)

Here cA, , and k~ ~ are the kinetic energies and momenta
of the colliding atoms. A straightforward calculation
shows that in the classical limit

U„(T) = — Tv, ; —T &) T, .
9

(41)

When considering T & T, (with AT « T, ) we can ne-

gleet the contribution to U„ from the relaxation of con-
densate particles as their characteristic energy np U «
T, . In this case Eq. (40) gives

U, (T) = Tv—,—(T,); T & T, .
9 1.05
4 G(1)

" (42)

The maximum penetration into the BEC region,
„/N or AT „/T, can be found from the condition

T/T = (1/3)N/N (the trajectories in the N Tplane are-
parallel to the BEC line). Then, using Eqs. (35), (37),
(38), (39), (42), and the explicit expression Eq. (30) for
the relaxation rate, we obtain

Np max 3AT
T.
(n, UI ' ' N(R~ —(4/3)Riv)

( T, ) v„(T.)
(43)

where the first equality follows from Eq. (26).
Equation (43) in principle applies to a variety of cool-

ing methods. In order to simplify the discussion we con-
fine ourselves to the case where BU and B~ are propor-
tional to the interatomic collision rate B . In this case it
is convenient to define RU = R~/R and R~ = R~/R, .

By assuming 1 )) BU, we ensure that the system remains
close to equilibrium. The ratio R~/R~ will depend on
the particular cooling method selected, but typically efFi-

cient cooling corresponds to low values of B~. Hence,
we may simplify somewhat by restricting ourselves to
R~ = 0, in which case we may rewrite Eq. (43) as

"=02~ ' Rv
N qT) ( ~ )

(44)

For sufficiently small ratio n, U/T the quantity Np „/N
(= 3&T „/T ) is much smaller than unity, expressing

T ) T, removal of particles only leads to cooling if the
energy of these particles is suKciently high. This is the
principle of evaporative cooling. In this sense, any loss of
(above-condensate) particles leads to evaporative cooling
for T & T, . Note, moreover, that the ratio T/N changes
discontinuously at T . This behavior has the same origin
as the discontinuity in the derivative of specific heat at
the BEC point.

Neglecting again the interaction energy between atoms
we find for the rate of energy change due to relaxation,

AN()
ANp ——— + vp = 0.

Tp
(45)

Here the term DNp/7p describes the accumulation of
the condensate from above-condensate particles, and the
characteristic time Tp can be written as Tp = (pR, )
The term vp represents the relaxational decay of the con-
densate. The preliminary analysis of the kinetic equa-
tion in the parabolic potential Equation (2), with the
condensate included explicitly, gives p close to 4. With
Eqs. (26) and (30), the condition of thermal equilibrium
between the condensate and above-condensate particles,
ANp/Np vprp/Np « 1, implies

„,)n.U) 'r'~v l " „,f T, )'
((001 5 2

i

5/2

ET.'-i
(46)

For H, the characteristic temperature Tk;„= 135 pK.
The maximum achievable condensate fraction and AT,

are determined by Eqs. (43) and (44) only when Eq. (46)
is satisfied. If this is not the case, the maximum achiev-
able Np/N will be determined by the balance between
the formation rate of the condensate and the spin relax-
ation rate. In contrast to the equilibrium case, now a
further increase of LT becomes possible, but it will not
lead to an essential increase of Np/N and, hence, to an
increased relaxation rate. In other words, the relaxation

the diKculty to penetrate into the BEC regime.
Some care is however warranted when applying

Eq. (43), since a significant point was omitted in its
derivation. We implicitly assumed that the conden-
sate, once it appears, is in thermal equilibrium with the
above condensate particles. The condition of slow cool-
ing, BU (& B, surely leads to equilibrium only between
above condensate particles. As for the condensate, the
situation is more complicated and the answer depends
on the characteristic time 7 p in which the condensate is
formed.

The problem of the characteristic time scale of conden-
sate formation has been discussed in the literature
(for a discussion see Ref. 21). In a weakly interacting
Bose gas the characteristic time wp is determined by the
kinetic stage of the evolution of the particle distribu-
tion in the momentum space. In the homogeneous gas,
if the condensate is initially absent, 7p is of the order
of the characteristic collisional time of above-condensate
particles, B, . Once a condensate is present, the char-
acteristic time associated with accumulation of particles
by the condensate, turns out to be of the same order. One
may expect a similar situation in the inhomogeneous gas.
Then the condition for equilibrium is met when the char-
acteristic decay time of the condensate due to relaxation
is much larger than 7.p.

Since the cooling proceeds much slower than the rate
of elastic collisions (1 )& R~ )) Riv), we may consider
a quasistationary solution for the number of condensate
particles. If we are close to equilibrium, i.e. , ANp
Np —Np (( Np where Np is the equilibrium number of
condensate particles, we obtain
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explosion will be bottlenecked by the "slow" formation
rate of the condensate.

IV. APPLICATION TO H

In this section we will illustrate the results of the pre-
vious sections, using atomic H as an example. To date
the most proficient cooling method applied to H is evapo-
rative cooling, first discussed by Hess and Tommila in
the context of this atomic species. This method is based
on the preferential removal of atoms with a total en-
ergy exceeding a certain threshold E&, which is essentially
larger than the average energy per particle. If Ez is kept
constant, T will reach a steady state value determined
by the balance between evaporation and relaxation. The
cooling process can be kept going by continuously reduc-
ing Eq. This can be accomplished in various manners,
e.g. , by ramping down a field barrier, demonstrated at
MIT, ' insertion of a cold absorbing surface, or removal
through optical pumping, as shown by Setija et a/. In
the first two methods, essentially all particles with total
energy exceeding E& are instantaneously removed. The
resulting energy distribution is truncated at Ez and es-
sentially nonthermal which makes the problem difhcult
to analyze exactly.

To keep the picture transparent, we retain the assump-
tions that the system remains close to equilibrium and
1 &) Rrr &) R~. Then, using Eq. (44), the value of
No „/N can be calculated for Hg. The result is shown

in Fig. 2 for three values of RU. Also shown in Fig.
2 is p / (T,/Tq;„) with p = 1 and p = 4. Realisti-
cally, the temperature at which one can hope to reach
BEC is restricted to values below approximately 200 pK.
For higher values of T the concomitantly higher density
makes the lifetime of the sample prohibitively short. In
view of this restriction we see from Fig. 2 that No „/N
(and b.T „/T, ) is at most of the order of a few percent.
Moreover, it can be seen &om Fig. 2 that the curves
tend to a vertical tangent, reflecting the existence of a

minimum temperature T;„below which BEC cannot be
reached. The value of T;„is higher for smaller cooling
rates RU. Finally, as is clear from Fig. 2, the formation
rate of the condensate is the dominating limitation only
at relatively high values of R~ and comparatively low
temperatures.

We can use the same simple model to calculate the
trajectories in the N Tpl-ane, using Eqs. (36) and (37).
In order to present the trajectories in a form which is
independent of u, and which resembles the common way
of representation as curves in temperature-density space,
we have divided N by the classical efI'ective volume V
given in Eq. (10). We emphasize, however, that the quan-
tity N/V, represents the true density at the trap center
n(r = 0), only in the Boltzmann regime (T &) T ). The
results are shown in Fig. 3 for RU = 0.1 and RU ——0.025.
The initial values T = 1 rnK and N/V, = 10~ cm are
chosen within the experimentally accessible range. When
the BEC line is crossed a clear change in the trajectory
is noticeable. As mentioned before, the temperature re-
mains very close to T and the trajectory essentially fol-
lows the BEC line. Observation of the change in the
derivative in these trajectories may be a way of detecting
whether BEC has been reached. Note that the relaxation
explosion does not drive the system out of the BEC re-
gion. The attraction of the trajectories to the BEC line is
particularly clear when comparing with the correspond-
ing trajectories obtained by assuming the system to obey
Boltzmann statistics at any temperature and density.

It is interesting to speculate whether the increase of v„
can be measured directly. In principle this is possible.
First, v„can be inferred if the flux of particles escaping
from the trap can be monitored. Another option is the
detection of the optical fluorescence of the recoiling Ht
atoms produced in the proces described by Eq. (3). The
production rate of these atoms is directly proportional to
v„. As the recoil energy acquired by these atoms is much
larger than T, and essentially monochromatic, they can
be spectrally distinguished from the thermal atoms. Al-

10o:

~y'"(Tc/Tkin)&

i Q16

X

E
Cl

Z',

1 0-2:

1 0-3
1 0-6 1 0-5 1 0-4

$ Q14
1 0-5 1 Q-4

Temperature (K)

1 Q-3

T.(K)

FIG. 2. No „/N = 3AT „/T, vs T for Hg at Rrr = 0.1,
0.05, and 0.025. Also shown the kinetic limit for the conden-
sate formation p ~ (T,/Tk;„) for p = 4 and p = 1.

FIG. 3. Cooling trajectories for RU = 0.1 and 0.05 (solid
lines) plotted as N/Ve vs T. The long-dashed curve is the
BEC line. The short-dashed curves represent the trajectories
corresponding to a system obeying Boltzmann statistics.
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though in evaporative cooling the recoiling atoms are con-
tinuously being removed, our analysis shows that their
density can be suKcient to observe the Buorescence.

V. CDNCLUDINC B,EMAHKS

We have shown that the compression of the condensate
in a weakly interacting Bose gas in an external potential,
leads to a strongly enhanced relaxation. This "relax-
ation explosion, " prevents the system from penetrating
d.eeply into the condensate region. More precisely, the
temperature always remains close to T . This behavior
is a consequence only of the nonuniform formation of the

condensate and can occur in any weakly interacting Bose
gas which decays through two- or three-body inelastic
collisions. For a given value of T the penetration into
the condensate region No „/K (or AT „/T, ) remains
small and independent of w. Because any real system is
bound to have inhomogeneities, this may prove an im-
portant feature of the weakly interacting gas.
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