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Inelastic-neutron-scattering measurements on cerium and plutonium monopnictides, thought to have
moderately delocalized f electrons, yield magnetic-excitation spectra with anisotropic dispersion; while
reasonably sharp excitations have been observed only for USb and UTe among presumably more-
delocalized uranium monopnictides and monochalcogenides. For UTe the broadening as well as the
dispersion is quite anisotropic. We have now extended our previous theory for the magnetic behavior of
hybridizing partially delocalized f-electron systems to include hybridization-induced relaxation effects in
the magnetic response, and this work and results are reported in the present paper. Each partially delo-
calized f-electron ion is coupled by hybridization to the band sea; and this both leads to a
hybridization-mediated anisotropic two-ion interaction giving magnetic ordering and also gives a damp-
ing mechanism, via the coupling to the band sea, for the excitations of the magnetically ordered lattice.
This coupling also provides a strong renormalization of the magnetic-excitation energies obtained for the
ionic lattice coupled by the two-ion interaction. To treat these effects on the magnetic response we have
developed a formalism for calculating the dynamic susceptibility based on the projection-operator
method developed by Mori and others. We have applied our model and theory to the behavior of CeSb,
CeBi, PuSb, UP, UAs, and UTe; and excellent overall agreement with the wide range of unusual experi-
mentally observed anisotropic magnetic-excitation behavior is obtained.

I. INTRODUCTION

The unusual magnetic behaviors of cerium and light
actinide (uranium and plutonium) monopnictides and
monochalcogenides with partially delocalized f electrons
have been studied extensively. ' The theory based on
an anisotropic two-ion interaction, which arises from the
hybridization of band electrons with f electrons, com-
bined with the crystal-field interaction, has been success-
fully used to explain the main features of the anisotropic
magnetic behaviors such as very large magnetic anisotro-
py, ' ' complex magnetic phase diagrams' ' (see Table
I), very small crystal-field splittings (8 K in CeBi and 37
K in CeSb), and anomalous electrical resistivity and static
susceptibility' behavior. The theory has also been used
to understand the unusual magnetic excitation spectra for
cerium and plutonium compounds.

However, the magnetic excitation behaviors observed
by the neutron-inelastic-scattering experiment. " are
still far from completely understood. For instance, for
CeBi and CeSb a puzzling problem' is that, although the
phase diagrams, the crystal-field splittings, and the order-
ing temperatures for the two materials are quite different,
their low-temperature magnetic excitation behaviors are
very similar: for both CeBi and CeSb the observed ener-
gy gap in the excitation spectrum at q=(000) is about 4.1

meV, the width of the observed neutron-scattering inten-
sity peak is less than 1.0 meV, and the Oat dispersion
curve has energy minimum at the zone boundary
q = ( 100 ) [wave vector q perpendicular to the ferromag-
netic planes (001)]. For the uranium systems the situa-
tion is even more complicated. Despite the well-defined
magnetic ordering (the pnicitide compounds are antifer-

romagnetic and the chalcogenide compounds are fer-
romagnetic, see Table I for the details), well-defined mag-
netic excitations are only observed for USb and UTe, ' all
the other compounds exhibit only a continuous spectrum
of magnetic response. Furthermore, the dispersion and
linewidth of the observed excitations in UTe are strongly
anisotropic. ' For q along the [111]direction both the
excitation energy and the linewidth increase significantly
on going from I to the zone boundary; while along the
[110]direction the energy increase is much reduced, but
the broadening increases rapidly.

Thus, the magnetic excitation behavior of plutonium
and uranium monopnictides and monochalcogenides pro-
vides a wide range of unusual behavior which has been
quite puzzling. We are now able to understand this
behavior as well as the related behavior of the less delo-
calized cerium monopnictides.

In our earlier work, ' we treated the unusual equilib-
rium and excitation magnetic behavior of cerium and
light actinide monopnictides and monochalcogenides
with partially delocalized f electrons by transforming the
hybridization between the band electrons and the f elec-
trons into resonant scattering from the correlated multi-
plet states of the ions. The exchange part of the scatter-
ing gives hybridization-mediated anisotropic two-ion in-
teractions, physically corresponding to cooperative hy-
bridization of the f-electron ions with the band sea, and
treating the Hamiltonian containing both the two-ion in-
teractions and crystal-field effects provides equilibrium
behavior of the observed unusual anisotropic type. We
then solved the equations of motion for the difference be-
tween the Hamiltonian and its mean-field approximation
to obtain the dispersion of the magnetic excitations in the
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TABLE I. Static magnetic properties of cerium and light actinide rocksalt structure compounds.

Compound

CeSb

CeBi

Pusb

UAs

UP

UTe

Lattice
parameter

(A)

6.4

6.49

6.24

5.78

5.59

6.16

Transition
temperature

(K)

16.2

25.0

127

125

104

Magnetic
structure

T & 8 K, AF-IA
T&8 K, AFP
T &12.5 K, AF-IA
T& 12.5 K, AF-I
T&67 K, F
T&67 K,
long-period AF
T &64 K, AF-IA
double k
T&64 K, AF-I
single k
T&23 K, AF-I
double k
T& 23 K, AF-I
single k
F

Easy
direction

&ooi &

&Oal &

& 110&

&ooi &

&iio&

& too&

Ordered
moment

(p& )

2.0

2.14

0.76

2.24

1.92

1.90

1.70

2.25

random-phase approximation (RPA). ' Relaxation of
the magnetic excitations was not included, and thus the
excitations had infinite lifetimes. In this paper we present
a relaxation theory for the magnetic excitations. We
treat the hybridization of the f electrons with the non-f-
band electrons as the main mechanism for the damping
of the magnetic excitations. This hybridization, besides
providing a mechanism for the indirect hybridization-
mediated two-ion exchange leading to magnetic ordering,
provides a mechanism for dissipating energy from the
ionic magnetic lattice to the band sea as a sink, thereby
damping the motion of that lattice. There is also a shift
of energy, i.e., renormalization, of the RPA excitation en-
ergies calculated in the absence of damping.

By using the projection-operator method developed by
Mori et al. ,

' we arrive at a formalism for calculating the
imaginary part of the dynamic susceptibility which is
proportional to the correlation function S(q, co), the
quantity that can be measured directly by the neutron-
scattering experiments. We first consider CeBi and CeSb.
The present theory answers the puzzling problem' of the
very similar excitation spectra observed for these other-
wise rather dissimilar antiferromagnets. We next apply
the theory to PuSb, which has intraionic correlation
eff'ects since the Pu + ion is a system with five 5f elec-
trons. This material has been well-studied experimental-
ly. However, the strongest challenge to the theory
comes from the uranium systems (involving U + three
5f-electron ions) since the f electrons in uranium systems
are much more itinerant than those in corresponding
cerium and plutonium compounds; and the site-based ap-
proach may be less valid for the uranium systems. '

Thus, it is significant that after including the strong
hybridization-induced relaxation, our site-based theory
satisfactorily explains both the continuous spectra ob-
served' ' in UAs and UP and the strongly anisotropic
dispersion in' UTe.

In our phenornenological theory presented here, two

independent types of hybridization-induced parameters
are used. These are the single-site hybridization strength
parameter cF and the range parameters E„characterizing
the two-ion anisotropic exchange interactions giving
magnetic ordering, respectively. (In the calculations we

use values of cPN(E~), where N(Ez) is the band density of
states at the Fermi energy; and three range parameters
E ] E2 E3 which give the strengths of the interaction be-
tween an ion and its first-, second-, and third-nearest
neighbors, are used. ) According to the formalism estab-
lished in our earlier work these two types of parameters
are closely related. ' However, at present, the first-

principles calculations necessary to relate 8 and E„have
not been performed for most of the compounds we dis-
cuss. Therefore, we choose the values of 8 and E„phe-
nornenologically and independently. The values of
ZN(s~) are determined by fitting the experimentally ob-
served linewidths at the Brillouin zone center. As we
move from Ce + to Pu + then to U + these values are al-
most constant. (First-principles calculated values for the
cerium compounds do provide a benchmark for compar-
ison. ) The values of E„are basically determined by
fitting the transition temperatures T& and Tc; and in
contrast to the HN(s~) behavior these values are about
ten times larger for the uranium systems than for the cor-
responding cerium systems, with the values of E„ for
PuSb being between these extremes. In Sec. IV, we will
discuss this contrast.

The organization of the present paper is as follows. In
Sec. II, we briefIy review the theory for the
hybridization-mediated two-ion interaction and the cal-
culation of the undamped magnetic excitations. The re-
laxation theory for calculating the dynamic susceptibility
is described in Sec. III. Application of the theory to ceri-
um, plutonium, and uranium systems and discussion of
the calculated results are given in Sec. IV. Finally, in
Sec. V, a summary of our results and conclusions is given.
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II. THEORETICAL BACKGROUND

In this section we briefly review the model for
hybridization-mediated interionic coupling in f systems
(N = 1,3, 5 for Ce +, U, Pu +, respectively) and the
equations-of-motion theory for the magnetic excitations.
Special attention will be paid to the direct band-f scatter-
ing term in the Hamiltonian when transformed to reso-
nant scattering form. Wills and Cooper have shown that
this direct interaction term is the key to understanding
the unusual deviation of the measured paramagnetic
crystal-field splittings from expected values for Ceai and
CeSb. Now we show that it is also responsible for a re-
normalization of the band states, which causes a broaden-
ing of the f levels and hence gives rise to a leveling off of
the value of the single-site hybridization strength parame-
ter 4, instead of a continuous rise as expected from our
earlier work as the f levels approach the Fermi level for
U + systems.

Hd;, = g iN (k, k') g nM +1—lV
k, k', M M'WM

X ( Ck M'CkM CM CM'

+Ck'M'CkMCMCM ) ~ (2.7)

with the single-site exchange parameter j given by

jN M(k k')=
c —8 —XUk M

i N 1( —k ) X nM' + Ck', MCk, M
M'WM

(2.6)

[iM, M'(k kI ) iMM (k'k~)]1

k, k' MAM'

Ek
—6M —XU

(2.8a)

A. Model Hamiltonian

H~ =H)+H2,
U

I X Eknk, M+ X @MnM+ g nMnM
k, M M M, M'

H2 X ( +k, MCk, MCM+ +k, MCM k M )

k, M

(2.1)

(2.2)

(2.3)

where k is the wave vector of the band electrons, M and
M' are the magnetic quantum numbers of the ionic states
(the localized states of the f electrons) and of the l =3(f )
components of the band electrons when expressed in
spherical waves about the site in question; c.k M are the
band electron energies; DM are the configuration energies
for the ion; U is the Coulomb correlation energy
difference between different configurations; Vk M is the
strength of the hybridization potential. Values of ck, 8M,
and U are measured relative to the Fermi energy c~. nkM
and nM denote the number operators, while CkM and CM
denote destruction operators for the band and ionic
states, respectively. Upon applying the Schrieffer-Wolff
transformation, a canonical transformation
e H~e designed to diagonalize H~ through first order
in H2 with S defined so that [S,H, ]= H2, the hybridi-—
zation Hamiltonian for the case of an f configuration
can be written as

k, k' M, M'
[

.M, M'(k

jN '
1 (k, )]Ck M' k, MCMCM

(2.4)

(2.5)

Following Ref. 2, we use the ionic (site-based) model
for describing these systems. The model Hamiltonian is
derived from the Anderson model in describing the hy-
bridization between the f and the band electrons. The
Hamiltonian for a single ion mixing with a sea of band
electrons is

For cerium systems, since U (of the order of 6 eV)
(which leads to a definite 4f' configuration) is much
larger than the energy of the f levels 6"M ( —2 eV with
respect to the Fermi energy), while 6'M is much larger
than the crystal-field splitting (of the order of 0.01 eV),
we neglect the difference between NM and 6'M and take
them equal to @f. Considering that most scattering
occurs in the vicinity of the Fermi energy, we take 8k=0.
Then the parameter j becomes

~ ~kM'iMM'
( k

f
(2.8b)

and the single-ion hybridization strength parameter is
given by

gMM'(k ki) MM (k ki) 'MM (k k~)'

6'f(6'f+ U)
(2.8c)

To extend our theory to the systems with more than one
f electron per ion, the basic assumption2' is that the
single-site scattering event consists of a one-electron (out
of the many-electron ionic state) exchange only; all the
quantum numbers of all the other electrons in the ion
remain the same; and the scattering, being a single-
electron process, does not affect the other electrons. (The
many-particle excitation effects will be considered below
in treating the relaxation effects. ) Thus, only one electron
at a time hybridizes with the band electrons, in spite of
the fact that there is more than one f electron in the ionic
system. In other words, QMnM= 1, and we should take
X= 1 in all the equations [Eqs. (2.4)—(2.8)] no matter how
many f electrons there are. In plutonium systems,
Pu +(5f ), the Coulomb integral U-4 —5 eV and 6f —2
eV; and since the relative sizes are not that much
changed from Ce (4f '), it is appropriate to assume that
our theory for Ce + (hence all the equations) can also be
applied to Pu + systems. However, for U (5f ) sys-
tems, due to the smaller Coulomb configuration energy U
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Hex + g g Ck'M Ck, MCMC, M'

k, k' M, M'
(2 9)

and the two-ion exchange interaction takes the form

(-2—3 eV) the fluctuations between configurations be-
come important. Furthermore, the smaller f energy (f
levels are located -0.5 eV below the Fermi energy) gives
a large hybridization potential V&M and makes U + sys-
tems more itinerant than Ce + and Pu + systems. Recal-
ling that in our previous work V&M was treated as the
smallest perturbation compared to the other energies,
such as U, 8I, and the spin-orbit splitting, it seems ques-
tionable to apply the theory to systems like U + with
much larger VkM. In the present work, we have exam-
ined the change in hybridization as the f levels approach
the Fermi energy, and have seen that, despite these im-
portant changes in behavior, the basically ionic (site-
based) picture still provides a useful description of relaxa-
tion effects. Thus, we continue to neglect the fluctuations
between configurations, and still treat V&M as a perturba-
tion for U +(5f ) systems. We choose UAs, UP (which
have smaller lattice parameters and presumably have the
larger Vk~), and UTe (with larger lattice parameter and
hence presumably smaller VkM) as examples to test our
theory, and compare our results with experiment for
these materials.

As shown by Eqs. (2.4) —(2.7), the net effect of the
Schrieffer-%'olff transformation, to second order in H2, is
to replace the band-f hybridization interaction term in
the Hamiltonian by a direct scattering term Hd;„an ex-
change scattering term H,„, and an f fband term -K&.
As stated above, we neglect the fluctuations between
configurations for the f-electron ions. Therefore, we
neglect the f fbanding ter-m H&, which creates or des-
troys two f electrons on the ion. Then the exchange
scattering Hamiltonian H,„given in Eq. (2.5), treated in
second-order perturbation theory on band states accord-
ing to the theory developed by Cooper and Siemann, ' re-
sults in an indirect hybridization-mediated anisotropic in-
teraction between f states on two ions, which is generi-
cally related to the Ruderman-Kittel-Kasuya- Yosida
(RKKY) interaction; but where the interaction with the
band electrons is through the orbital rather' '~" than
the spin part of the f-electron moment.

Since the band states enter the overall magnetic
response as probed by the scattered neutrons globally, the
dependence of j (k, k') on k and k' can be neglected.
Thus, for simplifying the calculation, following Coqblin
and Schrieffer, in Eq. (2.8) we neglect the dependence of
j (k, k') on k and k', and take a cutoff energy D in-
dependent of M and M', so that j =0 if IEkl or

I Ek I
)D; where the cutoff energy D is chosen to be of the

order of the mean value of the 8M. (This procedure is
consistent with the phenomenological framework used in
the present work in treating the equilibrium magnetic or-
dering. In those treatments of the equilibrium magnetic
ordering where we have included detailed band
behavior, ' ' ' " we have found only quantitative
refinement of the results using this approximation. ) Then
the exchange scattering Hamiltonian H„ takes the form

H, ,= — g 7',(R; )L'g'-',",
P, V, E) C7

(2.10)

R, is the displacement between sites i and j, and

g ea(R ) E geo (g)
—i(P —v+e —o )P

PV lJ lJ PV (2.12)

with

(2.13)

Here indices, M, M', X, and X' are summed over all pos-
sible M (magnetic quantum number) values for the
ground-state multiplet of the ion; 8 and P are the polar
and azimuthal angles of the interionic axis R; with
respect to axis of quantization chosen along a cube edge
direction the crystal; d &(8) is the rotational transforma-
tional matrix as is conventionally defined; the Ej are
range functions giving the strength of the exchange in-
teractions and are treated as phenomenological parame-
ters with E„giving the strength of the interaction with
the nth nearest neighbors, and

gNN' —~ gMM'g NN'
MM' ~ mm' mm'

m, m'
(2.14)

where m and m' are the magnetic quantum numbers of
one electron within the ion. The A are defined in terms
of the scattering coe%cients A ~ as

gMM' A
MM' mm MM

A NN
~mm '~MM'

mm' mm' 2g + $
mm

N

(2.15)

The scattering coefficient A ~ corresponds to first add-
ing (removing) a band (localized) electron with magnetic
quantum number m to (from ) the ion state IJ,M') to
produce an f +

(f ) intermediate state, and then re-
moving (adding) a localized (band) electron with magnet-
ic quantum number m' to give the final state

I J,M ). The
detailed description of the evaluation of A ~ and an ex-
ample of its calculation are given in Refs. 5 and 2 and 4,
respectively. It has been shown' that, in the limit of
large R;., the dominant single-site scattering processes in
the two-ion interactions are those involving f electrons in
the m =+—,', m& =0, m, =+—,

' states, and for the ionic sys-
tems containing more than one f electron, the next-to-
dominant scattering channels (single-site scattering pro-
cesses involving f electrons with m =+—,', m& =+1,
m, =+- —,') may be critical for determining the correct
polarization in magnetically ordered systems.

The direct scattering term Hd;, given in Eq. (2.6) has
been used to explain the anomalous small crystal-field
splittings in CeBi and CeSb. The diagonal (k=k') ele-
ments in Hd;, give a shift in the f-state energy levels. For
the rocksalt structure Ce + monopnictides, treating Hd;,
as a perturbation on the bare crystal-field levels, Wills
and Cooper have shown that the hybridization between

where p, v, e, o. refer to the ionic states, and transition
operators I.„are defined as

(2.11)
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c,'= y (s~k)c„', (2.16)

where ~s) denotes the scattered state, the nondiagonal
(krak') elements in the direct scattering term Hd;, give
rise to a renormalization of the band states. Following
Kondo, this yields a phase shift of the band states scat-
tered by the f states:

m Vp(E, )
tan5(E, ) =—

[1—VP fp(e„)l(E, —E )de„]
(2.17)

where P denotes the principal value of the integral, p(E, )

is the density of band states, and V is the strength of the
hybridization potential defined by Eq. (2.3).

Toulouse and Coqblin have shown that this phase
shift yields a renormalization factor of 8 given by

z= y(s~k) '= d5(E~)

mp(E„) dV
(2.18)

Combining Eqs. (2.17) and (2.18) we have

band states and f states affects the I s quartet of the Ce +

4f5&& manifold more strongly than the I 7 doublet of that
manifold. The difFerence in band- f hybridization be-
tween the I 7 doublet and the I 8 quartet changes the
splitting of the bare crystal-field levels. They calculated
the relative shifts in the I"7—I 8 splitting for Ceai and
CeSb and found that the calculated change in the
crystal-field splitting gives excellent agreement with the
deviation of the measured crystal-field splitting from
values expected from extrapolation from other rare-earth
monopnictides. For simplifying the calculations we treat
this hybridization-induced anomalous crystal-field split-
ting by choosing the so-called hybridization-dressed
crystal-field parameter [B4, defined below in Eq. (2.21)]
to fit the experimental behavior.

In addition to the hybridization dressing effect on the
crystal-field splitting, another related effect that should
also be included in the theory is the renormalization of
the single-site hybridization strength parameter 8 caused
by the direct scattering term in the Hamiltonian. When
we diagonalize the Hamiltonian (Hi +Hd;, ) by a transfor-
mation Hcp =B4(04+504), (2.21)

where 0" are the Stevens operators. The crystal-field
splits the ground-state ionic multiplet into doublet I"7 and
quartet I 8 states with crystal-field splitting Ac„=360B4.
If 84)0, the ground state is a I7 doublet; while the
ground state is a I 8 quartet if 84 & 0.

For the U + systems (J=—,') with cubic symmetry, we

follow the notation of Lea, Leask, and Wolf ' and specify
the crystal field through use of their parameters Wand x.
Then the crystal-field Hamiltonian is

g4+5g4 O' —210',
H,„=W x +(1—lxl) (2.22)

For U3+(5f ), parameters Wand x are related to V~ and

V6 through the relations

V4 = —57.552 Wx,

V6= —10.446W(1 —x ) .

(2.23a)

(2.23b)

both 8 and I increase dramatically; but the increase of I
tends to reduce 8, and the net effect yields an only slight-
ly increased renormalized value 8,ir. This effect is very
important for the U + cases. Although the energy
difFerence between the f levels and the Fermi energy for
the U + ions ( -0.5 eV) is much smaller than that for the
Ce + ion ( -2 eV), instead of a rapid increase in 8, we ex-

pect the effective value of 8 to be almost a constant as we
move from Ce + to U +. This picture provides a basis
for choosing the phenomenological input value of cF in
our theory. In Sec. IV C, we will discuss this further.

In our previous work, ' ' the effect of the crystal
field in splitting the levels of the ground-state multiplet of
specified J (the total angular momentum of the ion) value
has been shown to be one of the vital factors for under-
standing the main features of the magnetic behavior of
moderately delocalized cerium and plutonium systems.
(The other key factor is the strongly anisotropic two-ion
interaction. ) For these J=—', systems with cubic symme-

try, the crystal-field Hamiltonian can be written as

R= (2.19)
r'+(@~+7 )~

where I =m. V p(e~) is the half-width of the f levels, 6&
is the energy of f levels measured from the Fermi energy
E~~ and )'= V H(ez), where H(e~) is the Hilbert trans-
formation of p(e~). Finally, the effective 4 value is

V 8
jef f

I +(6 + )2
(2.20)

Comparing with the original formula cF=
~

V~ /6& ob-
tained by the Schrieffer-Wolff transformation, the direct
scattering Hamiltonian (which gives rise to a phase shift
of the band states and thus a finite linewidth of the f lev-
els), yields a renorinalized hybridization strength parame-
ter 8,~. As the f levels move close to the Fermi energy,

Since the experimental values of V6 are much smaller
than V4, we neglect V6 and take x =1 in our model cal-
culations. Here V4 and V6 are related to the factors B(4)
and B(6) defined in Ref. 31. They determine the scale of
the crystal-field splitting and are linear functions of (r )
and ( r ), respectively, the mean fourth and sixth powers
of the radii of the magnetic electrons, and thus depend on
the detailed nature of the magnetic ion wave functions.
When x =1 and W is positive, the crystal-field states ob-
served in order of increasing energy are a quartet I 8", a
quartet I 8 ', and a doublet I 6, while when x=1 and
W&0, the order becomes I 6, I 8 ', and I 8". The overall
crystal-field splitting is about 0.8 V4.

Summarizing the above discussion, our model Hamil-
tonian for a single ion at site i interacting via hybridiza-
tion with the lattice of other ions can finally be written as
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UHc= $ EknkM+ $ e~n~+ —$ n~nM +Hc„
k, M M MM'

$ VMM(R(J. )L~~Lgy .
j MM' NN'

(2.24)

(HQ)MF= y y 6'„L„'„',
I

(2.25)

where 6'„denotes the energy of the MF state ln & on site

We solve the eigenvalue problem for H0 in the mean-field
(MF) theory, and the MF Hamiltonian is given by

where P= Ilk~ T. In this section we use the projection-
operator method developed by Mori et al. ' to derive the
formalism for obtaining the dynamic susceptibility.

Generally, a susceptibility can be written as '
y~~(z)=i I dt e"'& [At, B( t—)]&

=( ~&, (3.2)

where A and B are the dynamic variables, and X is a
Liouville operator defined by

B. Equations-of-motion treatment of excitation behavior

To study the magnetic excitations we project the
Fourier transformation of the Hamiltonian defined in Eq.
(2.24) into the MF manifold. We treat the difference be-
tween the Hamiltonian Hc of Eq. (2.24) and its mean-field
approximation (Ho )MF as a perturbation of the mean-
field Hamiltonian. Using the random-phase-
approximation (RPA) and the commutation relation

Since

& [A', B]&
= I d~& A 'e ~&B & =@& A I&IB &,

0

F-I Structure

Ei = 1535 K

T=4K
JN (EF) = -008

(3.3)

(3.4)

I:(Ho)MF L.'. ]=(@.—@.)L.'. (2.26) 12

and at low temperature considering only those transitions
denoted by L„, or L,„where 8, is the mean-field
ground-state energy, and n%1 (appropriate transitions in
the low-temperature regime), we have the equations of
motion for the magnetic excitations

[Ho —(Ho )MF, L q„. ]=2( & L„„&—
& L„,„, & ) g 7„.„Lq

mm'

(2.27)

10

8
E

CD

0.22 I 3/2) & 0.981- 5/2)

4
3 0.61 [ 5/2) & 0.80 I -3/2)

III. RELAXATION EFFECTS ON EXCITATIONS

To understand the unusual spectrum observed by the
neutron inelastic scattering we calculate the imaginary
part of the dynamic susceptibility Imp(q, co) [or y"(q, co) ]
which is proportional to the correlation function S(q, co)
and hence proportional to the diA'erential neutron-
scattering cross section via

0 -S(q, co)— 1
Imp(q, co),

1 —e
(3.1)

The thermal average &L„„& is unity if n is the ground
state (n =1) and zero otherwise. The dynamical matrix
is a 10X10 matrix, including upward and downward
transitions between the ground state and each of the five
excited states for a J=—', system, such as Ce +(4f ') and
Pu +(5f ). For U +(5f ) systems, J=—,', there are nine
excited states, and hence the matrix is 18X18. On di-
agonalizing the dynamical matrix we obtain the magnetic
excitation modes. For these RPA modes, the calculation
of the intensities is straightforward (see Ref. 2 for the de-
tails). The more intense modes along the (001) and (100)
directions are indicated by the more heavily drawn parts
of the dispersion curves shown in Figs. 1 and 2. (The
boldly drawn parts of the curves indicate modes with in-
tensity difFering by at most a factor of 4 from the most in-
tense mode. )

0.98 I 3/2&-0. 221 -5'2)

0
X(100) X(001)

FIG. 1. Calculated dispersion curves for excitations in the
AF-I phase of CeSb at T=4 K with E~ =0.4E„E3= —0.28E&,
and 60B4 =0.5E, for q along [001] and [100] (directions parallel
and perpendicular to the moment direction, respectively).
E] =15.35 K to match experimental T&=16.2 K. The solid
curves show the behavior calculated in the random-phase ap-
proximation (RPA). The heavily drawn solid curves show the
intense modes expected to be observed in the RPA. The energy
levels of the molecular-field states and their compositions in
terms of the angular momentum eigenstates (quantized along
[001]) are shown on the far right. The dashed curve is the cal-
culated dispersion curve after including the damping and shift
effects with PX(cF)= —0.08. The dotted curve shows the ex-
perimental results of Rossat-Mignod et al. (Ref. 12) at T=4 K
for CeSb.
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we have

xga(z)=P(A 8)

X (0)=P& ~ l»,
(3.5)

(3.6)

Next we introduce the projection operator '

Q—= 1 —l~ &&~l~ &-'& ~l—= 1 —P .

If we use the expansion relation

1 1 1 11+—XQ+ 2 XQXQ+
z —XQ z z

(3.9)

(3.10)

—jg~~(z) —yAB(O)]= —P(A
1

= —PC„a(z) .

Here Czz(z ) is an autocorrelation function defined as

C„~(z)=(A(D) B(0))
1

z —X

(3.7)

and the algebraic operator identity

1+
x —y x x —y

we obtain

1
C~ii(z) =

& &
C„~(0),

z —Q —X

(3.11)

(3.12)

=I dt e "'& A(0)e ' '8(0)& .
0

CeBi AF-I Structure

(3.8)
where

and

n, =
C~ii (0)

(3.13)

0)
E

8
CD

CD

LLJ

Ez/E i —— 1

5

E i
—— 18.94 K

T =38K
JN (EF) = -0.09

6
044

I
3/2) 0-901 5/2

I
-«2&

0.90 I 3/2& 41 5/2
4

I1/2 &

022 I 5/2) i- 0.98 I 3/2&

(3.14)

%=X(P+Q),

Qlw &=0.

(3.15)

(3.16a)

(3.16b)

This provides the needed formalism, and we now re-
turn to the problem at hand. %'hat we need is the mag-
netic dynamic susceptibility. If we write the angular
momentum operator J as

X(z) is the Laplace transform of the memory function '

and 3 =d A /dt To o.btain Eq. (3.14) we have used

J=gJ „L
m, n

(3.17)

with J „=&m Jln & and L „=lm &&n I, then according
to Eq. (3.5) the single-ion magnetic susceptibility y(z ) can
be rewritten as

0
X(100)

1
0.98 I 5/2) -0.22 I -3/2)

X(001)

Ol

(3.18)g(z) PQ g J„„J„(L„„=..
mn m'n'

FIG. 2. Calculated dispersion curves for excitations in the
AF-I phase of CeBi at T=3.8 K, with E2 =El, E, = —0.05E„
and 60B~=0.1E, for q along the [001] and [100j directions.
E, =18.94 K to fit the experimental T&=25 K. The solid
curves show the behavior calculated in the random-phase ap-
proximation (RPA). The heavily drawn parts of these curves
show the intense modes expected to be observed in the RPA.
The dashed curve shows the calculated result after including the
relaxation e6'ect with gX(cz) = —0.09. The dotted curve shows
the experimental results of Rossat-Mignod et aI. (Ref. 12) at
T=4 K for CeBi. The energy levels of the molecular-field states
and their compositions in terms of the angular momentum
eigenstates are shown on the far right. where

z —(8 —6„)—0 „,„,—X

XC „,„,(0),

1—ly(z) —y(0)]=f3+ g J„J .„C „„(z),
mn m'n'

with the autocorrelation function

(3.19)

(3.20)
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=i(L„ lL,„,&c-„',„,(o), (3.21)

series in QXQ and use the relations'

(3.25a)

(3.25b)
~mnm'n' mn Q ~ Q Lm n 'C'mnm'n'(0)

(3.22) and the general commutation rules

(3.26)

C „.„.(0)= (L„ lL (3.23) [Lmn &Lm'n']+ Lmn'5nm' —Lm'n 5mn' (3.27)

Treating the single-ion hybridization exchange scatter-
ing interaction H,„given by Eq. (2.9) as the main relaxa-
tion mechanism for the damping and the line shifts of the
magnetic excitations our Hamiltonian is

(3.24)

We characterize Ho of Eq. (2.24) by the excitation energy
gaps 6' and excitation transition operators L „. Here
m, n denote the ground state and five excitation states for
Ce + and Pu + systems, and nine excitation states for
U + systems.

We expand 1/(z —QXQ) in Eq. (3.22) as a power

X „„(co)=—2F „(ri))+ g [F i(~)+Fi„(co)]
CO I

xc „' .„.(o)5 5„„, (3.28)

Then the line broadening is given by —,
' ImX „.„. and

the line shift is 0 „„+ReX „„.We have calculat-
ed Q, and for the systems we have investigated the contri-
bution of A to the shift is small and is therefore neglect-
ed. The calculation of X is straightforward. Up to order
of 8 we have

Cmm, mm +m (3.29)

C „„(0)= 55„„T— (3.30)

ReF „(co)=2[HN(EF)] (p„—p )coin
27TT

co —6 +6„—(p„—p )co Re+ 1 i—
2mT

co —6 +6'„
+(p„—p )(@—e„) Re+ 1 i—2' T

—Re%' 1—i 2' T
(3.31)

ImF „(co)=2mp„[SN(E~)] (co —6 +6„) —P(co—8 +@„)
1 —e

(3.32)

Here p„are the thermal occupation numbers of the states
ln &, D is the cutoff energy of the band [see discussion
preceding Eq. (2.9)], and %' is the digamma function
defined as

q(z)= I dr
0

e
—tz

Rez)0 .
1 —e

(3.33)

IV. RESULTS AND DISCUSSION

In this section we apply the theory to Ce +, Pu +, and
U + systems. We attack the problem of finding the exci-
tation damping effects sequentially. We first solve the ei-
genvalue problem for Ho of Eq. (2.24) in the mean-field
theory, (Ho)MF [Eq. (2.25)], to obtain a (2J+1) energy-
level structure including effects of the hybridization-
mediated two-ion interactions and the crystal-field effects.
We phenomenologically choose the set of range parame-
ters Ei E2 E3 and the crystal-field parameter B4 to fit
the observed equilibrium magnetic properties (such as
phase diagrams, transition temperatures, magnetic mo-

ments) and the crystal-field splittings. The second step is
to solve the equation of motion, Eq. (2.27), in the mean-
field representation for Ho —(Ho )M„ to obtain the
magnetic-excitation dispersions in the random-phase ap-
proximation (RPA). Then the imaginary part of the dy-
namic susceptibility can be obtained from Eqs. (3.19),
(3.20), and (3.28)—(3.32). In this step only one adjustable
parameter SN(sF ), the product of the single-site hybridi-
zation strength and the band density of states at the Fer-
mi energy, is introduced.

A. Application to CeBi and CeSb

Among cerium compounds, the rocksalt structure
monopnictides and monochalcogenides of cerium provide
a class of anomalous compounds with highly unusual
magnetic properties. In particular, the heavier mono-
pnictides, CeSb and CeBi, are characterized by a very
large magnetic anisotropy favoring alignment along the
cube-edge direction of the NaC1 lattice, ' a large reduc-
tion of the crystal-field splitting from the value expected
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from extrapolation from the heavier rare-earth monopn-
ictides, a complex magnetic phase diagram containing
unusual magnetic structures, and unusual magnetic
excitation spectra. "' These anomalous features of the
cerium monopnictides are distinct from those often found
in other cerium compounds in which strong f-d-electron
interactions give rise to "Kondo-like" (f-moment screen-
ing) behavior.

CeSb exhibits the most complex phase diagram, con-
taining at least 14 different magnetic structures for exter-
nal field H &70 kOe. It orders with a first-order
transition at T& ——16.2 K and undergoes six additional
first-order phase transitions in zero field. The high-
temperature phases ( & 8. 5 K) (referred to as AFP) are
commensurate with the lattice and correspond to a
periodic stacking of nonmagnetically ordered (P ) and fer-
romagnetic (001) planes with an up and down magnetiza-
tion along a [001] direction and a moment that is close to
saturation ( -2. 1@ii ). ' In zero field, the nonmagnetic
planes are isolated, i.e., they always have neighboring up
and down ferromagnetic planes, and the distance between
the P layers increases with decreasing temperature.
Below 8.5 K the nonmagnetic planes disappear, giving a
type-IA antiferromagnetic structure (++——). On the
other hand, CeBi has simpler, though still unusual, mag-
netic structure behavior. "' It orders in a type-I (+—)

antiferromagnetic phase at 25 K and undergoes a transi-
tion to a type-IA antiferromagnetic structure at about
12.5 K. The direction and magnitude of equilibrium mo-
ments are as in CeSb. The equilibrium properties of CeSb
and CeBi are summarized in Table I.

Additional unusual behavior is seen in the crystal-field
measurements. For both CeBi and CeSb the observed
magnitudes of the crystal-field splitting are much smaller
than the extrapolated values from other rare-earth
monopnictides. The expected magnitude of crystal-field
splitting between I ~ and I 8 should be 247 K for CeBi
and 264 K for CeSb, while the observed values are
about 8 and 37 K, respectively. As we have pointed out
in Sec. II, this behavior can be understood by the hy-
bridization dressing effect.

The large cube-edge anisotropy ' and complex phase
diagrams found in CeSb were successfully ex-
plained' ' ' on the basis of the hybridization-mediated
two-ion interaction acting along with the cubic crystal-
field interaction using the theory discussed in Sec. II. It
was found that upon choosing the range parameters
Ei = 15~ 35 K E2 =0.4E] E3 = 0.28Ei and the
crystal-field splitting parameter 60B~=0.5E, ( b ci;=45
K), that the high-temperature AFP structure can be sta-
bilized, and it undergoes a phase transition to a type-IA
antiferromagnetic structure at about 8.5 K.

Beside the unusual equilibrium behaviors some very in-
teresting dynamic features have been observed in CeSb
and CeBi in neutron-inelastic-scattering experiments.
For neutron-inelastic-scattering studies on polycrystalline
samples, Heer et al. " reported that there is only one
well-separated inelastic peak observed for both CeSb and
CeBi. At low temperature ( (4 K), the position of the
peak is 5.2 meV for CeBi and 4. 1 meV for CeSb; and the
full linewidth at the half maximum of the peak energy is

1.2 meV for CeBi and 1.0 meV for CeSb. Later Rossat-
Mignod et al. ' reported that for both CeBi and CeSb the
energy gap in the magnetic excitation spectrum at
q=(000) is 4.1+ meV, the linewidth is less than 1 meV,
and the spectrum is almost dispersionless across the
whole Brillouin zone except near the zone boundary at
q=(100) where the energy minimum occurs. This close
similarity for CeBi and CeSb found in Ref. 12 is quite
surprising because the crystal-field splitting and the or-
dering temperature are quite different.

Our theory can satisfactorily explain this puzzling
problem. The spectra observed by Rossat-Mignod'
(shown by the dotted curves) and the calculated results at
low temperature for CeSb and for CeBi are shown in
Figs. 1 and 2, respectively. The energy levels of the
mean-field states and their compositions in terms of the
angular momentum eigenstates (quantized along [001])
are shown on the far right in the figures. The six mean-
field energy-level states are no longer the pure crystal-
field doublet I ~ and quartet I z states, but are a mixture
of these because of the strong two-ion interactions. To
determine the values of the range parameters E„E2,E3
and the hybridization dressed crystal-field parameter B4
for CeSb, following Kioussis et al. we choose the ratios
E2/E, =0.4, E3/E, = —0.28, and 60B4/E, =0.5 to sta-
bilize the correct antiferromagnetic AFP phase in the
temperature range 8.5 & T & 16.2 K and the type-IA
structure below 8.5 K, and the value of E&=15.35 K to
fit the experimental Tz = 16.2 K. (For this E„
hc„=360B4-—45 K, is quite close to the observed value
of 37 K.) While for CeBi, the ratios are E2/E, =1,
E3 /E

&

= —0.05 to stabilize AF-I and AF-IA antiferro-
magnetic phase above and below 12.5 K, respectively,
E

&

= 1 8 ~ 94 K to fit the experimental T~ =25 K, and
608' /E

&

=0. 1 to fit the observed crystal-field splitting
~c~-8 K

Using the mean-field states as a basis we calculate the
magnetic excitation dispersions by solving the RPA equa-
tion of motion, Eq. (2.27). The calculated dispersion
curves for excitations in the AF-I antiferromagnetic
phase at low temperature are shown in Figs. 1 and 2 by
the solid curves for CeSb and CeBi, respectively. (To
simplify the calculations, the AF-I phase is used instead
of the AF-IA phase at low temperature. While the IA
structure by reducing the Brillouin zone allows some ad-
ditional band splittings, in practice, ' ' these are small
and would be expected to have negligible effect on the
way in which the band structure affects the relaxation. )

For CeSb, for q along the [001] ordered-moment direc-
tion the dominant modes in intensity, which are expected
to be observed in experiments, are L» and L5], which
have an excitation energy minimum ( —5.5 meV) at
q=0. 5 and maximum ( —7. 5 meV) at both the I point
and the zone boundary (L2i has significant intensity but a
very low energy, and it might be difticult to be dis-
tinguished from the experimental peak around zero ener-
gy transfer); while along the [100] direction the energies
of the most intense modes L2„L», and L6, are strongly
q dependent. (We note that for CeSb, because we have
adopted the range and crystal-field parameters of Ref. 7,
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designed to reproduce the unusual magnetic structural
behavior in the appropriate temperature ranges, the or-
dered moment at low temperature differs significantly
from the experimental near-saturation value. ) For CeBi,
a most intense mode, which is a mixture of L4, and L6,
modes, with a Oat excitation dispersion with energy gap-7.2 meV through the whole zone from the I point to
the zone boundary is obtained for q along the [001] direc-
tion. And, as in CeSb, along [100] we obtained the mode
intensity sharing effect and the strongly q-dependent en-
ergies.

The extreme discrepancy between the predicted RPA
(heavy solid curves in the figures) and the observed' (dot-
ted curves) magnetic excitation dispersion curves for
CeSb and CeBi can be removed if we include in our cal-
culations the strong renormalization of the magnetic ex-
citations caused by the hybridization-induced relaxation.
The damping and shifts of the magnetic excitations result
in completely different spectra from the RPA results.
The dashed curves in Figs. 1 and 2 are our calculated
dispersion spectra after the relaxation is taken into ac-
count at low temperature for CeSb and CeBi, respective-
ly. They exhibit the following behavior: the excitation
energy transfer is -4. 1 meV for CeBi and -3.7 meV for
CeSb at the I point, and there is a Hat dispersion curve
across most of the Brillouin zone except near the zone
boundary at q=(100) where the energy minimum occurs.
Along (001) this fiat curve is the result of the correlated
combination between the RPA L» and L5& modes, while
along (100) it is the result of the correlated combination
between L», L», and L2, . The most striking fact is that
the predicted spectrum for CeSb is almost identical with
the predicted spectrum for CeBi except that the excita-
tion energy is slightly smaller for CeSb ( —3.7 meV com-
pared with the observed' -4. 1 meV). In this step of the
calculations the only adjustable parameter is cfN(e~).
We choose its values to fit the experimental linewidths at
the Brillouin zone center. Since the observed linewidths
are" about 1 meV for both CeSb and CeBi, and the ex-
perimental resolutions are also about 1 meV, it is dificult
to determine what the real line-widths are. We choose
PN(e~)- —0.08 for CeSb and ——0.09 for CeBi (com-
pared to the first-principles calculated value of —0.07 by
Wills and Cooper for both CeSb and CeBi) to fit the
linewidths of 1 meV at the I point. From Eqs. (3.28),
(3.31), and (3.32), the linewidth and the line shift from
RPA go quadratically as cFN(cF). Thus, for example, in
CeSb changing SN(eJ; ) from —0.08 to —0.06 (as com-
pared to the first-principles calculated value of —0.07)
would cut the linewidth and line shift almost in half, i.e.,
reduces the linewidth at I from about 1 meV to about 0.5
or 0.6 meV.

Note that the values of range parameters E&, Ez, E3,
and crystal-field parameter 84 determined by previous
static calculations are kept unchanged when we calculate
the damping and shifts of the magnetic-excitation spec-
tra. It is quite impressive that by using only one adjust-
able parameter SN(ez) (to fit the experimental linewidths
at the Brillouin zone center only) our theory fully ex-
plains the very unusual similarity of the anisotropic mag-
netic excitation behaviors for CeSb and CeBi observed by

Rossat-Mignod. ' Because we use the same set of param-
eters in the calculations to obtain both correct static and
correct dynamic behaviors at the same time, some small
sacrifice must be made. For CeSb, to obtain both the
complex phase diagram and the correct dispersion at the
same time, the calculated magnitude of the intense mode
energy is not quite as good in overall comparison to ex-
periment as that obtained for CeBi which has a much
simpler phase diagram; and as noted above, for CeSb the
ordered moment at low temperature differs significantly
from the experimental near-saturation value.

B. Application to PuSb

Among plutonium monopnictides with the rocksalt
structure PuSb is the one which has been best studied
both experimentally' ' and theoretically. ' ' PuSb
shows magnetic structures with strong [001] anisotropy.
It orders in a longitudinal polarized (modulation wave
vector parallel to the moment direction) long-period anti-
ferromagnetic below the T&=85 K and undergoes a
first-order transition to a [001] ferromagnet at T=67 K.
At 10 K in the ferromagnetic phase, the ordered f mo-
ment is (0.76+0.03)pz, and an almost dispersionless
magnetic transition with an energy of 4.3 THz was ob-
served in the neutron-inelastic-scattering studies on a sin-
gle domain crystal. At the zone boundary for the wave
vector q = ( 100) (transverse to the magnetization) there
exist two excitations: the mode at 4.3 THz polarizes
along the [010] direction (transverse to both the magneti-
zation and the wave vector), whereas the mode at 3.5
THz has polarization along the wave vector ([100] direc-
tion). At (0.7,0,0) two separate modes can no longer be
distinguished.

In previous theoretical studies, ' ' by transforming
the band-f hybridization into a band-f resonant scatter-
ing from the correlated multiplet states of the plutonium
ions, and considering only the scattering processes that
involve f electrons in the m&=0, m, =+—,

' states (for
quantization along the interionic axis) which dominate
the two-ion interactions, the major features of the unusu-
al static magnetic behavior of PuSb have been under-
stood. The large magnetic anisotropy and the main
features of the unusual magnetic phase diagram were ex-
plained ' in the mean-field framework. However, the
correct longitudinally polarized antiferromagnetic phase
could be satisfactorily obtained only by considering the
contribution of additional scattering channels (single-site
scattering processes involving f electrons with m&=+1,
m, = + —,

' ). The magnetic excitation spectrum as ob-
tained in the RPA by solving the equations of motion [see
Eq. (2.27)] showed remarkable agreement with the unusu-
al experimental behavior with one important discrepan-
cy. This is that we predict that the major mode intensity
across the Brillouin zone is not in the 1argely dispersion-
less mode (and hence also our lower-energy mode at the
zone boundary does not occur at an energy minimum).
(See Fig. 6 of Ref. 5. The discrepancy is that across most
of the zone, the theoretically predicted intensity is con-
centrated in the mode labeled L4, rather than in that la-
beled L3, . Note that in the figure caption, q along [100]
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is mislabeled as being parallel, rather than perpendicular
to the moment direction. )

Now we apply the relaxation theory to PuSb to see
what happens. Using the same values of the range pa-
rameters EI =121 K E2/EI =1 E3/E] = —0.306, and
the crystal-field parameter 60B4/EI = —0.38 used in ear-
lier work, we have calculated the imaginary part of the
dynamic susceptibility vs frequency. We find that (1) the
relaxation effect shifts the magnetic-excitation spectrum
somewhat toward lower energies across the whole Bril-
louin zone for q in both the [001] and the [100] direc-
tions; (2) for values of PN(E+) in the range
—0.06——0. 10 the damping effect changes neither the
shape of the dispersion curve nor the polarization of the
modes. This leaves unresolved the remaining discrepancy
between theory and experiment for the PuSb behavior,
the intensity distribution between the modes labeled L3]
and L4& in Fig. 6 of Ref. 5. Presumably, the present
treatment of the subtleties of the 5f Pu + intraionic
coupling (intraionic correlation effects) is adequate' to
capture the correct polarization of the magnetic struc-
ture, but is not sufhcient to capture the mode intensity
distribution. We note that a large negative value of
PN(E~) ( (—0.09) eliminates having two branches at the
zone boundary with q along [100] (transverse to moment)
direction. Hence the appropriate value of 8N(EF ) should
be less negative than —0.09, and we chose it to be —0.08
to fit the correct linewidth of -0.5 THz at the I point.

It is interesting to notice that contrary to the Ce +

cases, in which the damping and shift effects dramatically
change the dispersion, for PuSb the damping of the exci-
tations does little to change the spectrum; and, on the
other hand, the value of range parameter E& =121 K is
about six times larger than in the cerium cases (E, -20
K) despite the value of PN(E~) being the same for both
systems. The lack of change in the value of 8N(E~) is
reasonable because for PuSb the magnitude of @I, the en-

ergy difference between the f levels and the Fernu ener-

gy, is almost equal to that in the Ce + systems (-2 eV).
Hence, the strength of the band-f hybridization is of the
same order. The question is how to explain the fact that
for PuSb there is a large increase in the two-ion interac-
tions (characterized by E, ) when the single-ion hybridi-
zation strength cF does not increase from the Ce + cases.
We believe that the large increase in EI is from the
band-structure difference between the Pu + and Ce +

systems with regard to the f foverlap, and we w-ill dis-
cuss this matter below in Sec. IV C.

C. Application to UAs, UP, and UTe

The uranium monopnictide and monochalcogenide
compounds, which form in NaC1 structure, show a great
variety of interesting magnetic properties associated with
the behavior of the 5f electrons in these materials. '

In particular, the pnictides order antiferromagnetically
with a variety of magnetic structures and transitions,
while the chalcogenides order ferromagnetically. USb or-
ders in a 3-k type-I structure below T& of 214 K, UAs or-
ders at about 125 K in a single-k type-I structure and un-
dergoes a phase transition to a 2-k type-IA structure at

about 66 K with an ordered magnetic moment -2.24pz
at low temperature, UP also orders in a single-k type-I
structure at T&=125 K and goes to a 2-k type-I struc-
ture at about 23 K with an ordered moment —1.9p~,
UTe is in a ferromagnetic structure at all teInperatures
below T, = 104 K and at 5 K exhibits a magnetic moment
of 2.25p~ with the easy direction being (111).The stat-
ic magnetic properties are summarized in Table I.
Despite the well-defined magnetic ordering, clearly
defined magnetic excitation lines, as might be expected,
are not observed in neutron-inelastic-scattering experi-
ments on these systems except for USb and UTe which
have larger lattice parameters. Instead there appears to
be a continuous spectrum of magnetic response. ' Even
when clearly defined collective magnetic excitations are
observed as in USb and UTe, these are imposed on a
broad continuum, and the clearly defined excitations tend
to disappear well below the transition temperatures. De-
tailed information for UTe is available through neutron-
inelastic-scattering experiments performed by Lander
et al. ' on a single domain crystal of ferromagnetic UTe.
They observed very large anisotropy of both the disper-
sion relations and the damping of the excitations. The
excitation transition energy at I is about 3.6 THz, and
the full linewidth at half maximum is -0.5 THz; along
the [qqq] direction the energy rises to 8.8 THz, and the
linewidth increases to 1 THz at the zone boundary
q=0. 5; in the [qq0] direction the excitation starts with
the same dispersion as along the [qqq ] direction, but by
q =0.25 the dispersion is much reduced, and the curve is
essentially fIat at -5.3 THz for 0.35&q &0.55. Along
this direction the broadening increases rapidly. The
linewidth is greater than 2 THz at q =0.4, and the mag-
netic response peak cannot be observed for q )0.55.

Although intensively studied in the past ten years, the
unusual magnetic properties discussed above are still far
from completely understood. Because, in contrast to
their 4f counterpart in cerium, the wave functions of the
5f electrons in uranium are spatially much more extend-
ed and the corresponding states are energetically less
stable (f electrons are more itinerant), a site-based ap-
proach is not of general validity. On the other hand, the
band-based itinerant approach is probably too extreme in
the opposite direction. Uranium compounds thus stand
at the interface of localized and itinerant magnetism.
Our theory, a site-based approach, is strongly renormal-
ized by the hybridization-mediated two-ion interactions,
the hybridization dressed crystal-field interaction, and
the hybridization-induced relaxation. In this section we
apply our theory to U +(5f ) systems. Among the com-
pounds with small lattice parameters we choose UAs and
UP as examples, while in the compounds with the larger
lattice parameters, we choose UTe to test our theory.
The results show that our theory is appropriate for
describing the unusual magnetic behaviors observed in
uranium monopnictides and monochalcogenides.

Since the Coulomb integral U of —3 eV is much larger
than the energy difference between the f levels and Fermi
energy (-0.5 eV), we neglect the fluctuations between
different configurations and assume 5f as the stable
configuration for U +. Because of the large spin-orbit in-
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teraction which gives a J=—', ground state, I9/2 is taken
to be the quasi-ion ground state. The crystal field splits
this into a doublet I 6, a quartet I'8", and a quartet I'8 '

states. We then carry out the mean-field calculations in-
cluding both hybridization-mediated two-ion interactions
and the hybridization dressed crystal-field splitting and
obtain the mean-field states and energy levels. The strong
two-ion interactions remove the degeneracy in the
crystal-field I 6 doublet and I'8" and I'8 ' quartet states,
and this results in 10 system energy-level states. For UAs
and UP, the range parameters E&,E2,E3 are determined
by the following criteria: (1) choosing the ratios E2/E,
and E3 /E

&
to stabilize the correct antiferromagnetic

phase at low temperature, and (2) choosing the value of
E& to match the experimental T&, while the values of
crystal-field parameters 8 and x are chosen to obtain the
correct magnetic moments at low temperature. For UAs,
we choose E2/Ei =1 E3/E~ = 0.5 to obtain the AF-I
phase and E& =500 K to fit T&=127 K; the values of 8'
and x are chosen to be —0.02E& and 1 (b,cF=460 K) to
give the observed moment 2.0pz, and for UP, the ratios
are E2/E, = 1, E3/E, = —0.6 to stabilize the AF-I phase
and E, =215.5 K to match the experimental T&=125 K,
W= —0.05E„and x = 1 (Ac„=496 K) to obtain the mo-
ment -2. 1p~. Notice that the easy direction is (100)
for UP and (001) for UAs (where the single-k structure
propagates along (001)). When we calculate the reso-
nant scattering coefficient A in Eq. (2.15) the addi-
tional scattering channels (m =+—,', mI=+1, m, =+ —,')
have to be included beyond the dominant scattering
channel (m =+—,', m& =0, m, =+—,

'
) to obtain the correct

polarization for UAs as we did in the case of PuSb. For

UTe, we choose the ratios E2/E, =1 E3/E, = 0.5 to
stabilize the ferromagnetic phase in the entire tempera-
ture range below T, =104 K, E, =150 K to fit observed
T„W=0.005E, and x =1 (hc„=34.5 K) to give the
moment -2.6p&.

In the mean-field representation at low temperature we
calculate the dispersion and then the damping of the
magnetic excitations for the AF-I structure with mo-
ments periodically stacked along [001] in UP and UAs,
and for the ferromagnetic structure with the easy direc-
tion along [111]in UTe. Figures 3 —5 show the imaginary
part of the dynamic susceptibility g"(co) vs frequency A'co

for UAs, UP, and UTe, respectively. Beside the parame-
ters E& E2 E3 8' and x, which remained unchanged
from their values used in the mean-field calculations, we
also use a parameter SN(E~) Its. values are chosen to be
—0. 11 for UP, —0. 12 for UAs, and —0.09 for UTe.

As can be seen in Fig. 3 for UAs, at T= 11 K, broad
continuous responses are obtained at both the zone center
and at the boundary q=(001); while a very broad excita-
tion is distinguishable at q = (100). For UP, Fig. 4 shows
that at T =4.2 K a very broad excitation can be
identified at the I point with a full linewidth at half max-
imum of -5 THz, but a continuous spectrum is obtained
at q= (001) and (100).

The most interesting results are obtained for UTe
(shown for specific q values in Fig. 5, and with the calcu-

UP AF-I Structure, T = 4.2K, JN(EF) = -0.11

UAS AF-I Structure, T = 11K, JN(6, ) = -0.12

q = (100)
CL
X
(D

= (001)

(001)

q = (000)

0 h) (THz)
FIG. 3. Calculated imaginary part of the dynamic suscepti-

bility g"(co) vs energy %co for the AF-I phase of UAs at T=11
K at the zone center q=(000) and zone boundaries (001) and
(100). The range parameters are E2 =E„E3= —0.5E

&

(E& =500 K to match T& = 127 K); the crystal-field parameters
are 8'= —0.02E &, x = 1; the dynamic parameter
8X( ) = —0. 12.

I

10
I

14
I I I I

0 2 4 6 8

v cu (THz)
FIG. 4. Calculated imaginary part of the dynamic suscepti-

bility y"(cu) vs energy %co for the AF-I phase of UP at T=4.2 K
at the zone center q=(000), and at the zone boundaries (001)
and (100). The range parameters are E2=E&, E3= —0.6E&
(E& =215.5 K to match experimental T&=125 K); the crystal-
field parameters are 8'= —0.05E„x=1; and the dynamic pa-
rameter gN(c, z) = —0. 11.
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FICx. 6. The three vertical bars show our calculated excita-
tion energies and half widths superimposed on the experimental
dispersion behavior found by Lander et al. (Fig. 6 of Ref. 18)
for UTe.

FIG. 5. Calculated imaginary part of the dynamic suscepti-
bility y"(co) vs energy fico for ferromagnetic UTe at T=4 K at
the (q=O)I point and at q=0. 5 along both [qqq] and [qqO].
The range parameters are E,=E&, E, = —0.5E& (E, =150 K to
match the experimental T, =104 K); the crystal-field parame-
ters 8'=0.005E& and x = 1; and the dynamic parameter
ax(~F ) = —0.08.

lated broadened excitation energies compared to the ex-
perimental overall dispersion of Ref. 18 in Fig. 6). At
T=4.5 K the calculated excitation energy is 3.4 THz and
the linewidth is -0.6 THz at the zone center; along the
[qqq] direction the energy rises to 5.0 THz, and the
linewidth increases to —1 THz at the zone boundary
q =0.5; while in the [qq0] direction the calculated width
of the excitations increases very rapidly to greater than 2
THz, but the excitation energy increases only a moderate
amount to -3.8 THz at q =0.5. These results (the cal-
culated shape of the dispersion curve and the linewidths)
are in good agreement with the experimental results of
Lander et al. ' As can be seen in Fig. 6, the anisotropy
of the broadening is captured quite well; and the only
discrepancy between our calculated excitation behavior
and the observed excitation behavior at low temperature
is that the predicted energy increase is not as rapid as ob-
served on going from I to the zone boundary.

To understand why a distinguishable excitation occurs
only at the I point for UP and only at q= (100) for UAs,
but not anywhere else in the Brillouin zone, we carefully
examined the predamping excitation modes. We found
that because of the strong anisotropic hybridization-
mediated two-ion interactions, which remove the degen-
eracy of the crystal-field states to form a complicated 10-
energy-level system and yield a strongly anisotropic exci-
tation dispersion (strongly q dependent), along certain
directions and for certain values of q there is only one in-
tense excitation, while outside these certain regions of q
space there may exist two or more intense modes sharing
intensity. In the former cases, no matter how large the
damping eff'ect is [how large the value of SN(EF) is
chosen] one can always identify a broad excitation, but in
the latter cases, if these intense modes are close enough in
energy, the broadening e6'ect will cause the overlap of
peaks. In that case the relatively large value of PN(ez)
washes out all the peaks and yields a continuous
response. The same thing happens in the magnetic exci-
tation spectrum in UTe. The broad response at q=0. 5
along the [qq0] direction is actually a composition of
four peaks which share the intensity and happen to be
close enough in energy so that the large damping e6'ect
washes out these peaks, and the final linewidth is essen-
tially the summation of the widths of four peaks. On the
other hand, going across the Brillouin zone from the I
point to the boundary along the [qqq] direction there is
only one intense mode, and the moderate increase in the
linewidth in this direction comes merely from the in-
crease of the excitation energy but not from the overlap
of peaks.

The value of the crystal-field parameter 8 plays a cru-
cial role in the behavior just described for UTe. For posi-
tive values of 8'ranging from 0.001E, to 0.01E„giving
a crystal-field quartet ground state, the calculated energy,
linewidth, and dispersion of excitations are almost the
same. They are all in good agreement with the experi-
ment. But for any negative 8' which yields a I 6 doublet
ground state if there is no two-ion interaction, no matter
what values of E„E2,E3, and HN(E~) are chosen, we
can never bring the intense modes close enough to form a
broad peak at q=(0. 5, —0.5,0), and an excitation spec-
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trum with multiple peaks, which is not in agreement with
experiment, is obtained.

From the above discussion we conclude that (1) the
crystal-field splitting in UTe must be a positive value (I'8
quartet rather than I 6 doublet crystal-field ground state),
and (2) the complex behavior of the magnetic excitations
is closely related to the physical picture involving the
two-ion interactions and the crystal-field interactions as
defined through the parameters E„E2, E3, and W (or
B4). One can see how in the absence of this physical pic-
ture and description, one has the usual situation where a
different set of parameters must be used in the static and
in the dynamic calculations to get good theoretical agree-
ment with experiment. Thus, it is important to note that
in our cases only one set of parameters is used for both
static and dynamic calculations [one additional parame-
ter PN(ez) is used in the dynamic calculations], and our
results are nevertheless in excellent agreement with both
the static and the dynamic experiments.

In our relaxation calculations we choose the values of
cFN(sz) to fit the observed linewidths at the I point. The
values are —0.08——0.09 for CeSb, CeBi, and PuSb, and
—0. 11——0. 12 for UP and UAs (about 40% larger than
in Ce + and Pu +). In Sec. II, we have pointed out that
if we consider the physical picture associated with the
Schrieffer-Wolff transformation, the value of 8 would be
expected to increase dramatically as we move from Ce +

and Pu + to U + as the energy diff'erence between the f
I

levels and the Fermi energy undergoes a large decrease
(6&-2 eV for Ce + and Pu +, and -0.5 eV for UP and
UAs). However, the direct Hamiltonian term causes a
broadening of the f levels which tends to reduce 8. The
net effect yields an almost constant value of cf. The 40%%uo

increase in the phenomenological input value of 4N(cF)
for UP and UAs might come from the increase of the
density of states N(s~). Since we expect a larger 6&
value for UTe which has a larger lattice parameter than
UP and UAs, cd(e~) of —0.09 is a reasonable choice for
UTe according to the above analysis. Our recent ab initio
calculation agrees with this phenomenologically derived
value.

Contrary to the unchanged PN(eF) for PuSb and the
moderate (-40%) increase in cd(e~) for UP and UAs
compared to Ce +, we have over six and ten or more
times larger two-ion interactions for PuSb, UTe and for
UP, UAs, respectively. By choosing the range parameter
E, which characterizes the two-ion interactions to match
the experimental values of the transition temperatures we
have E

&

= 15.35 K for CeSb, 18.94 K for CeBi, 121 K for
PuSb, 150 K for UTe, 215.5 K for UP, and 500 K for
UAs. This discrepancy between the moderate increase in
PN(sz) and the dramatic increase in Ei can be under-
stood as follows. According to the first-principles calcu-
lations by Wills and Cooper, for Ce +(4f ') systems to
fourth order in Hz the range functions E(R) are given by

M~M2, ~ M) M

E(M' M 'M' M 'R)2~ 2~ 1~ 1~ e
ck (EF q' )E E, E,

k F
k k'

(4.1)

with

yMM'(I I ~) MM'(1 1
—~) J.MM'(k I ~) (4.2)

V. SUMMARY

In conclusion, we have found the following for the
Ce +, Pu +, and U + systems: (1) To fully understand
the unusual magnetic behaviors, besides the hybridization

The range functions depend not only on 8 through the
numerator in Eq. (4.1), but also through the denominator
on the detailed band structure throughout the whole Bril-
louin zone. To order (Hz)", both in the Schrieffer-Wolff
transformation theory and in the perturbation in Eqs.
(2.4) —(2.8), Wills and Cooper have obtained for Ce3+
systems a quite complicated expression for the range
functions [Eq. (2.8) in Ref. 6]. For Pu +(5f ) and
U (5f ) systems, according to the discussion given in
Sec. II, we expect the same expression for the range func-
tions. Then, the more dramatic increase in the value of
E, than in the value of PN(ez) for Pu + and U + sys-
tems [compared to E, and PN(e~) for Ce + systems]
rejects the differences of the band structures between
these systems, especially with regard to the density of f
states at e~ (resulting from increased f foverlap). Fur--
ther, first-principles calculations of the range functions
for Pu + and U + systems would be valuable.

l

dressed crystal-field interactions and the hybridization-
mediated two-ion interactions which are the main mecha-
nism for the strong magnetic anisotropy existing in these
systems, one has to include in the calculation the relaxa-
tion effects caused by the single-site hybridization of the
band electrons with f electrons. (2) For CeSb and CeBi
the relaxation effects dramatically change the shapes of
the magnetic excitation dispersion curves especially for
the wave vector q along the [001] direction (perpendicu-
lar to the ordered moment). After including the damping
and shifts of the magnetic excitations, the similarity of
the dispersion curves between CeSb and CeBi can be un-
derstood although their static properties (such as the
phase diagrams) and the crystal-field splittings, are quite
diff'erent. (3) For PuSb the damping and shift effects
change neither the dispersion nor the polarization of the
modes. The relaxation basically results only in an overall
shift of the excitation energies. The fine tuning of the cal-
culated excitation behavior provided by the damping
does not capture the final subtle changes needed for full
agreement with experiment. (4) On the other hand, the
agreement in subtle detail of theory and experiment for
the uranium compounds provided by including the
single-site hybridization damping is remarkably good.
The unusual observed broad continuum magnetic excita-
tion response in UP and UAs, and the very strong anisot-
ropy of both the dispersion and the damping of the exci-
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tations for UTe, can be understood only after including
the damping of normal modes. The predicted results are
in very good agreement with the experiments. (5) The
fact that there is almost no change in the values of the
single-ion hybridization strength parameter cf as we move
from Ce + systems to U + can be understood by the re-
normalization effect by the direct Hamiltonian term of
Eq. (2.6); while the dramatic increase in value of the
range parameter Et is believed to come from the large
differences of the band structures (increased f foverl-ap)
between these systems.
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