
PHYSICAL REVIEW B VOLUME 48, NUMBER 17 1 NOVEMBER 1993-I

Dynamical and scaling effects in two-dimensional superAuid helium
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The results of a series of measurements of Kosterlitz-Thouless behavior in helium films are presented.
Use is made of high-Q piezoelectric crystals so as to probe the phenomena in a single flat substrate
geometry at high frequencies. Variations of the superAuid density and dissipation in the vicinity of the
transition were measured. Dynamical effects were probed by comparing transitions at two different fre-
quencies. Results are compared with a comprehensive numerical calculation in which finite-size scaling
effects are explicitly introduced. A consistent picture for the dependence of critical thickness on temper-
ature, of the scaling of the transition shape with temperature, and of dynamical effects is obtained.

I. INTRODUCTION

In recent years there has been a great deal of interest in
two-dimensional (2D) superconducting and superfluid
helium systems. In these systems, thermally activated
vortex-antivortex pairs are the dominant fluctuations and
mediate the transition from the respective superAuid and
superconducting phases. The static theory of these 2D
phase transitions, which fall in the same universality class
as the XY (Ref. l) model, has been very successful. The
theory, developed by Kosterlitz and Thouless, associates
the transition from the superAuid to the normal phase
with the unbinding of thermally activated vortex-
antivortex pairs at the static transition temperature TKT.
The unbinding is a cooperative effect which destroys the
algebraic long-range order of the system at some nonzero
superAuid density proportional to the transition tempera-
ture.

Kosterlitz and Thouless used renormalization-group
techniques to solve the problem of a dilute gas of loga-
rithmically interacting vortex-antivortex pairs. By con-
sidering the effects of smaller pairs on the interaction be-
tween the members of larger pairs, they were able to ex-
tract a scale-dependent dielectric constant and vortex-
pair excitation probability. The scale dependence of
these parameters is given by the Kosterlitz-Thouless re-
cursion relations. For an experiment carried out at zero
frequency, the recursion relations are iterated to infinite
scale. The transition temperature is defined as the
highest temperature for which the vortex-pair excitation
probability no longer vanishes at infinite scale, i.e.,
infinite pair separation.

To interpret experiments at finite frequencies, the
Kosterlitz-Thouless static theory must be incorporated
into a more comprehensive theory which accounts for the
dynamic response of the vortex plasma to an oscillating
field. Ambegaokar et al. and Ambegaokar and Teitel
have shown that the vortex diffusion length rD is the
characteristic separation beyond which pairs can no
longer equilibrate to the external field. This leads to two
modifications of the static theory. First, because pairs
larger than rD do not participate in the renormalization,
the Kosterlitz-Thouless recursion relations are not to be

iterated out to infinite scale but to a finite cutoff. This, in
effect, shifts the transition temperature up from TKT to a
new frequency-dependent dynamic transition tempera-
ture T, and produces rounding of the transition. Second,
the effective dielectric constant becomes complex, the
imaginary part being associated with dissipative vortex
motion.

In all the above discussion, the principal assumption is
made that the film is indeed two dimensional. Under
what circumstances this assumption is justified in experi-
ments on thin layers of helium is not completely clear,
but it is generally believed that whenever the three-
dimensional correlation length is not much smaller than
the thickness of the film, Kosterlitz-Thouless behavior
pertains. This hypothesis is somewhat complicated by
the fact that bulk three-dimensional behavior is expected
to be significantly modified by finite-size effects, under
these circumstances, without regard to the two dimen-
sionality of the system. For example, one would expect a
significant decrease in the average superAuid density, as-
sociated with healing of the order parameter at the sys-
tem boundaries, even in the absence of vortex-antivortex
excitations. We find that in the vicinity of all superAuid
transitions in helium films, finite-size effects dominate the
bare, unrenormalized, behavior, while the actual transi-
tion behavior is determined by the Kosterlitz-Thouless
mechanism. It may very well be that at temperatures
sufficiently below the Kosterlitz-Thouless transition,
finite-size effects alone are important. The reader is re-
ferred to a comprehensive review of finite-size scaling
effects by Gasparini.

It is the purpose of this paper to describe a series of
measurements of phase-transition behavior —both
super Auid density and dissipation —in helium films
whose thicknesses vary from 12.8 to 63 A and whose
transition temperatures range from 1.38 to 2.1 K. Use is
made of a high-Q quartz microbalance, thereby avoiding
capillary condensation effects present in mylar roll or
stack geometries. We find reasonable agreement between
our measured values of transition temperature and shape
and the results of a simple theoretical calculation in
which finite-size scaling is used to determine the back-
ground superAuid density which is then used as the start-
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ing point for Kosterlitz-Thouless renormalization. Mea-
surements at different frequencies yield shifts of transi-
tion thickness consistent with predictions of the dynami-
cal theory.

II. PREVIOUS EXPERIMENTS
AND THEORETICAL BACKGROUND

A. 2D super8uidity

SuperAuid Aow in thin films, observed in 1940 by Long
and Meyer, suggested that 2D superAuidity can be real-
ized, in spite of rigorous theoretical proofs that the
superQuid order parameter is destroyed in two or fewer
dimensions. Other experiments followed supporting their
conclusion: Bowers, Brewer, and Mendelssohn mea-
sured the heat transfer in unsaturated films in 1951 and
found that the mobility of a thin film decreases rapidly as
the temperature is raised, and above some critical tern-
perature no film transfer occurs. In another heat-transfer
experiment Long and Meyer' confirmed the existence of
the so-called "onset temperature, " lower than the bulk
critical temperature, where the film becomes superAuid.
Critical Qow rate experiments to determine T, as a func-
tion of film thickness were performed by Brewer and
Mendelssohn" in 1961. In 1969 Henkel, Smith, and Rep-
py' demonstrated that the angular momentum associat-
ed with a persistent current is linearly related to the film
thickness, provided that the film thickness is greater than
some critical value depending on temperature. This criti-
cal value was deduced from the linear extrapolation to
the point of zero mass Aow. Propagation of temperature
waves in thin films of helium performed by Everitt, At-
kins, and Denenstein' and later by Rudnick et al. ' pro-
vided additional evidence of superAuid behavior, but a
clear superQuid transition in third-sound measurements
was reported only later by Rudnick' in 1978. Data ob-
tained in this experiment confirmed the universal jump in
superQuid areal density predicted by Kosterlitz-Thouless
theory.

In all the measurements above, in order to determine
the transition to the superAuid state, one has to establish
mass Aow by means of pressure or temperature gradients.
However, these measurements cannot be employed to ex-
amine the superQuid density continuously through the
transition region, since the persistent currents decay
away and third sound becomes heavily damped and
ceases to propagate. To overcome these difriculties, an ac
microbalance technique was introduced for 2D helium
studies. Here one measures only the normal component
of the Quid which is viscously clamped to the oscillating
substrate. In an adaptation of Andronikashvili's'
torsional-oscillator technique, Bishop and Reppy' (1978)
had been able to provide a quantitative characterization
of the superAuid transition. In the original Andronikash-
vili oscillator, a stack of closely spaced annular disks at
the end of a torsional fiber was placed in a bath of
superAuid helium. The plates were closely spaced so that
the normal Quid is clamped to them and dragged along as
they oscillate, while the superfluid is not seriously
afFected. By measuring the resonant frequency of the sys-

tern one can determine the superQuid density of the
liquid. Bishop and Reppy s device consisted of an ex-
tremely high-Q torsional oscillator ( Q ) 10 ) using a
rolled layered Mylar substrate. More detailed measure-
ments for thin-film coverage, corresponding to transition
temperatures in the range of 70 mK —0.5 K, were report-
ed by Agnolet, Mcgueeney, and Reppy' in 1989, and
they confirmed some of the essential features of the
Kosterlitz- Thouless theory.

In a recent work, Shirahama, Kubota, and Ogawa'
used a torsional oscillator method for the study of the na-
ture of the transition for films adsorbed on porous
glasses. The situation is significantly complicated be-
cause of the 3D global structure of the porous substrate.
Effects presumably associated with limitations on
vortex-pair interactions owing to finite pore sizes were
observed. To determine the effects of frequency on the
transition temperature, the measurements were per-
formed with two oscillators having different resonant fre-
quencies. An increase of the transition temperature asso-
ciated with increased frequency was observed. Because
of the complicated geometry used in these experiments, it
is difticult to make a direct comparison with results re-
ported here.

Another microbalance technique involves the use of a
quartz crystal as a single oscillating substrate. For mea-
surements in thin films of helium this technique was used
by Chester, Yang, and Stephens in 1972, and was later
used for more quantitative measurements of the
superAuid fraction by Chester and Yang ' and Herb and
Dash. Unlike the torsional oscillator technique of
Bishop and Reppy, these experiments were performed at
relatively high frequencies and showed a considerable
broadening of the transition region.

B. Theory

Our approach to a theoretical understanding of our
data involves an attempt to integrate several different, but
possibly intimately related, notions. It is obvious from
the shape of the transition that Kosterlitz-Thouless re-
normalization plays a vital role in the phenomenology.
On the other hand, a straightforward iteration of the KT
recursion relations from any reasonable starting condi-
tions yields a critical film thickness much smaller—
typically a factor of 3 smaller —than that observed. It
quickly becomes obvious that significant Kosterlitz-
Thouless renormalization of the superQuid density occurs
only where the film thickness is not much larger than the
three-dimensional coherence length. In this regime, the
super Auid density has already been significantly
suppressed by finite-size scaling efFects. A concrete ex-
pression of finite-size scaling that we choose to use is the
+ theory of Ginzburg and co-workers. ' In this ap-
proach, the superAuid density is pulled to zero at the film
boundaries, recovering to its bulk value in a characteris-
tic healing scale equal to the temperature-dependent
three-dimensional coherence length. Yet another issue
involves a possible "dead layer" between the superAuid
and substrate. The van der Waals interaction responsible
for the adsorption of the film on the substrate gives rise
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%(r, t) =rt(r, t)e'~'"'I (2.1)

The phase of this function is related to the superfluid ve-
locity by

v, =(A'/m )Vg, (2.2)

to a strong pressure gradient near the substrate. Using
the bulk phase diagram would suggest that the
superfluidity is suppressed by hydrostatic pressure out to
a distance of the order of two atomic layers. This last
effect is relatively unimportant for thick films, but cannot
be ignored otherwise. Film excitations such as ripplons
are presumably important for very thin films, but are ig-
nored in this analysis.

We must contend with a number of questions that in-
volve the inter-relation of these various effects. To what
extent does crossover to two dimensionality impose
Kosterlitz-Thouless behavior in place of finite-size scaling
and to what extent does it merely supplement? Is it obvi-
ous that the superfluid density is pulled to zero at the free
film surface as well as at the substrate? Can one take
the bulk phase diagram seriously on an atomic scale or
does healing behavior in fact take place within the dead
layer? Precise answers to these questions will not be
forthcoming but we do suggest an approach that we be-
lieve to be reasonable and which, at the same time, yields
results reasonably consistent with our experimental data.

Our basic suggestion is that finite-size scaling prepares
the background state from which Kosterlitz-Thouless re-
normalization operates. That is, the bare vortex-
antivortex interaction is determined by an areal
superfluid density which already incorporates healing
length effects. This would be the measured superfluid
density, for example, in a situation where vortex-induced
screening were somehow totally suppressed. We leave,
for the present, the question of the role of the dead layer.

Following Ginzburg and Sobyanin, we introduce a
macroscopic wave function

branch T ( T& to the branch T ) T&. The various
powers of E which appear come from the assumed
power-law behavior of the bulk superfluid density,

It is clear that if the wave function is required to van-
ish at the boundaries, then the average superfluid density
is suppressed by an amount that depends on d/l& where
d is the film thickness, II, is a temperature-dependent
healing length diverging as c and M is a parameter
that determines the relative strength of the 4 term in
the expansion of the Gibbs free energy. In what follows,
we take the value of M to be 2. We use this approach to
determine the bare areal superfluid density in the film, o, ,
which in turn is used to determine one of the starting
conditions for Kosterlitz-Thouless renormalization. The
end result of these considerations is to reduce 0., from
that of a "bulk" layer of the same thickness p, d, by a
temperature-independent amount p, lz = 1.47 X 10
g/cm . This quantity is relatively insensitive to the value
of the unknown parameter M, varying by no more than
about 10% as M is varied from zero to infinity. That the
reduction in areal superfluid density is temperature in-
dependent is a consequence of the fact that the healing
length diverges at the same rate that the superAuid densi-
ty approaches zero at the transition temperature. We use
the measured bulk superfluid density in the calculation so
as to extend the range of validity of the calculation to
temperatures relatively far from the transition, in the
spirit of Ginzburg and Sobyanin.

The Kosterlitz- Thouless recursion relations can be
written in terms of the parameters K, proportional to the
scale-dependent areal superfluid density, and y, the
vortex-pair excitation probability:

K '(l)=KD '+4m. f y (l')dl',
(2.6)

I
y 2(l) =y o exp 4l —2m. f K (l')dl'

where
where m is the mass of a helium atom, and the modulus
of (Il is related to the superfluid mass density l = 1n(rlro) . (2.7)

p, =m
/

eJ'=m vy' . (2.3)

For helium at rest, but in a situation where spatial varia-
tions of %' are possible, Ginzburg and Sobyanin obtain

2

q2 4/3+ ( 1 ~) 2/3

3+M
4

+M
'IIO +o

(2.4)

A kT'

2m'AC,
(2.5)

where AC is the jump in the specific heat from the

where E= T~ —T~, 40=(kpz/mT~ )'/, Tz is the
three-dimensional transition temperature, and p& is the
Auid density at T&. The reduced variable with respect to
which the spatial derivatives are taken is normalized as
follows:

ro is the vortex core radius,

K '(l) =7(l)/Ko, (2.8)

where Ko is defined in terms of the bare superfluid densi-
ty as (A'/m) o, /k~T, Z(l) represents the attenuating
effect of smaller pairs on the interaction between the
respective members of larger pairs with separation e', and

yo = exp( E /k~T), — (2.9)

where E ( T) is the temperature-dependent energy associ-
ated with the primordial vortex pair, clearly proportional
to o., and dependent on the assumption made as to its
structure. We assume that the cores of the vortices in the
primordial pair are separated by twice the core radius
and that the core energy is as given by the "dynamical
scaling" approach of Kawatra and Pathria. This latter
is a straightforward adaptation of the theory of Ginzburg
and Pitaevskii. These considerations yield the relation
E /k~T =6.72KO.
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The observed superfluid density 0., in this theory is

(2.10)

(2.12)

The static transition temperature TKT is defined as the
largest temperature for which

lim y ( I, Tzr ) =0
f—+ oo

or equivalently by

(2.13)

The vortex-excitation probability y is related to the den-
sity of pairs per unit area of separation 5n (r) by

(2.1 1)

the transition to larger film thickness.
As pointed out by Agnolet, McQueeney, and Reppy, '

measured quantities in the vicinity of the Kosterlitz-
Thouless transition should show a universal scaling form

=G, [X,l„,F, cr, (T, )/T, ],
os T

gg —1

=G2[X,l,F,o, (T, )/T, ],
o, (T)

(2.17)

where x =(T/T, )o, (T, )/cr, (T), and F is the prefactor
in the expression for the free vortex density. Near T,
they obtained the approximate scaling relation

26P /P =H, [T/T „„,I,F,o, (T, )/T. ,],
peak

lim e(l, TKr ) =neo/2, .
I~ oo

(2.14)
(2.18)

and is the temperature at which the pairs of infinite sepa-
ration unbind. Above TKT both c and y become large,
indicating that o., is being renormalized to zero and that
very large pairs are becoming significantly probable.
Note that Eq. (2.14) implies that

(2.15)

This is one of the principal results of the static theory.
Equation (2.15) predicts a universal jump in superfluid
density at the static transition temperature.

The effect of finite frequency is simply to truncate
iteration of the recursion relations, Eqs. (2.6), at a scale
l„, the vortex diffusion length. l is given by

14D
2cur o

(2.16)

where cu is the angular frequency of the substrate oscilla-
tions and D is the vortex diffusivity. Although D is a
temperature-dependent quantity, and indeed appears to
diverge at the transition, its influence on the transition
temperature is relatively weak, and we assume a constant
value of order A'/m. Vortex pairs larger than this scale
do not have time to equilibrate with the imposed velocity
field and therefore do not participate in screening. This
results in a somewhat enhanced superfluid density, a
broadening of the phase transition which is shifted to
slightly higher temperature, and a dissipation peak at the
transition.

We have assumed until now that infinitesimal external
fields are used to probe the vortex plasma. In practice
this assumption is easily violated, thus requiring an
analysis of nonlinear finite amplitude effects. We follow
the approach outlined by Adams and Glaberson, in
which the recursion relations are modified by the in-
clusion of a Bessel function term. In addition, a new
length scale associated with the imposed velocity field is
introduced and it is this scale at which the iteration pro-
cedure is truncated when it is smaller than the vortex
diffusion scale. Finite amplitude effects give rise to a
broadening of the transition, an increase of the superfluid
dissipation in the vicinity of the transition and a shift of

QQ 1

peak
=H2[T/T„„„,I,F, cr, (T, )!T,] .

III. EXPERIMENTAL METHOD

A. Quartz-crystal microbalauce method

The quartz-crystal microbalance technique for the
study of superfluidity involves the work of Chester, Yang,
and Stephens. ' ' Their method consisted of monitoring
the frequency of the crystal oscillations, while continu-
ously changing the thickness of a helium film adsorbed on
its surface. Because the normal component of the liquid
film adsorbed contributes to the mass loading of the crys-
tal, the resonant frequency of the oscillator is lowered.

These relations are appropriate for experiments in
which the film thickness is fixed and the transition is
scanned by varying the temperature. Our transition
scans were not done at fixed layer thickness but rather at
a fixed temperature. The equivalent scaling relation near
the transition suggests universal behavior in plots of
f /T, and Q '/T, as a function of (d —d, )p, /T„where
d is the film thickness, d, is the film thickness at transi-
tion, and p, is the bulk superfluid density. This universal-
ity is indeed confirmed in detailed numerical calculations,
even when including effects of finite amplitude and of
finite-size scaling, but breaks down somewhat when ac-
count is taken of the temperature dependence of the vor-
tex core radius.

The simplest approach to incorporating the effects of
the dead layer is to assume that the superfluid wave func-
tion is zero at the dead layer —superfluid interface and
heals in the manner described above. The dead layer
would not then contribute to the vortex-pair energy. A
slight complication arises from the introduction of a spa-
tially varying healing length associated with the pressure
gradient in the film outside of the dead layer. For all
practical purposes, the net result of these considerations
is simply to add a fixed amount —estimated to be approx-
irnately 6 A —to the critical film thickness. As indicated
above, one could also argue that this approach involves
"double counting" and that the wave function in fact
penetrates into the dead layer.
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B. Response of the piezoelectric crystal

Each of the principal surfaces of the crystal vibrates in
the plane of the surface and is subject to the force exerted
by the film and vapor present. It is convenient to de-
scribe this force in terms of the acoustic impedance
Z(co). Z(co) can be written as the sum of the reactive
part X(co), which refiects the inertia, and the resistive
part R (co), which is associated with dissipation:

Z(co) =R (co) iX(co) . — (3.1)

If both surfaces of the crystal are subject to the same im-
pedance we obtain the change in frequency and dissipa-
tion

4X(co)Aco-
Pqdq

1 4R (cu)

pqdq

(3.2)

The superfluid fraction can be deduced by subtracting the
normal component from the total mass per unit area ad-
sorbed onto the surface of the crystal.

In the present experiment we have used a high-Q crys-
tal for simultaneous measurement of the superfluid den-
sity and dissipation in the transition region. Two
separate crystals with different resonant frequencies were
used to study the dynamic characteristic of the
Kosterlitz-Thouless transition. Two different series of ex-
periments were undertaken. In the first, use was made of
a single SC-cut 5-MHz crystal, oscillating in the fifth har-
monic thickness shear mode. The crystal thickness was
0.16 cm thick having gold evaporated electrodes on 30%
of its surface area. The Q of the crystal was exceptionally
high, 2X10 at room temperature and 5X10 at 4.2 K.
The driving circuit was a standard Colpitz oscillator,
where the feedback conditions correspond to the
minimum impedance of the crystal. This circuit requires
relatively high amplitudes to maintain stable oscillations.
The change of the amplitude, or alternatively of the Q, of
the oscillations was measured simultaneously with the
frequency. Since there is relatively little damping in the
quartz crystal, the amplitude of the oscillations is sensi-
tive to the internal dissipation of the superfluid at the
transition. With our experimental apparatus, frequency
changes of one part in 5 X 10, and of one part in 10 in
the amplitude could be observed.

In the second series of experiments, two crystals
resonating at 5 and 10 MHz were mounted at the same
height in the cell. Both crystals were AT-cut, operating
in the resonant thickness shear mode in first harmonic.
Working in the basic harmonic reduced the thickness of
the crystals to 0.03 and 0.015 cm for 5 and 10 MHz, re-
spectively, thus improving their mass sensitivity. Silver
electrodes covered about 40% of the surface area. The Q
factor of the crystals ranged from 1.5X 10 at room tem-
perature to 2.5X10 at 4.2 K. Each of the'crystals was
driven by a separate circuit, designed for their capability
of driving the crystals at relatively low amplitudes that
could be regulated between 0.8 and 4 mV.

Z(co)=(1 —i) rilp&— tanh 'P+ (1 i—)
5

(3.3)

where pI is the density and gl is the viscosity of the liquid
film, 5 is the viscous penetration depth given by
5 =(2rii/p~co)', and 4 is defined by the relation

1/2

tanh(V) = 1Nv
(3.4)

'9tpI

p and ii being the density and viscosity of the vapor.
Even for the higher frequency, 10 MHz, 6=245 A is
much larger than the thickness of the thickest film. We
can then approximate the impedance to obtain

1/2

Z (co) =(1 i)— I,pl d CO (3.5)

For the frequency shift we obtain

pI d 'g +~CO
Aco — 2 co 2

Pq dq 2Pq dq

1/2

(3.6)

The first term in Eq. (3.6) is the familiar expression for a
microbalance with mass loading and the second is the
contribution of the vapor. If the film is thin, this contri-
bution cannot be neglected.

In the case of liquid He only the normal component
contributes to the frequency change, hence we can re-
place pId with pnd=pHed s' pHe is the bulk liquid-
helium density, where we ignore effects of the van der
Waals-induced pressure gradient in the film. For our
crystals the frequency shift associated with a single atom-
ic layer of helium ( =3.6 A) is Af = —0. 148 Hz for the
SC-cut 5-MHz crystal, b,f = —0.8 Hz for the AT-cut 5-
MHz crystal, and hf = —3.2 Hz for the AT-cut 10-MHz
crystal. Our experimental sensitivity of 0.001 Hz allows
for observing changes smaller than 1/100 of an atomic
layer.

In order to extract useful quantitative information con-
cerning superfluid dissipation from our data, it is neces-
sary to relate the Q factor of the oscillator to the ampli-
tude of its oscillations which depends on the value of a
bias voltage in the circuit. We decided that it would not
be particularly useful to attempt this by means of a de-
tailed analysis of the electronic circuit because of the un-
certainty of various component parameters. We chose,
instead, a calibration procedure as follows: Near reso-
nance, the piezoelectric crystal can be modeled by the
equivalent circuit shown in Fig. 1, where Q= coL/R. —
The calibration was carried out in two stages: In the
first, the cell was evacuated, the temperature was stabi-
lized and the feedback circuit was' replaced by an ac
current source. We performed a series of measurements
of the amplitude as a function of frequency at different
gas pressures inside the cell as shown in Fig. 2. For each
scan the parameters of the equivalent circuit were fitted

where p and dq are the density and the thickness of the
quartz crystal. The transverse-acoustic impedance of the
liquid film of thickness d, including the effect of the va-
por, is given by

1/2
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U ( d ) =b p = k—~ T ln( P /Po ) . (3.7)

C

A detailed description of the macroscopic forces be-
tween a solid body and the thin film adsorbed on it was
given by Dzyaloshinsky, Lifshitz, and Pitaevskii ' (DLP).
Treating this problem as a special case of their general
theory of the van der Waals forces, the following expres-
sion for U(d) was derived

U(d) =a'(d)d (3.8)

FIG. 1. Equivalent circuit for the piezoelectric crystal. For
the unloaded crystal, the values of the components are L =21
H, R =225 0 0, C=4.8X10 F, and C'=1.53X10 ' F.

and Q was determined as a function of the pressure P. In
the second stage the current source was replaced by the
feedback circuit and a series of measurements of the fre-
quency of oscillation f, and of the amplitude A as a func-
tion of pressure, for the different bias voltages of the cir-
cuit, was carried out. From the first stage we obtained
I/Q as a function of P and from the second stage we ob-
tained 3 as a function of P for each value of the bias volt-
age. By combining the results we obtained I /g as a
function of A.

The equations used to calculate the coefficient a'(d) re-
quire information about the dielectric properties of the
substrate and the adsorbate. Nevertheless a general
dependence of a'(d) on thickness, following from these
equations, is that a'(d) decreases with d from the
a'(d =0) value to an asymptotic d ' behavior in the very
thick-film limit due to retardation effects. Analytical and
numerical calculations of Cheng and Cole made it ap-
parent that these effects can be neglected when d «100
A, while for d-200 A the effect of retardation is to
reduce the thickness by 20%%uo relative to that calculated
with a'(d =0). Since in the present experiment d is al-
ways smaller than 100 A the simplified form of U(d) with
a'(d =0) is utilized. Defining a=a'(0)/kz, the thick-
ness is given by

1/3

C. Film thickness
cz

T ln(P/Po)
(3.9)

Helium contained in the experimental cell adsorbs onto
the crystal surface by means of the van der Waals interac-
tion. The film thickness d can be determined by equating
the van der Waals potential U (d ) to the change in chemi-
cal potential associated with bringing an atom from a
condition of saturated pressure Po to that at lower pres-
sure P, which for an ideal gas is given by

0.5—

(D~ 0.4

CL

The suitability of DLP theory for predicting film thick-
ness was experimentally verified by Sabisky and Ander-
son. Thicknesses of planar helium films on alkaline-
earth fluoride substrates, measured using an acoustic in-
terferometry technique, was found to be remarkably con-
sistent with that predicted by the DLP theory. However,
it appears that for the substrates of interest in the present
work there is disagreement between the empirical values
of n and those obtained using theoretical calculation.
Reported values are listed in Table I.

To determine film thickness in our experiments we use
the empirical values listed in Table I. Because these ap-
pear to be very close to each other, and since d only
weakly depends on a, we neglect the effect of the inhomo-
geneity introduced by the evaporated electrode on the
crystals. We use +=42 K layers for the gold-plated
electrode of the SC-cut crystal and 40 K layers for the
silver electrode crystals.

D. Procedure

0.3 Our experimental system consists of an experimental
cell containing the crystals within a pumped outer helium
bath. The crystal cell is provided with two —,

' inch open-

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0 100 200 300 3).
TABLE I. Interaction coefficients. Units are K layers (Ref.

u —51 371 51 5 (rad/s)
FIG. 2. Amplitude of the voltage on the crystal as a function

of frequency for various gas pressures. This quantity is propor-
tional to the magnitude of the crystal impedance.

Substrate

Quartz
Silver
Gold

Empirical

39 (Ref. 21)
40 (Ref. 34)
42 (Ref. 36)

Theoretical

25.3
75.86 (Ref. 35)
66.45 (Ref. 32)
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IV. EXPERIMENTAL RESULTS

The different devices were controlled by a computer
and data were gathered as a function of the pressure in-
side the cell. Near saturation, the pressure difference be-
tween the cell and the helium reservoir was monitored.
Typical results are shown in Figs. 3 and 4. One can

0.8
—5.3

ings, for reasons discussed below.
The experimental procedure is begun by regulating the

outer bath to a definite temperature. After the evacuated
cell has equilibrated with the outer bath, the pressure P
in the experimental cell is swept isothermally by a con-
tinuous addition of gas up to the saturation pressure P0.
After the helium is well saturated the procedure is re-
versed: beginning with saturated liquid, the gas is slowly
removed to the lowest pressure of the sweep. Although
sweeping to low pressure is preferred because of a better
thermal coupling of the crystals to the bath via the gas in
the chamber, the thin-film limit cannot be achieved this
way owing to the low density of the gas at the corre-
sponding low pressure. Whenever measurements in very
thin films were taken, the system was warmed before the
crystal cell was evacuated.

While control of the amount of gas in the cell is carried
out through one of its openings, the second opening
serves to monitor the pressure throughout the sweep. Be-
cause the thickness of the film depends strongly on P,
even small Aow impedance within the access tube would
result in an incorrect determination of the film thickness
were only one tube utilized. In the manner described
here a direct measurement of P0 is made whenever the
helium achieves saturation in the experimental cell.
Thus, even if the temperature assumed for a given sweep
deviates slightly from the actual temperature, this will
affect the thickness only through the explicit temperature
dependence in the denominator of Eq. (3.9) but not
through the much stronger dependence on P0.

0.35 1.20

N

0.30
—1.19

0.25

0.20

.17

—1.16

0 1 5 I I I I I I I I I I I I I I I I I I

4.5 5.0 5.5 6.0

F' (mm)

'1.15
6.5

FIG. 4. Pressure scan in the vicinity of the superAuid transi-
tion at T = 1.66 K.

clearly see the decrease in amplitude caused by the excess
dissipation in the vicinity of the transition and the sharp
increase in frequency. There is no sharp discontinuity
like that which appears in the static theory, but rather a
continuous rise. As we shall see, the rounding of the
transition is consistent with a combination of effects asso-
ciated with finite amplitudes and thickness inhomogenei-
ty.

In all of our analysis we assume that the film thickness
is determined by the vapor pressure, as described earlier.
We are not completely comfortable with this assumption
because it is not entirely consistent with the observed fre-
quency response of the crystal as the pressure is varied in
the normal-Auid regime. Plotting a series of isotherms as
a function of a quantity proportional to the film thick-
ness, calculated in this manner, yields the curves shown
in Fig. 5. Contrary to our expectations, the background

N

0.4

I 0.0—

—4.8

—4.3 03

CL

1.00

0.75—

I

U3
0.50

CD
C4
CD

~
~

~ ~

4

~ 4
~~ ~ ~ +

~ ~ a
~ ~ f e ~

~ ~ ~ '~ ~ ~

~ O~
~ ~ ~ ~ '~

~ ~ ~ ~' ~

~ ~ ~ ~ ~

g~aP+ ~ ~ ~
~ ~ ~ ~ ~

~gQ ~ A

~ ~e

~ 0

0.25—

—0.4
2

I I

P (mm)
2.8

FIG. 3. Typical pressure scan at a fixed temperature of 1.85
K, corresponding to a saturated vapor pressure of 14.7 mm.
The superAuid transition is associated with the rapid rise in fre-
quency and the amplitude dip at about 13 mm pressure.
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1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0
d (atomic layers)

FIG. 5. Frequency as a function of film thickness for temper-
atures ranging from 1.38 to 2.12 K.
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FIG. 15. A log-log plot of critical film thickness as a function

of reduced temperature (t, =1—T, /Tz ). The lines are the re-
sult of the numerical calculation with (dashed) and without
(solid) including the effect of a dead layer.

FIG. 13. Amplitude as a function of film thickness. The
upper curve corresponds to a temperature T =2. 1 K and the
lower curve to a temperature 20 mK lower. The arrows indi-
cate the locations of the superAuid transitions.

ciHator drive was decreased, these phenomena appeared
at higher temperatures and thicker layers. In the figure
we show two runs at slightly different temperatures, and
therefore different critical thicknesses, but for which the
amplitude oscillations appear fixed. It would therefore
appear that these phenomena are unrelated to superAuid
transition effects, but we offer no explanation for them.

C. Critical film thickness

Calculations of the critical film thickness as a function
of critical temperature are shown in Figs. 14 and 15, with
and without the dead layer, and are compared with our
experimental data and that of Yu, Finotello, and Gaspar-
ini. The calculations were carried out by directly
iterating the recursion relations, Eq. (2.6), from the start-

60
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40

30
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20—
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10—

Current data

Data of
reference 37
Theory: no
dead layer
Theory: with
dead layer

0
1.00 1 20 1.40 1.60 1.BO 2.00

T, (K)
2.20

FIG. 14. A linear plot of critical film thickness as a function
of temperature. The lines are the result of the numerical calcu-
lation with (dashed) and without (solid) including the effect of a
dead layer.

ing conditions and parameters described in Sec. II B, un-
til the point where the superAuid density is reduced by an
order of magnitude. It is clearly difficult to obtain a pre-
cise conclusion regarding the dead layer, but overall con-
sistency with the calculations is evident. We point out
that our approach, in starting the Kosterlitz-Thouless
iteration procedure from a state in which finite-size scal-
ing has already significantly reduced the bare superAuid
density, is crucial to the approximate quantitative agree-
ment between experiment and calculation. Some
discrepancy remains between the theoretical curves and
our measured data, particularly for the thinner films, pos-
sibly associated with the breakdown of the Ginzburg-
Sobyanin expansion to temperatures far from the bulk
transition. Ignoring finite-size scaling effects reduces the
calculated critical film thicknesses by more than a factor
of 3 and substantially increases this discrepancy.

D. Dynamical eSects

An experiment was undertaken to investigate the effect
of finite frequencies on the Kosterlitz-Thouless transition.
As pointed out earlier, increasing the frequency of the
probe ought to give rise to a shift of the transition thick-
ness to smaller values. This is true, however, only when
the truncation of the Kosterlitz-Thouless iteration pro-
cedure is determined by the vortex diffusion length scale
and not by the finite velocity length scale that gives rise
to nonlinear effects. In addition, the transition thickness
depends on oscillation amplitude so long as nonlinear
effects are present. Care was therefore taken to insure
relatively small amplitudes, as discussed in Sec. II B. We
were indeed successful in operating the AT-cut crystals at
oscillation levels almost two orders of magnitude smaller
and verified that transition thickness and width in this
new system were insensitive to changes in amplitude.
The price that we had to pay for using these new crystals
was that the inhomogeneity induced transition width was
substantially larger, presumably because of the different
surface treatment, and, in addition, we did not have
sufficient amplitude resolution to extract dissipation in-
formation.
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Two crystals, one operating at 5 MHz and the other at
10 MHz were placed in the experimental cell and operat-
ed simultaneously. In order to insure that the chemical
potential was equal at the two crystals, they were mount-
ed at the same height in the cell. Interchanging the crys-
tals had no effect on the results. In this manner, we were
able to map out the transition at two frequencies under
almost identical circumstances. The results of a typical
transition scan, at T =1.51 K, are shown in Fig. 16. The
shift of the higher frequency transition to smaller film
thickness is evident. Numerical calculation yields shifts
of the same magnitude for a vortex diffusivity equal to
0.04A'/m. Since little, a priori, is known about this quan-
tity, these results are deemed satisfactory.

2.0

1.5

—0.5
3.20

~P TP
3.40 3.50

V. CONCLUSIONS

We have been able to extend the use of the quartz mi-
crobalance as an effective tool for investigating funda-
mental issues associated with the superAuid transition in
two-dimensional layers of liquid helium. The results are
found consistent with a detailed numerical calculation in
which the Kosterlitz- Thouless recursion relations are
iterated from unrenormalized, or bare, starting condi-
tions determined by a particular expression of finite-size
scaling theory using reasonable values for all the relevant
parameters. Consistency is found with respect to the
shape of the transition in both superAuid density and dis-
sipation, the dependence of critical layer thickness on
temperature, and shifts of critical thickness with oscilla-
tor frequency. Uncertainty remains as to the exact values
of a number of parameters used and our results cannot be
seen as an absolute proof that the approach we have tak-

FIG. 16. Transition scans at two diferent frequencies, 5
MHz (solid line) and 10 MHz (dashed line), at a temperature
T=1.51 K.

en is the correct one. We emphasize, however, that our
intention is to present a consistent picture of the transi-
tion, and in this we believe that we have succeeded.
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