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Phase transition and spin dynamics in the two-dimensional easy-plane ferromagnet
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With the use of self-consistent spin-wave theory, the spin stifI'ness for the two-dimensional classical
easy-plane ferromagnet is calculated. The Kosterlitz-Thouless transition temperature for the classical
XY model is obtaind. The contribution of vortex-antivortex bound pairs to the central peak at low tem-
peratures is discussed.

I. INTRODUCTION

It is now well known' that neither the spin-one-half XY
model nor the infinite-spin or classical XY model in two
dimensions (2D) can have a conventional second-order
phase transition to a state with uniform transverse mag-
netization. The phase transition and the nature of the or-
dered phase in the infinite-spin or classical XY model are
now very well understood due to the work of Kosterlitz
and Thouless ' (KT) and others. Advances in material
science, experimental techniques, and numerical simula-
tions have contributed to assess, in a variety of systems,
the validity of the various theoretical ideas underlying
the physics of phase transitions in two dimensions, and
the KT theory has been applied to many physical systems
including magnetic compounds, superconducting and
superAuid films, and 2D arrays of coupled Josephson
junctions.

In the Kosterlitz- Thouless theory, the two-dimen-
sional classical XY model undergoes a vortex-unbinding
transition in a narrow temperature region in which
vortexes bound together in neutral pairs unbind. For
temperatures low enough, all vortices are bound together
in pairs and the unbinding transition starts at a critical
temperature TKT at which the model undergoes a ther-
modynamic phase transition, the Kosterlitz-Thouless
transition. Above TKT, not all vortices are bound in
pairs: We have free vortices and bound pairs of vortices
(in fact, a vortex and an antivortex). In this temperature
region, the order-parameter correlation function has an
exponential decay, while in the low-temperature phase we
have a quasi-long-range order where the correlation func-
tion has a power-law decay.

The two-dimensional classical easy-plane Heisenberg
model, which is described by the Hamiltonian

II= ——g (S,S,+, +S»S»+, +ESP;+,),J
r, a

where r+a labels the four nearest-neighbor sites of r and
0 ~ A, ( 1 describes an exchange easy-plane anisotropy, is
very similar to the classical XY model concerning static
properties. It also undertakes a topological phase transi-
tion at some critical temperature T, (A,), above which vor-
tex pairs dissociate. The classical XY model is given by
Eq. (1.1) with A, =O, but considering S,=(S,",S» S;).
This model has a true dynamics. The planar rotator

model has a Hamiltonian of the same form, but the spins
have only two components, S,= (S", , S»), and an equation
of motion cannot be defined in the same way as for the
XYmodel.

In this paper we report a calculation of the spin
stiffness for the two-dimensional classical easy-plane
Heisenberg model. We obtain a formula for T, (A, ) valid
for general k (0& A. & 1). We also discuss brieily the dy-
namics of this model in the long-wavelength and low-
temperature limit.

II. CALCULATION OF THE SPIN STIFFNESS

The Hamiltonian for the planar rotator model can be
written as

H = ——g cos(P, +,—P,),J
r, a

(2. 1)

where P, is an angle associated with each lattice site. In
any system ( P, ) diverges if P, is measured relative to a
fixed axis since a uniform rotation costs no energy. Thus
we define P, as the angle relative to the direction of the
instantaneous total spin. At low temperatures the
configurations with small angular differences between
neighboring sites, i.e., ~P, +,—P, ~

&&1, are easily excited.
One may hence expect that these are the important
configurations for determining the thermodynamic prop-
erties. Provided all other configurations are neglected,
H can be approximated by expanding the cosine in Eq.
(2.1):

J0 ———
2 ra

(2.2)

The constant term in (2.2) may be absorbed into the
definition of the ground-state energy.

We note, however, that in writing (2.2) all anharmonic
terms present in (2.1) have been neglected. One way to
take into account these terms is to write (2.2) as

(2.3)

where p, is the spin stiffness (or helicity modulus).
Pokrovsky and Uimin have calculated p, using a self-
consistent spin-wave theory, and in spite of the fact that
their theory does not incorporate the vortex pair mecha-
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nism, it provides good estimates for p, and the critical
temperature for the planar rotator model. The stifFness

p, has also been calculated using a self-consistent har-
monic approximation variational method. '

Here we will perform a calculation of the spin stiffness

for Hamiltonian (1.1), the planar rotator model described
above being a particular case of our more general theory.

We start by writing Hamiltonian (1.1) in terms of the
polar representation for the spin at site r:

S 1—
2 1/2S'

r
cosP„S 1—

2 1/2S'r sing„S; (2.4)

We find

JH= ——g 'S 1—
r, a

2 1/2S'
r 1—

2 1/2
Sr+a

S cos(P,+,—P, )+AS+;+, (2.5)

In order to obtain the long-wavelength limit of Hamil-
tonian (2.5), analogous to Hamiltonian (2.3), we argue as
follows: If we calculate the time derivative of ()I), through
Hamiltonian (2.5), using the equation of motion
4,=[@„,HI, where [, ] denotes the Poisson bracket
and IS„',N„I =5„ is the fundamental Poisson bracket
for the polar representation of a spin vector, we find (set-
ting A. =O for simplicity)

P,= —4J[1+6( VP, ) ]S;= —4JS; . (2.6)

X 1— Sr+a
S

2 1/2

X cos((),+,—(),)), (2.7)

where the brackets mean a thermal average and
yq= [cosq„+cosq ]/2. Following this reasoning, the
quadratic form of Hamiltonian (2.5) is found to be

This is exactly the same result that we find considering
the quadratic Hamiltonian obtained by expanding Hamil-
tonian (2.5) into powers of (S'/S) and (()I),+,—P, ) with
no need to introduce any renormalizing factor. Other-
wise, the time derivative of S, is related to the angle
difference P,+,—P, and its analytic expression depends
on which Hamiltonian is used, whether it is the one given
by (2.5) or its quadratic expression. This means that in
obtaining the correct long-wavelength limit of (2.5), we
must be aware of the coefficient to be put on the
(P,+,—P, ) term. The behavior of S,' with both Hamil-
tonians of interest leads to the conclusion that the renor-
malization factor can be determined by the calculus of S',
with Hamiltonian (2.5). We find, in the reciprocal space,

2 1/2

(S'S' ) =4JS T(1—y ) 1—

2 1/2S'
r 1—

S

' 2 1/2
Sr+a

S

Xcos((),+,—(),)) .

This equation includes terms describing out-of-plane Auc-
tuations which were obtained here in a self-consistent
way.

Hamiltonian (2.8) can be written, using Eq. (2.6) and
taking for the moment A, =0,

JS p,
Ho = X (4,+. 4.—)'+ X—0'—

r, a r
(2.10)

1+A,y
&2S p, (1—yq)

1/4

(aq+a ), (2.11)

1/4

(at —a ),
i /2

S' =i (2.12)
2 1+Ay

where a and a are the boson creation and annihila-
tion operators, respectively, we obtain

Ho= gcoq aqaq+— (2.13)

with o;=J/16. This Hamiltonian is similar to that found
by Cote and Griffin. ' However, in their result, the factor
a is left undetermined. Equation (2.10) has also been
used to describe periodic artificially layered high-T, su-
perconductors where J is the Josephson coupling con-
stant and a an effective self-capacitance.

Hamiltonian (2.8) can be diagonalized using standard
methods. " Although we are interested in the classical
model, it is more convenient to use the quantum formal-
ism and, then, take the classical limit. Introducing the
canonical transformation

S
Ho =—g p, (P,+,—(II), ) +(S;) —AS+;+,2ra 2

where the stiffness p, is given by

(2.8)

where

co =4JS[p, (1—yq)(1+Ayq)]'

The normalized spin-wave frequency is thus given by

(2.14)
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co (T)
(T=O) )/Ps .

COq

(2.15) (- S'r
2

r+a r

Before proceeding with our calculation, let us remark
that the second moment (co )' for the relaxation func-
tion S"(q,co) is given exactly by'

AT(1 —y )

Sq Sq

where

(s,'s,',.&=(s;s;,&+(s&s; .& .

where

I(A, )= f d k
(2qr)' 1+A,y,

I(A, ),
4JS

(2.23)

(2.24)

At low temperatures and in the classical limit, we have,
from (2.12),

Substituting the above eruations into (2.19), we obtain, in
the classical limit,

I+A,
Fq (2.17) p, = [1—8I(A, )]e (2.25)

Thus, using Eqs. (2.14) and (2.16), we obtain

&s',s', .&

( 2)z ~2 (2.18)

2 1/2S'
r Sr+a

2 1/2

Xexp ——((P,+,—P, ) )o (2.19)

Using Eq. (2.11), we obtain, for the exponential factor,

So the stiffness as defined by Eq. (2.9) gives correctly the
second moment.

For calculating p, we approximate ( ) in Eq. (2.9)
by ( )o. In this approximation P, and S; are uncou-
pled variables and we find

p, =1—[I(k)+ I] T
4JS

(2.26)

The linear decrease of p, at low temperature is charac-
teristic of classical spin models. [A quantum calculation
performed using Eq. (2.21) in the region b ))1 would
lead to a cubic dependence with temperature. ]

In Fig. 1 we show the normalized dispersion relation
coq(T)/coq(0) as a function of temperature, compared
with simulation data from Ref. 13. The agreement could
be improved, in principle, for high temperatures, includ-
ing vortices effects (see next section).

where 8= T/4JS . This is a self-consistent equation giv-
ing the stiffness p, for each temperature.

For the X1'model, we have I(0)=1; however, for the
planar rotator model, since no out-of plane fluctuations
are allowed, we should take I(0)=0. In the latter case,
we have p, = exp( —8/p, ), the result obtained by Pokrov-
sky and Uimin.

At suKciently low temperatures, we may expand Eq.
(2.25), obtaining

1 1 1 1—+S N k 2
(1—cosk)

1+A,yk
X

p, (1—1'k)

1/2

Using a long-wavelength approximation, we get

(2.20)
1.0,

O
f~

09

0.8

+
4S p,

(2.22)

where t =T/J. The first term is the classical result; the
second is a first quantum correction.

For the out-of-plane fluctuations, we have, in the clas-
sical limit,

f f ad ic coth(bic/2), (2.21)1 1

2S 2p,'~ (2qr)

where b =V8Jsp,'~ /T. In the quasiclassical case b (( 1,
we find

0.7—

0.6—

\ I I I I I I I I

Y)0 02 04 06 08
2

T/J S

I.O

FIG. 1. Temperature dependence of the normalized spin-
wave frequency. Here we compare our theoretical calculation
with numerical simulation from Ref. 13: A. =O ( and solid
curve); A. =0.9 (V and dashed curve). The solid and dashed
curves apply to the present theory and the symbols to the
Monte Carlo simulations.
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III. RENORMALIZATION OF THE SPIN-WAVE
FREQUENCY BY VORTEX PAIRS

At low temperatures T ((J, only the long-wavelength
fiuctuations of P, the scales of which are much greater
than the distance between neighboring spins, are impor-
tant. For these long-wavelength excitations, we can go
over from the summation to an integration and replace
the difFerence by a derivative in Eq. (2.10), obtaining

H= f [VP(r)j dr+ —f dr, (3.1)
JS p, a dP

2 2 dt

where P(r) is now a continuous field angle variable. This
field splits into two parts:

|.0

0.5

0- I

05

I

I

I

I

I

I

I

I I

I.O

P(r) =y(r)+ g(r), (3.2)

H, = SJrf dr—(Vyo) +—f dr, (3.3)

where Jz =Jp, /e and e is the dielectric function describ-
ing the effect of the bound pairs. Thus the equation of
motion and the associated Hamiltonian look precisely as
if we were dealing with a pure spin field, with no vortex
configuration included. The effect of the bound vortices
is completely buried in the renormalized exchange con-
stant.

There is no explicity theoretical calculation for the
dielectric function; however, for low temperatures, we
can neglect the vortex contribution, since the vortices re-
quire a finite energy to be excited, and therefore Eq.
(2.15) should give the correct spin-wave frequency. Near
TK~, vortex excitations become important and
renormalization-group analysis shows that e exhibits a
universal jump at T= TK~, in the short-wavelength limit,
given by' '

where y(r) is the spin-wave field and g(r) the vortex field.
If the vortex part g(r) is ignored, the spin-wave frequency
is given by Eq. (2.14). The eff'ect of the bound vortex
pairs is to renormalize the spin-wave excitations.

In a theory developed by Cote and Griffin, ' the cou-
pled equations of motion for the spin-wave and vortex
fields are derived from a Lagrangian analogous to that
used in classical electrodynamics of a continuous medium
in analogy with the dielectric function in ordinary elec-
trodynamics. This approach leads to an effective Hamil-
tonian

2

FIG. 2. Spin stifFness for the XY model. Dashed line is

y =2 T /~. Crossing between the solid curve through the
dashed line defines the Kosterlitz-Thouless temperature TK+.

I(A. ) =0.66+sr 'ln(1 —
A, )

leading to

T 1,—+1 4m

JS A +ln(1 —A, )
(4.2)

with 2 =10.6. Taking vortices into account will change
the value of A. Considering that for k —+ 1 the value of 2
is irrelevant and that, for A, =O, 4m/A =0.83 is the KT
temperature obtained above, we can take A =15.14 and
write

Thus we may conclude that the anharmonicity of the ini-
tial Hamiltonian (1.1) results in an abrupt disappearance
of the stiffness p„which corresponds to the disappear-
ance of the phase ordering. For the classical XY model,
we find, from (4.1), T, (0)/JS = 1.076, while for the pla-
nar rotator model (I=O) we have T, /JS =1.47; thus,
T, ( A, = 0)=0.73T, (planar rotator). The Kosterlitz-
Thouless temperature for the XY model can be deter-
mined by the crossing between the p, (T) curve and the
line y =Jr(TK~) with Jz.(T) given by Eq. (3.4). In Fig. 2
we plot both curves, obtaining TKr =0.83J (taking
S= 1), in good agreement with the value of the Monte
Carlo simulation to the XYmodel. '

T, given by Eq. (4.1) varies very slowly with A, except
at the close vicinity of the isotropic limit (X~1). For
A, ~1 we have

Jr( T)
lim

TT~ TKT
(3.4) T, (k)

JS
4~

15.14+in(1 —1, )
(4.3)

IV. PHASE TRANSITION

4JS
e + I(A. )

(4.1)

Equation (2.25) shows that there is a critical tempera-
ture T, below which spin-wave-like excitations of P are
possible. This critical temperature is reached when Eq.
(2.25) admits no solution but the trivial one (p, =0). This
situation corresponds to

This equation will give a good estimate for T, (A, ) for all
values of A, . In fact, Eq. (4.3) agrees quite well with
Monte Carlo estimates of T, (A, ) performed by Kawabata
and Bishop. '

U. VORTEX DYNAMICS

In this section we will discuss the effect of the bound
vortex pairs on the dynamics of the XY model below

+KT '
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The vortex-antivortex bound pair static solution to Eq.
(3.1) is given by

therefore for the discrete lattice the density should be
given by

P(r) =tan
X Xi

—tan
X X2

(5.1)

E(r) =E()+Eiln (5.2)

where r is the distance between the vortex and antivortex
centers, ro is the lattice spacing, and

Eo=~ JS 1— T
2JS

Ei =2~JS 1— T
2JS

(5.3)

where we have used the low-T expansion for p, in Eq.
(5.3). Note that for the XYmodel, Eo and E, are temper-
ature dependent.

For dynamical solutions of the form P(r vt), w—here r
is the bound pair velocity (one site apart), we find for the
energy, using Eq. (3.1),

E(v ) =Eo+au (5.4)

where a =a~ .
To calculate the density n of vortex pairs, it is usual to

describe the thermally induced vortex excitations by a
grand canonical ensemble of noninteracting vortex pairs.
In this description we have '

(5.5)

where the vortex is localized at point (x „y,) and the an-
tivortex at point (xz,yz). The vortex pairs are created as
thermal excitation. The creation of such an excitation
will, in addition to the interaction energy between
members of the pair, involve a contribution Eo which is
determined by the energy needed to create a vortex pair
with the two vortices on nearest-neighbor sites. We have,
at low temperature,

(5.6)

(S",(t)S,"(0)}
=S f fdRdvN(u)cosg(r R vt—)c so—g(R),

(5.8)

where R is the position of the pair and N(u)=NP(u) is
the number of pairs with velocity v. Within the
Boltzmann statistics, the probability of finding a pair
with velocity u is expressed as

—(v/v )
eP(v)= (5.9)

where v()=")/T/a is the thermal velocity. After per-
forming all integrations, we find

it x 'q
~

—(~/qUq)F (S"' q, co = u&e(2~)' q
(5.10)

where ~F (q) ~
is the form factor for the x component ob-

tained using Eq. (5.1). A similar result holds for the y
component. Because of the rotational symmetry in the
XE" plane, what is really important is the symmetrized
correlation function

the prefactor 3 being of order of the unity. This picture
is confirmed by Monte Carlo simulations' ' which show
that a pair with d greater than a lattice spacing appears
at T=0.95TK~.

The dynamic correlation function S (q, co) (a=x,y) is
given by

S (q, co)= f drdt e' ' ' '(S, (t)So(0) } .
1

(2~)

(5.7)

In order to calculate (S, (t)SO (0) },we use the picture of
a gas of noninteracting bound pairs which are thermally
activated and write

where L is an upper cutoff.
The Kosterlitz- Thouless theory predicts that well

below TK~ all vortices will be tightly bound in pairs with
the mean separation between members of a pair, d, being
around one lattice spacing and very much smaller than
R, the mean separation of one pair from another. As
TK~ is approached, d increases while r decreases as more
vortex pairs appear. At TK&, the first pair unbinds; that
is, there exist some pairs with d of the same order as R.
However, for the discrete lattice, r does not vary continu-
ously but in steps of the lattice parameter ro. So, for a
pair two sites apart, we have an interaction energy
Ez =2~JS [1—T/4JSz]ln2. Thus, for temPeratures
T «E2, we expect all pairs to be just one site apart, and

S (q, a))= —,'[S'"(q,co)+S~~(q, co)] . (5.11)
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This equation gives the vortex pair contribution to the
central peak below TK~. There is also indication that
spin waves contribute to the central peak. ' For spin-
wave dynamics below TK~, see Cote and Griffin, ' and
for vortex dynamics above TK&, see Ref. 22.
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