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Nonlinear dynamics of vortices in current-carrying long Josephson contacts is considered for the cases

of weak (A,J ))A, ) and strong (A,J «A, ) couplings, where A,J and A, are the Josephson and London

penetration depths, respectively. The first case concerns the Josephson vortices described by the sine-

Gordon equation, whereas the case A,J «k corresponds to Abrikosov-like vortices with highly aniso-

tropic Josephson cores which are described by an integral equation for the phase difference y within the

framework of a nonlocal Josephson electrodynamics. At A.J «X, an exact solution for the moving vor-

tex in the overdamped regime is obtained, the fluxon velocity v( j) and the voltage-current characteristic
V(j) are calculated. It is shown that the lack of the Lorentz invariance of the integral equation for y in

the nonlocal regime leads to specific features of the vortex dynamics as compared to the Josephson vor-

tices. The results obtained are employed for the description of nonlinear viscous motion of magnetic flux

along planar crystalline defects in superconductors. It is shown that any percolating network of planar
defects can considerably reduce the critical current, change the field dependence of the flux-flow resis-

tivity, and result in a nonlinear V(j) in the flux-flow regime.

I. INTRODUCTION

Vortex dynamics and pinning in superconductors is of
great interest due to both a variety of physical phenome-
na in the system of strongly interacting vortex lines and
the importance for applications. For instance, the short
coherence length g in high-T, superconductors gives rise
to a strong inhuence of crystalline defects on properties
of vortex structures, which manifests itself in a magnetic
granularity caused by a superconducting decoupling of
crystalline grains. ' As a result, . a vortex structure can
consist of two different types of vortices, namely, in-
tragrain Abrikosov (A) fiuxons having normal cores of
radius —g and the Josephson (J) vortices localized on the
grain boundaries. Unlike 3 vortices, J vortices have no
normal core and are phase kinks of length A,J much
larger than the London penetration depth A, . Because of
their larger sizes, J vortices get pinned much more weak-

ly than 3 Auxons, which ultimately causes the supercon-
ducting decoupling if the grain boundaries form a per-
colative network along which the magnetic Aux can move
through a superconductor at much smaller critical
current I, than that determined by bulk pinning.

Planar crystalline defects can be considered as Joseph-
son weak links as long as their critical current densities j,
are much less than the depairing current density jd.
There are two characteristic cases for which the proper-
ties of vortices in Josephson contacts can be qualitatively
different. The first one corresponds to incoherent planar
defects, such as high-angle grain boundaries with large
contact resistance R and small j, as compared to the in-

tragrain critical current density j,b. These defects give
rise to J vortices having sizes A.J much larger than A, .
The second case concerns coherent planar defects with
low R (twins, stacking faults, low-angle grain boundaries,
etc.) which do not cause strong lattice distortions, but

can lead to a moderate local decrease of jd to some value

j, which can be larger than j,b. Such defects may be
treated as Josephson junctions in the strong-coupling lim-
it for which A,J becomes smaller than A, . They give rise to
neither J vortices nor the pronounced magnetic granular-
ity, but rather play the role of "hidden" weak links which
can qualitatively change the normal core of 3 fluxons.
As a result, there arise Abrikosov vortices with highly
anisotropic Josephson cores much larger than g, which
corresponds to a crossover between 2 and J vortices.
Hereafter such vortices are called AJ vortices. Figure 1

shows how an 3 vortex successively turns into AJ and J
vortices when decreasing j, from j,=j d to j,«jd (see
below). In this paper, I consider the dynamics of J and
AJ vortices in long Josephson junctions as a model of
nonlinear Aux Aow along a network of crystalline defects
in superconductors.

The dynamics of J vortices is described by the sine-
Gordon equation for the phase difference tp(x, t),

ip+ pep= q&" —sing+ i33,

where the prime and overdot denote derivatives over the
dimensionless time r= t coJ and coordinate g =y /A, &, re-
spectively, A,J=(cgo/16~ j,A, )' is the Josephson mag-
netic penetration depth, co&=(2ej, /iiiC)'~ is the Joseph-
son plasma frequency, g=1/coJRC is a dimensionless
damping constant, j, is the critical current density across
the contact, R and C are its specific resistance and capac-
itance, respectively, $0 is the Aux quantum, c is the speed
of light, —e is the electron charge, and P=j /j, is the di-
mensionless transport current density which is assumed
to be uniformly distributed over the contact.

Equation (1) is valid as long as the phase y(y) changes
slowly over lengths -k, which results in the local rela-
tionship H =(Po/4m', )dy/dy between the magnetic field
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H(y) and the phase gradient dy/dy. If, however, y(y)
varies over lengths much shorter than A, , the relationship
between H and y', as well as the equation for y become
nonlocal. Such a situation occurs in the strong-coupling
limit for which the Josephson penetration depth A,&(j, )

becomes smaller than A, , which is equivalent to

c4o
jc jI

~ 6 2g3 (2)

(a)

gH

(c)

FICx. 1. Current lines in (a) 3, (b) AJ, and (c) J vortices.
Current lines in (b) are two sets of arcs centered at the point
x = —L for the half-plane x )0 and x = —L for the half-plane
x &0. The points x = —L and x =L indicate positions of Acti-

tious A Auxons which determine 0(x,y) at x )0 and x & 0, re-
spectively (Ref. 7).

Here jz =cpa/12&3vr A, g is the depairing current densi-
ty and i~=A, /g is the Ginzburg-Landau parameter. Note
that in extreme type-II superconductors (ir ))1) the
inequality kz«A. holds in a wide region of j,(jz/I~
«j, «j&). Similar nonlocal regimes can arise in the
weak-coupling limit (j, « jI) as well if H exceeds the
bulk lower critical field H, &&. In this case the period of
the Josephson vortex structure is smaller than A, and Eq.
(1) becomes unadequate.

The equations for p(y, t) and H(x, y) which generalize

Eq. (1) to the case of y(y) changing over lengths much
shorter than A. can be written as

ij+ rig =— Ko du —sincp+ P,B'q
7T —oo A, QZg

(3)

H(x y)= f Ko
4~ k

[x +(y —u) ]' By
8Q

Here Ko(x) is a modified Bessel function and the x and y
axes are directed perpendicular and parallel to the plane
of the contact, respectively. The characteristic length I is
given by

4 j,
The integro-differential equation (3) reduces to Eq. (1) if
g(y) slowly changes over the length -A, ; thereby, Ko(u)
can be replaced by vr5(u). Otherwise, Eqs. (3) and (4) de-
scribe a nonlocal Josephson electrodynamics for which
the phase y(y) changes over a length much shorter than
that of H(x, y). Here Eqs. (3) and (4) take into account
only space variations of the phase of the order parameter
%=5, exp(iy), assuming the superconducting gap b, to be
uniform, and l ))g. This is valid if j, « jz, therefore,
the contact can still be considered as a weak link which
can carry the Josephson current density j, sine@. It is the
uniformity of 6 which enables one to generalize the
Josephson electrodynamics to the nonlocal case, regard-
less of particular microscopic mechanisms. Here we do
not consider the inhuence of anisotropy, tangential corn-
ponents of Ohmic currents which give rise to a term pro-
portional to j&" in Eq. (1), and also retardiation effects
which can arise for fast variations of y(t).

Depending on the relationship between j, and jI, Eqs.
(3) and (4) can describe two qualitatively different types of
vortices shown in Fig. l. At j, « ji, Eq. (3) reduces to
the sine-Gordon equation describing the J vortex in
which both the phase y(y) and the field H(y) vary over
the same length —A,z. As j, increases above jj, the
Josephson penetration depth A,z becomes shorter than A, ,
and so the phase p(y) and the field H (y ) in the vortex be-
gin changing over differential spatial scales; i.e., the su-
perconducting screening currents decay over the length

whereas the phase &p(y ) changes over the smaller
length l =A,&/k. In this case the J vortex turns into an
AJ vortex with highly anisotropic Josephson core which
is a phase kink of length I —jzg/j, ))g along the contact
and of width g in the transversal direction. Unlike the A
vortex, the AJ vortex has no normal core which appears
only at j, =j& due to the suppression of b, (r) in its center.
To describe the normal core structure at j,—j&, one has
to invoke both Eq. (3) and an equation for the gap b, .
Nevertheless, Eq. (4) with By/Bu =2vr6( u ) gives the
correct field distribution H(y) =($0/2nA, )Ko(y/A, ) in an
A Quxon in the London approximation which assumes a
pointlike core.

The 3J vortices arise at j& &j, & jz when the nonlinear
integral equation (3) cannot be reduced to the sine-
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Gordon form. An exact static solution of Eqs. (3) and (4)
which describes a single AJ vortex has been obtained in
Ref. 7. In this paper, I consider the dynamics of AJ vor-
tices which turns out to be different from that of J Aux-
ons. This is due to the fact that, unlike the sine-Gordon
equation (1), a more general integral equation (3) is no
longer Lorentz invariant in the case of zero dissi-
pation (rj =0), with the Swihart velocity c, =co~k z
=c/(8m', C) ~ being the maximum speed propagation of
electromagnetic waves along the contact. As a result,
the dynamic single-vortex solutions of Eq. (3) which de-
scribe AJ vortices moving with a constant velocity U at
g=0 cannot be obtained from the static solution by the
Lorentz transformation. Another distinctive feature of
AJ vortices is the existence of a highly anisotropic phase
core which turns into the normal core only at j,—jd.

The Josephson core manifests itself in a reduced pin-
ning force along any planar crystalline defect with

j, «jd (twins, stacking faults, grain boundaries, etc.)

which can become channels for preferential Aux motion.
For instance, for the most effective core pinning (see,
e.g., Ref. 10), the elementary pinning force fd

-a($0/4m') /l-agaj, /c is inversely proportional to
the core size l-gjd lj, in the optimum case of a pinning
potential varying over scales -l (here a is the volume
fraction occupied by pins). As a result, the longitudinal
pinning force fi, along any defect with j,« jd can be
much smaller than the intragrain fb due to the substan-
tial difference in the core sizes of AJ and A vortices
(l-gjd /j, and g, respectively). Hence it follows that any
percolative network of crystalline defects can strongly de-
form the normal cores of A Auxons, giving rise to weakly
pinned J or AJ vortices which can move along such a dis-
sipative network much more easily than intragrain
Auxons. As a first approximation, one can therefore
neglect the pinning of AJ vortices and consider their
viscous motion along the percolative network of "hid-
den" weak links, which, as will be shown below, results in
a nonlinear current-voltage (I V) characteris-tics in the
Aux-Bow regime.

The paper is organized as follows. In Sec. II some gen-
eral properties of moving J vortices needed for the fur-
ther comparison to those of AJ vortices are considered.
It is shown that qualitative features of the v (j,7)) depen-
dence can be obtained by a dimensional analysis, regard-
less of specific form of single-vortex solutions of Eq. (1).
In Sec. III the dynamics of AJ Auxons is analyzed. An
exact solution which describes the moving AJ Auxon at
i) )) 1 is obtained; the v (j, r) ) dependences are calculated.
On the basis of this solution, a self-consistent approxi-
mate description of the general case of arbitrary g is pro-
posed. Section IV is devoted to nonlinear flux-fIow re-
gimes caused by viscous motion of J and AJ vortices un-
der the action of the Lorentz force. Nonlinear voltage-
current ( V I) characteristics a-nd fiux-fiow resistivities Rf
for both types of vortices are calculated. Planar defects
are shown to change the field dependence of Rf(H) from
the linear Bardeen-Stephen law Rf ~H for A Auxons to
Rf ~H' for AJ vortices. In Sec. V manifestations of
the peculiarities of J and AJ vortices in resistive and
magnetic properties of superconductors are discussed.

II. JVORTEX

In the case of zero dissipation and driving force
(p = i) = 0), Eq. (1) has the well-known solution
q&=y(y —ut), which describes a moving J fiuxon,

y —Ut
q&(y, t ) =4 tan ' exp

&,Ql u—'/c, '
(6)

u(p, ii)=—
2+f 2

where the universal function f (p), which gives the
dependence of u on p in the overdamped regime g &) 1,
has been calculated numerically by Buttiker and Lan-
dauer. " As shown in Ref. 11, the value of f (p) mono-
tonically increases from 0 at p=D to 1.19 at p=1, the
function f (p) being linear at small p and having a down-
ward curvature (d f /dp )0). Hence it follows that the
dependence v(j) given by Eq. (8) also has a downward
curvature at g) g, and an upward curvature at g & g„
where i), —1. For instance, at small ri formula (8) allows
one to get an explicit dependence of u on p. In this case
v(p) sharply increases from 0 to c, at small p and then
remains constant as p increases. Therefore the details of
f (p) at p-1 do not affect the dependence u (p), which is
mostly determined by the behavior of f (p) at small p,
where f (P)=nP!4. ' ' Then Eq. (8) becomes

U = (9)&1+(4~/~P)'
This formula was obtained by McLaughlin and Scott by a
perturbation theory, ' although the qualitative features

where the velocity U can take any value from —c,
to c, and the phase y(y) changes over the length L
=A.J(1—u /c, )', which decreases as u increases. Be-
cause of such a Lorentz contraction, the vortex size L (u)
becomes comparable to X as U approaches c„which re-
sults in a dynamic crossover between J and AJvortices at
u ) u, —[1—(A, /A J ) ]'~ c, . Therefore, in the narrow
domain u, &u &c„Eqs. (1) and (6) become inadequate,
and the moving vortices are described by the more gen-
eral Eq. (3). We shall not discuss here the case u & u, in
more detail, assuming that L (u) &)A. .

For nonzero p and g, the fiuxon velocity u (p, i) ) is
determined by the balance of the Lorentz and viscous
forces. Although the function u (p, ii ) cannot be calculat-
ed analytically for arbitrary p and i1, one can obtain an
explicit dependence of U upon g by rescaling the coordi-
nate

g~(y —vt)/AJ(1 —v /c, )'~

Then Eq. (1) takes the form

p" +fy' —siny+P =0,
where f =i)u(1 v /c, )

—' As seen . from Eq. (7), the
single-vortex solution p(g), which satisfies the boundary
conditions y( oo )=27r, y( —~ )=0, and y'(+ ~ )=0, ex-
ists at a certain eigenvalue f which depends only on P.
Hence the velocity u (p, i)) can be expressed in terms of
f (P) as
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of the v (/3, 21) dependences at q « 1 virtually follow from
a dimensional analysis of Eq. (1).

The field distribution H(x, y, t) in the J fiuxon can be
obtained from Eq. (4), where one can replace the slowly
varying phase gradient Bg/Bu by its value at u =y. Then
performing the integration (see, e.g., Ref. 15) and using
Eq. (6), one finds

0o exp( —ix /A, )H x,y, t =
2~AL cosh(y vt)/—L (10)

where L =AJ+I —v lc, . Current lines in the J vortex
are shown in Fig. 1(c).

III. AJVORTEX

Now we consider the dynamics of the AJ vortex at
j, )jI. In this case one has to analyze the integral equa-
tion (3), which, in the coordinate frame moving with the
speed v, takes the form

arty'= ——f Ko( ~g
—u s)y"(u)du —siny+P .

Here v = v /c, is the dimensionless fIuxon velocity,
a=A, J/A, =(jilj, ) ~, and j& is given by Eq. (2). In the
nonlocal regime j, ))ji, s «1, the phase &p(y) changes
over the length I much smaller than X; therefore, the
function g"(u) in Eq. (11) decays much faster than the
kernel Ko(g). This allows one to replace Ko(u) by its ex-
pansion at small argument Ko(u)= ln(2/u) —C, where
C =0.577 is the Euler constant. ' Then the nonlinear in-
tegral equation (11) has the exact static solution
q&(y)=~+2tan '(y/I), ' which describes the Abrikosov
vortex with highly anisotropic Josephson core of length
I. For the moving AJ vortex, the solution of Eq. (11) is
sought for in the similar form

y(y, t ) =8+m+2 tan.y —vt
(12)

with the constants 8, v, and L to be found from Eq. (11).
By substituting Eq. (12) into Eq. (11), one can prove that
the ansatz (12) indeed gives an exact solution of Eq. (11)
in the overdamped regime g ))1 for which the term v y"
in Eq. (11) is negligible (see Appendix A). The values 0,
L and v are given by

0= sin 'P,
( 1 P2)

—1/2I

(13)

(14)

vo

&I —P' ' (15)

where vo=c, sly=Re /8vrAAs foll, o.ws from Eqs. (14)
and (15), the length L (P) of the vortex core and the ve-
locity v (P) monotonically increase with P and diverge as
j approaches j,(P~1). Therefore the increase of v re-
sults in the expansion of the AJ vortex at q))1, unlike
the Lorentz contraction of the J vortex at g((1. How-
ever, at P~1 formulas (14) and (15) should be modified,
since at large L —A, the scale over which the kernel Ko(u)

To obtain the second integral relation, we multiply Eq.
(11)by y" and integrate over g. This gives

(17)

xylo(i(i —$2le)dg, d(2
—f" g" sinydg .

Formulas (16) and (17) enable one to calculate the length
of the core L and the velocity v of the moving vortex
self-consistently by substituting Eq. (12) into Eqs. (16)
and (17). Then integrations in Eqs. (16) and (17) result in
the following equations for the variational parameters L
and v: 2vrvrt/s = 2rrf3 and —m.v /s =~a/s —m. cos8/s,
where s =L/A, J. Hence

L= I
(18)

P2/q2+& I —132
'

Pvov—
P'/q'+ &1—P'

At il (1—p )' ))p, formulas (18) and (19) reduce to
Eqs. (14) and (15). However, at P= 1 the term v y",
which comes from a nonzero capacitance of the contact,
eliminates the singularities in L (P) and v (P). The max-
imum values L(1)=Imp and v(1)=gee, increase with 21;

therefore, this approach is valid if L (1)«X, i.e., g & e
Note that qualitative dependences of L (P) and v (P) are
insensitive to details of y(y) and virtually follow from a
dimensional analysis of Eqs. (16) and (17). Indeed, if the
phase kink &p(y) has a characteristic width L, one can es-
timate the derivatives in Eqs. (16) and (17) as
dy/dy-2rr/L and d p/dy -2m/L, and obtai.n Eqs.
(18) and (19) with an accuracy to numerical coefficients.

Substituting Eq. (12) into Eq. (4) and making use of the
inequality L «A, , one can calculate the field H(x, y, t) in
the moving AJ Auxon by analogy to the static case. The
result can be presented in the form

(19)

4o +(L + ix~ ) +(y —vt)

2~A, ' (20)

At L =0, Eq. (20) reduces to the well-known solution of
the London equation for an 2 vortex with a pointlike
core for which H(x, y) has a logarithmic singularity at
x =y =0. By contrast, the field

changes turns out to be comparable to that of y"(u) and
the term v y" in Eq. (11)becomes essential even if il ))1.

When taking account of the term v y", formula (12) is
no longer the exact solution of Eq. (11). However, Eq.
(12) can be used as a basis for a self-consistent approxi-
mate scheme based on exact conservation laws, which
can be obtained as follows. First, we multiply Eq. (11)by
p' and integrate over g, taking into account the boundary
conditions p'(+ oo ) =0 and y( oo ) —g( —~ ) =2'. Then
the integrals of the first, third, and fourth terms in Eq.
(11) vanish, and we arrive at the following formula which
refIects the balance of the friction and Lorentz forces:

(16)
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H(0) =(Po/2m A, )[ ln(2A/L) —C]

in the center of an AJ vortex remains finite, due to the
finite size L of the phase core. The field distribution (20)
allows a clear geometrical interpretation; namely, the
current lines in the half-plane x )0 coincide with those
of a fictitious A vortex placed in the point x = —I., y =0
[likewise, in order to obtain H(x, y) at x &0, one should
put the A fluxon in the point x =L, y =0]. As j, ap-
proaches jd, the spacing 2L, between these fictitious A

vortices becomes of order g; thereby, the AJ vortex turns
into an A vortex with a normal core. On the other hand,
an increase of the vortex velocity U leads to an increase of
L (v), which may cause a dynamic crossover between AJ
and J fluxons at large v for which L (v) & A, . It should be
emphasized that at large distances x +y»1. ' from the
core the field H (x,y) in AJ vortex coincides with that for
A Auxon; therefore, the magnetic interaction of AJ vor-
tices remains the same as that for A Auxons.

Maxwell equation,

c fEdl= —f dxdy, (22)

U(y, t) = ——f H (x,y —vt)dx,—oo
(23)

where the field distribution H(x, y) for an arbitrary rela-
tionship between A, and kJ is given by Eq. (4). Substitut-
ing Eq. (4) into Eq. (23) and performing the integration
(see, e.g. , Ref. 15), one obtains

where the line integral is taken along the contour ABCD
shown in Fig. 2. This integral just gives the local voltage
across the sample, U(y, t), since the fields E(x,y) and
H (x,y) exponentially decay over the length A, ; therefore,
only the part AB of the contour contributes to the in-
tegral. For the steady-state flux motion (BH /Bt
= —v BH/By), formula (22) takes the form

IV. NONLINEAR RESISTIVITY
U(y, t)= —"e-ly--I/~ 0'(u —vt)du

Av - . ,B

41TAC —~ , Bu
(24)

A. Voltage distribution

V(y, t)=- Av By
2e By

(21)

This voltage is applied to the Josephson contact, unlike
the measured macroscopic voltage U(y, t) across a sam-
ple with the defect. Here U is defined as a line integral of
E(x,y) along a straight line AB perpendicular to the de-
fect, the distance AB being much larger than A, (Fig. 2).
To obtain a relationship between the local V(y, t) and the
macroscopic U(y, t), we use the integral form of the

Now we calculate the current-voltage characteristic
due to the viscous motion of vortices along the crystalline
defects, neglecting for simplicity the pinning effects. If
vortices move with a constant velocity [y(y, t)
=y(y —vt)], the Josephson voltage V(y, t) across the
contact is given by

Btp =2m g 5(u na —v—t) .
BQ

(25)

Hence it follows that, unlike V(y), the relationship be-
tween the macroscopic voltage U(y) and the phase gra-
dient By/By is nonlocal. If, however, the phase y(y)
varies slowly over spatial scales -A, , then one can put
exp( —~y~/A, ) =2A5(y), which reduces Eq. (24) to Eq. (21).
The latter corresponds to the weak-coupling regime
(A,J »A, ) for which the macroscopic voltage distribution
U(y) caused by moving J vortices coincides with the lo-
cal Josephson voltage V(y) across the contact. By con-
trast, in the nonlocal strong-coupling regime (A,J «A, ,

j, »ji), the voltage distributions U(y) and V(y) caused
by moving AJ vortices become different due to the
different spatial scales of H (y) and y(y).

As an illustration, we consider U(y) for a periodic
chain of AJ vortices with the period a much larger than
the core length L. In this case the derivative Bp/Bu in
Eq. (24) can be written in the form

Substituting Eq. (25) into Eq. (24), one obtains, after sum-
mation,

U(y) =- 0ov cosh(y —a/2 —vt)/A,~, 0&y &a,
2A.c sinha /2A,

(26)

A

where the function U(y) is periodic with period a. In
this case the macroscopic voltage distribution U(y) is
much smoother than the local V(y) across the contact.
For a single AJ vortex, formula (26) yields

U(y, t)= —(Pov/2Ac) exp( —
~y

—vt~/k),

FIG. 2. Voltage distributions V(y) and U(y) around a Auxon
moving along the planar defect parallel to the y axis. Here the
Josephson voltage V(y) is the local potential difference AN(y)
across the contact, whereas the macroscopic voltage
U(y)=@„—4~ is the potential difference between two points
2 and B which are far away from the Auxon.

which also follows from Eq. (24) with By/Bu
=2vr5( u —vt ).

In conclusion of this section, we derive a formula for
the mean voltage U averaged over the space variations of
y(y) along the contact of length Lo. Integrating Eq. (24)
over y, one obtains
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NoU ILo By Nov
du =

2~cLO o 0u ca
(27) 0H = ln —+yc1

4 ~2 ( 2 (34)

As follows from Eq. (21), the averaging of the local V(y)
gives the same result. Therefore, despite the difference of
the spatial distributions of V(y) and U(y), their mean
values prove to be equal.

B. Current-voltage characteristic

Now we use Eq. (27) to calculate the mean voltage V
caused by the moving vortex chain, where the spacing
a (H) between Auxons depends upon the external magnet-
ic field H. We consider here the case a ))L for which
the vortex cores do not overlap; therefore, the velocity
v (j) is determined by the above formulas for a single vor-
tex. In particular, for a J vortex, one has a =go/2KB, ,

where B(H) is the magnetic induction. Then Eq. (27)
reduces to V(j)= —2ABv (j)/c, where U (j) at g « 1 is
given by Eq. (9). Hence

a(H)=A, ln
A, (H H,i)— (35)

with yi=0. 497 (Ref. 19) and y2=1 —C =0.423. Note
that H„at defects is smaller than the bulk H, » due to
the gain in the core energy of the 3J vortex as compared
to the normal core of the A Auxon (1 )&g). Therefore the
magnetic Aux first penetrates planar defects, where the
equilibrium vortex density is higher than in the bulk. For
instance, at H, 1&H &H, » the intergrain 3 vortices are
absent, and the magnetic Aux penetrates a superconduc-
tor in the form of 3J vortex chains stretched out along
planar defects. The equilibrium spacing a(H) between
AJ vortices in the chain is determined by the minimum
of the thermodynamic potential, which yields (see Appen-
dix B)

Rgj
V(j)=

')/ 1+j '/j o

1/2
4 Aj,

Jo= ~R 2eC

(28)

(29)

with y3-1. This dependence is similar to that for 3 vor-
tices in the vicinity of H, ».

At H)H, » the situation is complicated by the pres-
ence of intragrain 3 Auxons. However, at H ))H, » the

At j « jo the V-I curve is linear, the specific resistance
RJ per unit area of the contact being

1/2
RB (H) ~A, e

4 Aj,

1..0

Formulas (28)—(30) are valid in the field region H
H„&H„, wher—e a ))AJ. Here H„=go/~ A, A,J is the

lower critical field for J vortices, and the dependence of 8
on H was calculated by Owen and Scalapino. ' Above
the bulk lower critical field H)H, », there appear in-
tragrain 3 Auxons, which gives rise to a dependence of
the effective Josephson penetration depth XJ upon H. '

The V-I characteristic for AJ vortices at g)) 1 can be
obtained from Eqs. (15) and (27), whence

C4 o.5

0.0

V= RAJJ
(31)

At j « j, the V-I curve is linear, with the specific resis-
tance RAJ given by

c4o 2m', Jt
AJ S~ak j, a J,

(32)

We consider here the dependence a (H) for two charac-
teristic field regions H„&H & H, », where H, » and H„
are the corresponding lower critical fields for 2 and AJ
vortices. The values H, » and H„are given by (see Refs.
9 and 7, respectively),

0
0.0 0.2 0.4 0.6 0.8 1.0

4o
H„b = ln —+y,

4m'
(33)

FIG. 3. Voltage-current characteristics of {a) a J vortex at

g && 1 and (b) an AJ vortex at q &&1 described by Eqs. (28) and
(31), respectively.
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equilibrium density of vortices is mostly determined by
their magnetic repulsion, regardless of details of the core
structure. In this case the difference in the core energies
of 2 and AJ Auxons becomes negligible as compared to
the characteristic energy of vortex interaction which is
the same for both A and AJ vortices. Therefore the equi-
librium densities of A and AJ vortices coincide over a
wide field region H„«H «H„(j, /j & ), where the
phase cores of AJ fiuxons do not overlap (a »AJ/A, ).
Hence it follows that a (H) =($0/H )'~, and formula (32)
for the Aux-Aow resistance R zz takes the form

cR
8~A, j,

(36)

V. DISCUSSION

The viscous motion of vortices along planar crystalline
defects can be essentially nonlinear, which can contribute
to the nonlinearity of I-V characteristics of superconduc-
tors in the Aux-Aow regime. As follows from the above
results, any planar defect with j, & jd results in the in-
crease of 1; thereby, the defect can turn into a channel for
the easier vortex motion. Note that the Aux motion
along the percolating network can considerably affect
temperature and field dependences of the Aux-creep rate
in high-T, oxides. ' A similar dissipative network for
the Aux motion has been obtained by Jensen et al. by
means of computer simulations of A vortices in a random
pinning potential, although this effect seems to be the
most pronounced for low-j, planar defects which give
rise to weakly pinned J vortices with l-A, J. Recently,
the preferential Aux penetration along crystalline defects
(twins) has been directly observed by Duran et al. by
means of a magneto-optical technique. Apart from the

This square-root field dependence of R „z(H) differs from
the linear dependence of the Aux-Aow resistivity upon H
given by the Bardeen-Stephen model, due to the one-
dimensional character of the vortex motion along planar
defects. '

For both types of vortices, the Aux-Aow resistances RJ
and RzJ are proportional to R, although their field
dependences are different. The V-I curves become non-
linear at high j due to the dependence of the core length
L upon v, the character of the nonlinearity of V(j) being
qualitatively difFerent for il »1 and il «1 (Fig. 3). For
instance, as a result of the Lorentz contraction, the
length of the J vortex at g «1 decreases as U increases
[see Eq. (6)]. By contrast, the core size L(v) of the AJ
vortex at g)) 1 increases as U increases, the singularity in
Eq. (31) at j =j, being eliminated by the effect of the
nonzero capacitance of the contact [see Eqs. (18) and
(19)]. A qualitatively similar v(j) dependence for the J
vortex at g »1 has been obtained in Ref. 11 by means of
computer simulations. Note that the above results give
an asymptotically exact description of two opposite re-
gimes, namely, j, « j&, il «1 (J vortex in contact with
high-resistivity R in the case of weak Josephson coupling)
and j, »j&, rj»1 (AJ vortex in contact with low-
resistivity R in the case of strong Josephson coupling).

weaker Aux pinning, this effect could be also due to the
local reduction of the lower critical field H, i, which re-
sults in a higher vortex density at planar defects due to
the gain in the core energy. This may pertain to the
elevated vortex density along the twin planes observed in
decoration experiments on YBa2Cu307 single crys-

1 25, 26

The structure of a single vortex and the character of
nonlinearity of the I-V curve in the Aux-Aow regime can
be quite sensitive to the relationship between j, and j&, as
well as to the value of the dimensionless damping con-
stant il= I/RCcoz. There are two characteristic limiting
cases j,« j&, q «1 and j,» j&, g)&1 for which exact
formulas (28) and (31) for V(j) can be obtained. The first
case could be considered as a model of high-angle grain
boundaries in high-T, superconductors which have low

j, and high contact resistance R due to local oxygen
deficiency, long-range strain fields, etc. ' Vortices local-
ized at such defects seem to be J vortices described by
Eq. (1) with&n the framework of local Josephson electro-
dynamics. As follows from Eq. (28), the V Jcharac-teris-
tic for J vortices at g « 1 has an upward curvature, with
V(j ) approaching RJj 0 at j» jo [Fig. 3(a)].

The opposite limiting case j, &)j&, g»1 may corre-
spond to coherent planar defects (twins, low-angle grain
boundaries, etc.) with high j, and low contact resistance
R. Such defects play the role of "hidden" weak links
which do not affect the magnetic structure of A Auxons,
but cause strong deformation of its core, which turns into
a highly anisotropic phase kink of length l along the de-
fect plane and of width g in the perpendicular direction.
Such an AJ vortex is described by a nonlocal Josephson
electrodynamics which results in the V-J characteristics
(31) with downward curvature and a singularity at j =j,
[Fig. 3(b)]. Besides the high-T, oxides, a similar situation
may occur in low-T, superconductors as well, for exam-
ple, in optimized high-j, NbTi alloys, where the strong
pinning is due to a dense network of thin [d =(0.2 —2)g]
a-Ti ribbons. Such ribbons may give rise to AJ vortices
which can more easily move along the network than in
the transversal direction for which the ribbons act as very
strong pinning centers. For a periodic stack of
s-i-s-i . or s-n-s-n. . . layers, this can be described
within the framework of the intrinsic pinning model for
which the linear dynamics of vortices along the layers
was considered by Clem and Coffey.
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APPENDIX A: EXACT SQLUTION OF EQ. (11)

In the case j& «j«j, and r) »1, Eq. (11) takes the
form

vily'= —f ln(~g —
u~ )y"(u)du + sing —P .

Substituting y"(u) = —4su /(s +u ) with s =L /A, J into
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Eq. (Al), the integral term can be transformed by means
of the identity (see, e.g., Ref. 15, p. SS6)

4S ln u
2 22

— 2~
2 2(u +s ) g+s

Then Eq. (Al) becomes

(A2)

2vtis 2ge 2s g cos0
$2+ 2 $2+ 2 (2+ 2

This equation can be written as

(s —
g ) sin0

p (A3}f2+ 2

[c,g +c2$+c3]/(s +g )=0,
with c& 23 depending on 0, s, and v. By equating the
coefBcients c& 2 3 to zero, one obtains

write the thermodynamic potential G of the vortex chain
per unit length in the standard form (see, e.g., Ref. 9)

G= H„H—+ g Ko . (Bl)
4~Q

At H H„—«H„, the distance a(H) exceeds A, ; there-
fore, only the vortex interaction with the nearest neigh-
bors is essential. In this case one can retain only the term
with n =1 in Eq. (Bl) and use the asymptotic formula
Ko(z) =(tr/2z)'~ exp( —z). ' Then Eq. (Bl) becomes

1/2
No 0o a6= H, )

—H+ exp
27TQ 2g 27TQ

(B2)
sin)9 =p,
s cosO= E

—vg=s sinO,

which reduces to Eqs. (13)—(15).

(A4)

(AS)

(A6)
0o aH —H, )=

2A2 2
1+ 3'

2Q

a
exp (B3)

The value Q is determined by the minimum of G, which
yields

APPENDIX 8:
EQUILIBRIUM DENSITY OF AJVORTICES

We consider here two limiting cases H —H, &
«H„

and H))H, &. In the first case, there is only a periodic
chain of 2J vortices in the contact, and the bulk 3 Aux-
ons are absent. If the period of the chain, a (H), is much
larger than I, the core structure of AJ vortices does not
affect their equilibrium density, which is mostly deter-
mined by the vortex magnetic interaction. The latter is
the same as that for 3 Auxons, which enables one to

Equation (B3) determines the equilibrium period a (H) of
the AJ vortex chain at H —H„«H„. With a logarith-
mic accuracy, a solution of Eq. (B3) is given by Eq. (35),
where y3 is a number of order of unity.

At H)H, &b the intragrain 3 Auxons should be taken
into account. However, at H))H, &b the density of AJ
vortices coincides with that of 3 vortices, since both of
them are determined by the same magnetic vortex in-
teraction, which is insensitive to details of the core struc-
ture.

'D. C. Larbalestier, Phys. Today 44 (6), 74 (1991).
2L. B. IofFe and A. I. Larkin, Zh. Eksp. Teor. Fiz. 81, 707 (1981)

[Sov. Phys. JETP 54, 378 (1981)].
3M. Tinkham, Phys. Rev. Lett. 61, 1568 (1988).
4A. Gurevich, Phys. Rev. B 42, 4857 (1990).
~L. Ji, M. S. Rzchowski, N. Anad, and M. Tinkham, Phys. Rev.

B 47, 470 (1993)~

6A. Barone and G. Paterno, Physics and Applications of the
Josephson E+ect (Wiley, New York, 1982).

7A. Gurevich, Phys. Rev. B 46, 3187 (1992).
8N. Gronbech-Jensen, S. A. Hattel, and M. R. Samuelsen, Phys.

Rev. B 45, 12454 (1992).
9A. A. Abrikosov, Fundamentals of the Theory of Metals

(North-Holland, Amsterdam, 1988).
A. M. Campbell and J. E. Evetts, Adv. Phys. 21, 199 (1972).
M. Buttiker and R. Landauer, Phys. Rev. A 23, 1397 (1981).

~2M. B. Fogel, S. E. Trullinger, A. R. Bishop, and J. A.
Krumhansl, Phys. Rev. Lett. 36, 1411 (1976); Phys. Rev. B
15, 1578 (1977).
D. %'. McLaughlin and A. C. Scott, Phys. Rev. A 18, 1652
(1978).

'4P. Lebwohl and M. J. Stephen, Phys. Rev. 163, 376 (1967).
t51. S. Cxradshteyn and I. M. Ryzhik, Tables of Integrals, Series,

and Products (Academic, New York, 1980).

A similar static solution has been obtained for dislocations be-
ing in the Peierls potential [see, e.g. , J. P. Hirth and J. Lothe,
Theory ofDislocations (McGraw-Hill, New York, 1968)].

~7C. S. Owen and D. J. Scalapino, Phys. Rev. 164, 538 (1967).
L. N. Bulaevskii, J. R. Clem, L. I. Glazman, and A. P.
MalozemofF, Phys. Rev. B 45, 2545 (1992).
C.-R. Hu, Phys. Rev. B 6, 1756 (1972).
This value y2 =0.423 difFers from the incorrect value

y, =1.118 of Ref. 7.
V. M. Pan, G. G. Kaminsky, A. L. Kasatkin, M. A. Kuznet-
sov, V. G. Prokhorov, V. L. Svetchnikov, C. G. Tretiachenko,
V. S. Flis, S. K. Yushchenko, V. I. Matsui, and V. S. Melni-
kov, Supercond. Sci. Technol. 4, S48 (1992).
A. Gurevich, H. Kupfer, and C. Keller, Europhys. Lett. 15,
789 (1991).
H. J. Jensen, Y. Brechet, and A. Brass, J. Low Temp. Phys.
74, 293 (1989); H. J. Jensen, A. Brass, A.-C. Shi, and A. J.
Berlinski, Phys. Rev. B 41, 6394 (1990).

4C. A. Duran, P. L. Gammel, R. Wolfe, V. J. Fratello, D. J.
Bishop, J. P. Rice, and D. M. Ginsberg, Nature 357, 474
(1992).

25L. Ya. Vinnikov, L. A. Gurevich, G. A. Emel'chenko, and Yu.
A. Osip'yan, Pis'ma Zh. Eksp Teor. Fiz. 47., 109 (1988) [JETP
Lett. 47, 131 (1988)];Yu. A. Osip'yan, V. B. Timofeev, and I.



NONLINEAR VISCOUS MOTION OF VORTICES IN. . . 12 865

F. Schegolev, Physica C 153-155, 1133 (1988).
G. J. Dolan, G. V. Chandrashekhar, T. R. Dinger, C. Field,
and F. Holtzberg, Phys. Rev. Lett. 62, 827 (1989).

~~L. D. Cooley, P. D. Jablonski, P. J. Lee, and D. C. Larbales-
tier, Appl. Phys. Lett. 56, 2284 (1991).

~8M. Tachiki and M. Takahashi, Solid State Common. 70, 291
(1989);72, 1083 (1989).
J. R. Clem and M. W. CoA'ey, Phys. Rev. 8 42, 6209 (1990);
M. W. Coffey and J. R. Clem, ibid. 44, 6903 (1991).


