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Canted ground states and the paramagnetic-antiferromagnetic
transition in semiconductor zinc-blende antiferromagnets
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Croup-theoretical techniques are used to analyze the paramagnetic-antiferromagnetic transition
in P-MnS and zinc-blende MnTe, which are both thought to undergo a transition to a canted antifer-
romagnetic ground state. Although the canting angle itself has remained inaccessible to experiment,
the magnetic transition is known to be first order. To date, canting angles of O, n./2, ir, 3ir/2 have
been analyzed theoretically and found to exhibit first-order transitions. The theoretical analysis is,
here, completed for arbitrary canting angles in the hopes of finding and then ruling out any canting
angles that give rise to a second-order transition. It is found that the group representation asso-
ciated with a canted ground state of arbitrary canting angle (other than ir/2 or 3ir/2) is reducible
and an argument is provided for a first-order transition to these states on a stronger basis than
the usual reducibility of the order parameter. One then concludes that the first-order nature of the
experimental transition provides no clue as to the actual canting angle.

The nature of the magnetically ordered phase of a zinc-
blende antiferromagnet with dominant antiferromagnetic
nearest- and next-nearest-neighbor interactions has been
a topic of debate for more than 30 years. To date, we
are aware of only two materials of this class that have
been synthesized, P-MnS and an epitaxially grown zinc-
blende phase of MnTe. ~ The initial experiments2 on P-
MnS showed antiferromagnetic order at the wave vector
k = (2ir/a)(2, 1, 0) where a is the lattice constant of the
chemical unit cell. The experiments are, in fact, con-
sistent with a continuum of magnetically ordered states
distinguished by what is referred to as the canting an-
gle. The magnetic unit cell for arbitrary canting an-
gle, 0, is shown in Fig. 1. For 0 = 0, 7r the structure
is just a type-III antiferromagnet predicted long ago by
Anderson to be the ground state of a face centered cu-
bic (fcc) crystal with dominant nearest- and next-nearest-
neighbor antiferromagnetic interactions in the parameter
range 0 ( J2/ Jq ( 1/2, where Jq and Jz are the nearest-
and next-nearest-neighbor exchange integrals, respec-
tively, and satisfy Jq, J2 ( 0. The zinc-blende structure,
unlike the fcc structure, lacks inversion symmetry which
then allows the existence of the Dzialoshinski-Moriya
(DM) anisotropic superexchange interaction. 's Taking

FIG. 1. Magnetic unit cell for a canted ground state with
canting angle 9. Note that the magnetic unit cell size is double
the chemical unit cell size along, in this case, the x direction.
All spins lie in the y-z plane.

into account both isotropic and DM superexchange as
well as the magnetic dipolar energy, Keffer proprosed
a 0 = vr/2, 3ir/2 ground state for P-MnS which was in
agreement with the known experiments and which he
deemed very likely to have the lowest energy. Experi-
ment, however, has not yet been able to probe the canting
angle and thus Keffer's work remains conjecture.

More recent attempts at characterizing the ordered
state have focused on the nature of the paramagnetic-
antiferromagnetic phase transition, i.e. , first or second
order, as a possible probe of the magnetic order. In
particular both P-MnS (Ref. 7) and zinc-blende MnTe
(Ref. 1) are known to undergo a first-order transition and
thus one can rule out proposed ground states that exhibit
a second-order transition. In this regard, Mukamel has
argued from renormalization-group ideas that the tran-
sition to the Keffer state should be first order. Bak and
Mukamel have shown that the order parameter for the
0 = O, vr state is associated with a reducible represen-
tation of the relevant space group which then suggests,
by the group-theoretical arguments of Landau, that the
0 = 0, m model also has a first-order transition. The arbi-
trary 0 model, i.e. , 0 g 0, 7r/2, ir, 3ir/2, has, however, not
yet been explored. The purpose of this paper, then, is
to complete the theoretical analysis for arbitrary canting
and, in particular, to inquire as to whether or not the
order of the transition depends on the canting angle.

The analysis of the paramagnetic-antiferromagnetic
transition presented below is based on Landau theory.
In particular, the paramagnetic space group for both
P-MnS and zinc-blende MnTe is F43m, . The canted
ground state of Fig. 1 is associated with the wave vec-
tor ki ——(2ir/a)(2, 1, 0). The star of ki consists of the
six vectors ki ——(2ir/a)(2, 1, 0), ki = (2ir/a)( —z, 1, 0),
kz —— (2n. /a) (0, —,1), k2 — (2ir/a) (0, —2, 1), ks
(2vr/a) (1,0, —), ks ——(2ir/a) (1,0, —

2 ) . The group of ki
is S4 which has both one- and two-dimensional repre-
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sentations, implying that the magnetic order parame-
ter associated with this wave vector is either 6- or 12-
dimensional. By applying the symmetry operations of
E43m to the magnetic structure of Fig. 1, one finds that
both the 0 = 7r/2, and 37r/2 states are described by a
six-dimensional order parameter and all other angles by
a 12-dimensional order parameter. A schematic of the
magnetic structures associated with the order parameter
components for arbitrary canting angle is shown in Fig
2. For brevity, only the four structures associated with
kq and kz are shown. The eight remaining structures
are obtained by applying rotations around the threefold
axis [111].To make clear the notation used in Fig. 2, the
number 1 in (ly), for example, refers to the fact that this
structure has a magnetic unit cell doubled in the x direc-
tion (2 refers to the y direction and 3 to the z direction)
and y refers to the fact that the leftmost plane of spins
is oriented along the y axis. Note that the structure (ly)
differs from (ly) in that the canted spins in the middle
plane are rotated by an angle (vr —20) from the canted
spins in the middle plane of structure (ly). The eight
structures not shown are (2x), (2x), (2z), (2z), (3x),
(3x), (3y), (3y). The 12 order parameter components
associated with these 12 structures are denoted P;
where i = 1, 2, 3 refers to the direction in which the unit
cell is doubled and p = x, y, z refers to the axis of spin
orientation as described for (ly) above. One then finds
that the order parameter components transform under
the generators of the symmorphic group E43m in the

/e

following way:
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FIG. 2. Schematic of the spin arrangements correspond-
ing to the 12 components of the order parameter. There are
four structures for each of the three cubic axes; only those
with magnetic unit cell doubled along the x direction are
shown. The four structures (2x), (2x), (2z), (2z) with mag-
netic unit cell doubled along the y direction have spins lying
only in the x-z plane and the four structures (3x), (3x), (3y),
(3y) with magnetic unit cell doubled along the z direction
have spins lying only in the x-y plane.

where Cl([ . ]) is an /-fold rotation axis along the [ ]
direction, i is the inversion operation, t([202]) is a trans-
lation of [202]a, and 0 is the canting angle. For example,
the transformation of Ply under t([202]) is found by ap-
plying a translation of [

—0 —]a to the structure (ly) of
Fig. 2 and expressing the resulting spin configuration as
a linear combination of (ly), (ly), (lz), (1z) (all spins
have unit magnitude).

As mentioned above, it is known from the work of
Bak and Mukamel that the representation associated
with the 0 = O, vr model is reducible and, as such, is
expected to exhibit a first-order transition according to
Landau's rules for continuous transitions. Given the
above transformation rules for the order parameter one
can now address the question of reducibility for arbitrary
canting. One finds, in fact, that the 12-dimensional rep-
resentation presented above reduces to two inequivalent
six-dimensional representations. The order parameters
of the two six-dimensional representations are related to
the order parameter of the original 12-dimensional rep-
resentation in the following way:
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(2)

where one of the six-dimensional representations is speci-
fied with g and the other with il and where the following
notation has been introduced: (;„=(re;~+ re;„)/2, (,„=
(P,„—P;~)/2, n(0)—:[1 —sin(0)]/cos(0), and P(0)
[1+sin(0)]/ cos(0). In fact, both the @ and g representa-
tions exhibit the KefFer ordering discussed in the Intro-
duction. In particular, the spin structure associated with
gi is obtained from (ly) of Fig. 2 when 0 = n/2, and
the spin structure associated with gi is obtained when
0 = 3ir/2. Thus @i and rji difFer from each other only in
their handedness (the difference in handedness for the @
and g representations is true for each pair of correspond-
ing components such as gi and rIi) if one considers the
handedness implied by the rotation of the spins on ad-
jacent planes along the x direction. One can then view
the spin configurations of the rl and g representations
as right-handed and left-handed KeKer ordering, respec-
tively.

Although the above demonstration of reducibility of
the order parameter would usually be sufhcient for ruling
out a second-order transition, this question is probed a
bit further in the light of the nature of the two irreducible
components @ and il. In particular, the above-mentioned
reducibility implies that the quadratic term in the free
energy for general canting will have the form

(3)

and thus given the Q and il representations differ only
in their handedness one may suspect that ri(P, T)
r2(P, T). If such is the case, then the transition is actu-
ally second order even though the order parameter corre-
sponds to a reducible representation. In this regard, note
that reducibility, by itself, does not imply a first-order
transition. A first-order transition occurs when ri(P, T)
and r2(P, T) do not simultaneously vanish at the tran-
sition point. To date, all experimentally realizable re-
ducible representations decompose into suKciently di8'er-
ent irreducible parts that simultaneous vanishing of the
quadratic coeKcients does not occur. It would, of course,

be quite interesting to find a system with a reducible or-
der parameter which exhibits a second-order transition
due to simultaneous vanishing of the quadratic coefB-
cients. The above arguments regarding the spin config-
urations of P-MnS and zinc-blende MnTe are sufficiently
inviting in this regard to warrant further discussion.

The goal is to prove or disprove the simultaneous van-
ishing of ri(P, T) and r2(P, T). By appealing to the mi-
croscopic spin Hamiltonian known to be appropriate for
both P-MnS and zinc-blende MnTe, one can actually
construct a convincing argument against simultaneous
vanishing. In particular, the appropriate spin Hamilto-
nian has the form

—) J;,S; S,. +) Di, i (Si, x Si), (4)
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where i and j range over both first- and second-nearest
neighbors, k and l over only first-nearest neighbors, and
where 1;~ is the isotropic Heisenberg coupling and DI, ~

the anisotropic DM coupling. By inspection of the (ly)
configuration of Pig. 2, one can see that the isotropic part
cannot distinguish the @ representation from the il one
(recall g corresponds to 0 = ir/2 and rI to 0 = 3ir/2). As
pointed out by KeKer, however, the DM interaction can
distinguish between the two representations, i.e. , either @
or g is lower in energy but exactly which one is lower can-
not be determined from the symmetry argument used by
KeÃer. Prom the point of view of a phase transition it
is then clear that the g and il representations will be as-
sociated with diferent transition temperatures, i.e., the
lower in energy of the two will have the higher transition
temperature, and thus simultaneous vanishing of ri (P, T)
and r2(P, T) will not occur. One thus concludes, from a
stronger position than reducibility of the order param-
eter, that the paramagnetic-antiferromagnetic transition
to a canted ground state of arbitrary canting angle (other
than 0 = ir/2, 3vr/2) is first order.

The above arguments coupled with Mukamel's
renormalization-group arguments for the special case of
0 = vr/2, 3m/2 then lead to the conclusion that the
paramagnetic-antiferromagnetic transition in P-MnS and
zinc-blende MnTe will be first-order regardless of the
canting angle. The experimental result of a first-order
transition implies that all canting angles are consistent
with experiment and that the nature of the transition
cannot be used to distinguish the canting angle in these
systems.
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The lifting of the degeneracy by the DM interaction is
unaffacted by inclusion of the leading order symmetric
anisotropy as it can be shown that the symmetric anisotropy
cannot distinguish the g representation from the rl repre-
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