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Some features common to many rare-earth intermetallic compounds with complex magnetic phase di-

agrams are explained using a realistic mean-field model, which takes into account the periodic-
exchange-field and crystal-field effects which favor an easy magnetization axis, i.e.: (i) the change of an
incommensurate or long-period commensurate structure near T& toward a simple commensurate one at
low temperature, with and without intermediate structures of intermediate propagation vectors; (ii) the
low-temperature metamagnetic process during which the high-temperature propagation vector(s) tend to
be recovered; (iii) the trend for the propagation vectors to lock onto commensurate values, except near
Tz. Exchange interactions alone are enough to account for these properties, the exact boundaries of the
magnetic phase diagram being determined by the real variation of J(q) and crystal-field effects.

I. INTRODUCTION

Modulated systems with a period incommensurate with
the basic lattice are not unusual in condensed-matter
physics. The origin of such structures is the presence of
competing interactions which can involve either the lat-
tice, the conduction electrons, or the magnetic moments
and manifest themselves in domains as different as linear
atomic chains, incommensurate lattice distortion, fer-
roelectric substances, charge or spin density waves, and
modulated magnetic structures. ' In this latter case, the
involved competing interactions are the long-range
Ruderman-Kittel-Kasuya- Yosida (RKKY) —type ex-
change coupling, mediated from one magnetic ion to
another through the conduction electrons. The oscillato-
ry character of this coupling leads to antagonistic in-
terionic interactions which often produce frustrated sys-
tems and hence incommensurate (helical or amplitude
modulated) magnetic structures. This is particularly
common in rare-earth intermetallic compounds where a
considerable number of such structures has been
discovered in the last two decades.

The existence of incommensurate or long-period
(high-order) commensurate magnetic structures leads to
particularly interesting properties as a function of the
temperature and/or the magnetic field. Indeed, the com-
pounds in which such an incommensurate magnetic
phase occurs at their ordering temperature T& very often
exhibit one or several transitions at lower temperatures
toward other, generally simpler, magnetic phases with a
different periodicity, i.e., where the period is shorter.
Furthermore, in these systems, at low temperature, a
resurgence of the incommensurability is frequently ob-
served as soon as a magnetic field is applied, through one
or several successive transitions (multistep behavior) until
the induced ferromagnetic state is recovered. This
behavior leads to complex magnetic H-T phase diagrams
exhibiting several intermediate magnetic structures. The
role of the magnetocrystalline anisotropy is obviously

fundamental in these systems by imposing, in particular,
a preferential direction for the magnetic moments (axial
anisotropy, modulated collinear structure) or by allowing
the moments to be free to rotate within a given plane
(planar anisotropy, helical structure).

Among the most recent phenomenological theories on
the complex phase diagrams of magnetic systems with
frustrated interactions one can cite the approaches of Bak
and von Boehm, Fisher and Selke, and Selke and Dux-
bury which are all similar. In a simple Ising model with
exchange interactions between first (Ji) and second (J2)
nearest ferromagnetic planes [axial next-nearest-neighbor
Ising (ANNNI) model], they have determined the possi-
ble spin arrangements in the space (

—J, /J2, T).
Whereas long-period commensurate or incommensurate
structures are stable just below Tz, only simple com-
mensurate structures with propagation vectors Q=O, —,',
or —,

' can be observed at low temperature, leading to the
possible occurrence of "devil's staircase" and "chaotic"
states as a function of the temperature. Using the
same mean-field approach, Mashiyama found a finite
number of commensurate phases at 0 K due to efFectively
long-range interactions. ' More recently, biquadratic ex-
change has also been introduced in the ANNNI model to
account for the sequence of incommensurate and com-
mensurate states observed in UNizSi2 when temperature
is decreased. " An oversimplified so-called "incommen-
surate exchange field" model was proposed in 1988 by
Date' to understand qualitatively the very complex mag-
netic phase diagram of CeSb. In this model, the spins are
immersed in a phenomenological incommensurate ex-
change field. Although a lot of new features are qualita-
tively explained within both models, some limitations still
remain, due to the restricted starting hypothesis. The
more recent model developed by Iwata' to quantitatively
account for the phase diagram of PrCo2Si2 represents a
more realistic approach in which the complete variation
of the Fourier transform of the exchange interactions
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J(q) along one direction of the Brillouin zone is taken
into account.

In the present paper, we present a more general
description of magnetic frustrated systems within the
mean-field approximation. Although in some cases they
can have some effect, "magnetic Auctuations are not tak-
en into account. This approach is used to derive some
features characteristic of anisotropic systems with frus-
trated interactions. Although these characteristics have
been quoted here and there for some particular cases, we
want to stress their general aspects. In particular, the
effect of an external magnetic field has been rarely con-
sidered' and will be emphasized here. We then give ex-
amples of the increasing number of experimental systems
which supports our conclusions.

The aim of the present paper is first to explain that, in
the case of axial anisotropy systems, an incommensurate
or long-period commensurate modulated structure occur-
ring at T& is genera/ly unstable at 0 K and must exhibit a
transition toward a structure with a shorter period. In
this process, the role of higher-order harmonics in the
Fourier expansion of the magnetic moments appears to
be crucial. Secondly, we will show that, in these condi-
tions, at 0 K, the magnetic field lowers the free energy of
the incommensurate phases more rapidly than that of the
simple commensurate ones, resulting in a resurgence of
the high-temperature magnetic periodicity above a criti-
cal field. For that purpose, interionic magnetic interac-
tions within the mean-field approximation will be shown
to be the only ingredients required as soon as higher-
order harmonics are correctly taken into account, the
magnetocrystalline anisotropy being there only to force
the magnetic moments to remain in a given direction.
The calculations will be performed by using a self-
consistent periodic-field (PF) model which has been suc-
cessfully applied recently to describe the magnetic prop-
erties of several modulated systems, e.g., specific heat,
magnetization processes, magnetic susceptibility, phase
diagrams, etc. '

H,„(i)=(g p ) g J(ij)(M(j))
JWl

=g H„oe (2)

The second part of this equation arises from the
periodicity of the modulated structure which leads to a
Fourier expansion of the magnetic moments ( M( j) ):

(M(j)) =g M„qe (3)

which defines the basic propagation vector Q of the mag-
netic structure. Therefore, it follows that the exchange
field is also periodic with the same periodicity as M, the
Fourier harmonics H„& being related in a very simple
way to the corresponding harmonics M„& of the magnet-
ic moments through the Fourier transform J(q) of the in-
terionic exchange interactions J(ij):

electric-field (CEF) coupling from which the anisotropy
originates. This term has generally two effects: (i) it may
provide a preferential (easy) direction for the magnetic
moments, leading to the occurrence of an amplitude
modulated structure at T& instead of a helical one, the
latter being possible only in the case of a weak or an
easy-plane anisotropy; (ii) by mixing the 4f wave func-
tions, the CEF term raises the (2J+1) degeneracy of the
ground-state multiplet then may produce either a non-
magnetic or a magnetic level as the ground state —the
case with a nonmagnetic ground state has been previous-
ly developed for PrNi2Siz. ' In the following, only a
magnetic ground state will be considered.

The second term %z in Eq. (1) is the Zeeman coupling
—H M(i) between the 4f magnetic moment
M(i) = glypt—i J(i ) at site i and the external magnetic field

H. The third term &ii is the isotropic bilinear interac-
tion —H,„(i).M(i) written in the mean-field approxima-
tion as a function of the effective exchange field acting on
the ith site:

II. THK SELF-CONSISTENT
PERIODIC-FIELD MODEL

H„&=(gyps) J(nQ)M„Q .

The last term in Eq. (1) is a corrective energy term

(4)

The periodic-field (PF) model is based on an ¹ite
Hamiltonian, 2V being the number of magnetic ions over
one period of the modulated structure. In fact, a strictly
incommensurate structure cannot be rigorously de-
scribed, but one can expect to approach as close as possi-
ble to this limit by considering X large enough. On the
other hand, the commensurate case is described by a
propagation vector Q being a rational fraction of a re-
ciprocal lattice vector K, i.e., Q=(p/N)K or Q =p/N in
reduced units: if the sequence of the magnetic moments
along Q is considered [see Eq. (3) below], the structure
can be reduced to a linear chain which includes only N
independent magnetic moments. The PF model has been
widely developed elsewhere, ' ' and only some features
are recalled below. The X-site Hamiltonian is written as

N N N

&= g &cEp( i) + g gt'z(i ) + g &~ ( i) +E~ .

In this expression, the first term is the crystalline

N

Eti= —g (M(i))H, „(i),
i=1

necessary due to the mean-field treatment. The full Harn-
iltonian, Eq. (1), has been diagonalized in a self consistent-
manner for the N ions of one magnetic period, for any
field and temperature value, the Fourier coefficients M„&
after a diagonalization being reinjected into the initial
Hamiltonian through Eq. (4). It is then possible to evalu-
ate all the magnetic or thermodynamical quantities need-
ed, such as the magnetization or the free energy
F= —kii T ln(Z), where Z is the partition function, by
averaging the values calculated for each ion over one
period. ' '

III. TEMPERATURE DEPENDENCE
OF THE FREE ENERGY

In a first step, the temperature variation of the free en-
ergy has been calculated for several commensurate mag-
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netic structures having a periodicity varying from X =2
sites (simple antiferromagnet) to N =50 sites (close to a
strictly incommensurate structure), and for various sets
of J(n Q)'s, in order to simulate several cases of real sys-
tems. It can be noted that p has been taken as unity in
the expression of Q, i.e., Q=(1/N)K. , because any other
value of p leads to identical results for both the free ener-

gy and the net magnetization; the only difFerence is the
sequence of the magnetic moments themselves along Q,
since multiplying Q by p is equivalent to multiply RJ by p
in Eq. (3). On the other hand, and as in Ref. 15, all the
calculations have been performed for a degenerated J=—',
multiplet (and gJ=2), because considering any other
value of J and nonzero CEF coupling leads to the same
qualitatiUe results, in as far as the ground state is magnet-
ic. The only di6'erences would be the absolute values of
the free energies and magnetizations. Finally, the princi-
pal exchange coefficient J(Q) has been taken as unity:
indeed, only the relative magnitudes of the other harmon-
ics J(nQ)'s (with n%1) compared to J(Q) are significant
in the present results. Among all these harmonics, the
loath one plays a special role because it corresponds to the
paramagnetic exchange coefficient J (0); it has been sys-
tematically included and also kept constant [J(0)
=J(NQ) = —0.5].

The main temperature variations of the free energy F
in zero field are shown in Fig. 1 for various situations and

allow one to clearly understand how the free energy de-
pends on the periodicity and on higher-order harmonics.
First, the overall variations up to the paramagnetic phase
are presented for the extreme cases, i.e., for a simple anti-
ferromagnetic (N =2) and for a quasi-incommensurate
structure (N=50) for different sets of J(nQ)'s [see Fig.
1(a)]. The first curve (N =2) is universal [F(T
=0)= —1.167 in reduced units] and depends only on J
(and gJ); its deviation from the linear paramagnetic sec-
tion starts from the ordering temperature T&, the latter
being defined below [Eq. (5)]. For this simple commensu-
rate situation, considering higher-order harmonics is
meaningless because they all are equivalent to the basic
harmonic in the reciprocal space, and the curve does not
depend on J(0) either. It can be mentioned that this
curve is also identical to that corresponding to a fer-
romagnetic structure with the appropriate exchange cou-
pling, i.e., J(0)=1. The other curves are systematically
all above the first one, and their T =0 limit directly de-
pends on the relative magnitudes of the different J(nQ)'s
[e.g., F(0)= —0.947 for J(3Q)=0, very close to the in-
commensurate limit —0.946]. This is understandable be-
cause in a long-period magnetic structure, even at T =0
where the full antiphase state is achieved, the variation of
the exchange field keeps a certain modulation through
Eq. (4) so that some sites experience an effective exchange
field close to zero: the net averaged free energy is conse-
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FIG. 1. Temperature dependence of the free energy for different sets of exchange coupling coefficients J(ng) (in reduced units); N
is the number of magnetic sites over one period; in (c) and (d), the X =2 curve is drawn only for comparison, and the successive

J (nQ) values correspond to n =0, 1, 2, and 3; in (b) —(d), the cross indicates the limit of the strictly incommensurate case.
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(gJP~ ) J(Q)go( T ) = 1 (5)

where go( T) is the first-order magnetic susceptibility

quently reduced in magnitude.
The other parts of Fig. 1 are devoted to the low-

temperature variations of the free energies for iV =2, 50,
and several intermediate periodicities. In a general way,
the values of X between the two extreme cases of 2 and
50 lead to intermediate curves, at least for the even values
[see Fig. 1(b)]. The variations for odd values of N should
also be inserted regularly among the others; however,
they are shifted upward by the negative value of J(0).
Similarly, the second-order harmonic J(2Q) directly
influences the 0 K position of the odd-N curves [see N =7
in Fig. 1(c).] This emphasizes the different behavior of the
even and odd parity of the magnetic periodicity: for com-
pensated long-period structures (N even), the proportion
of up and down moments is identical and only odd har-
monics are involved in the Fourier expansion of the mag-
netic modulation (in zero magnetic field). It follows that
only the odd order exchange coefficients J[(2p+1)Q]
affect the temperature variation of the free energy. Op-
positely, the uncompensated structures (N odd) develop,
at low temperature, a spontaneous ferromagnetic com-
ponent arising from the difference between up and down
moments in the antiphase state: all the harmonics J(n Q)
(including n =0) are then involved in the free energy
variation. It turns out that a periodicity of four sites
gives rise to the same free energy variation as the case
X =2, although it is associated to a sinusoidal structure
at TN evolving toward an antiphase structure at 0 K (se-
quence up up down -dow-n). T-his is explained by the num-
ber of independent harmonics J(nQ)'s to be taken into
account in the description of the structure. Due to the
finite periodicity, the Fourier expansion must be truncat-
ed to at most 1V terms so that, in zero field, a single term
then a single coefficient J(Q) is concerned in the cases
N = 1, 2, and 4 (the effect of the field will be different, see
below).

According to the magnitude of the higher-order har-
monics, the free energy curves are more or less well
separated, and they range from near the %=2 curve to
more distant positions [compare, for example, Figs. 1(c)
and 1(d)]. Note that the N =50 curve approaches very
closely (within -0.2%%uo) the incommensurate limit F;„,(0)
at T =0 [see Eq. (8) below and the crosses in Fig. 1], so
that it can be reasonably considered as the incommensu-
rate limit as far as the free energy is concerned. The vari-
ous curves drawn in Fig. 1 show then a representative
sampling of the free-energy variations for the different
magnetic periodicities in the presence of various ex-
change couplings. The main conclusion of these calcula-
tions is that, for a given set of exchange coefficients
J ( n Q )'s, the shorter the periodicity, the lower are the
free-energy curves at low temperature: this is because, on
average, the magnitude of the local exchange field on all
sites over one magnetic period is larger in such a case.

By applying a perturbation theory for small M„&'s
values, ' it can be shown that the critical temperature T,
for a magnetic ordering having the propagation vector Q
is defined by

without exchange. As a consequence, the true ordering
temperature T~ for real systems is the largest of all T, 's

and corresponds to the periodicity for which J(Q) is
maximum. Obviously, the position of this maximum
closely depends on the relative values of the successive
J&,Jz, . . . interionic coupling constants. In the vicinity
of T&, the free energy F can be expanded in powers of
(TN —T) in the same way as the internal energy and the
specific heat (see Ref. 16):

dF()F ( T) =Fo ( TN ) + ( T —TN ) dT

+B ( TN T) [Xo( TN ) ] /Xo ( TN ), (6)

where B=—,
' or —,

' for an amplitude modulated (AM) or an
equal moment (EM) structure, respectively, the latter cor-
responding to all the simple commensurate magnetic
structures, i.e., ferromagnetic (Q=O), simple antiferro-
magnetic (Q= —,'K) or Q= —,'K (see above for the case
N =4). Fo(T) is the free energy without magnetic in-
teractions; it depends only on the crystal field
[Fo= —k~Tln(2J+I) for a degenerated J multiplet].
yz '( T) is the third-order magnetic susceptibility without
exchange, ' i.e., the initial curvature of the CEF magneti-
zation curve, which is usually negative. As shown in Eqs.
(6), the curvature of the free energy at TN does not de-
pend on the periodicity, except as far as the above dis-
tinction between AM and EM systems is concerned, the
curvature always being the strongest for these latter, in

agreement with the curves described above.
As a matter of fact, it can be shown that the propaga-

tion vector Q for which J(Q) is maximum generally does
not minimize the free energy at 0 K, resulting in a change
of the propagation vector toward another value associat-
ed with a shorter periodicity. At 0 K, and for a strictly
incommensurate periodicity, the free energy can be writ-
ten as'

F;„,(0)=Fo(0)— (gJP~ ) g —J(n Q) lM„q2
(7)

where Fo(0) includes the CEF contribution and the
second term represents only the exchange coupling term.
For an antiphase-type moment configuration, all the suc-
cessive M„&'s (n ) 1) are related to each other, so that
Eq. (7) can be rewritten as'

F;.(0)=Fo—,(gJPg) 'IMol'

X [J(Q)+—,
' J(3Q)+ —,', J(5Q)+ . ],

where Mz is the magnitude of the magnetic moment at 0
K. It is obvious that, if dJ(q)/d lql vanishes at the max-
imum of J(Q), the same will not generally be true for the
full expression between brackets in Eq. (8) at 0 K. There
must be another propagation vector Qo, strictly incom-
rnensurate or not, which maximizes this expression. This
is a direct consequence of including the higher-order har-
monics J(3Q),J(5Q), . . . in the free energy expression at
0 K. In addition, it should be mentioned that the expres-
sion of F(0) for a commensurate periodicity is difFerent
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romagnetic (IF) state (20), i.e., up-up: during the first part
of this process, the magnetization is zero and the free en-
ergy constant, while during the second part, the magneti-
zation reaches the saturated value Mo= —gJp~ J, corre-
sponding to the slope of the linear variation of the free
energy. Note that the notation (mn ) will be used to de-
scribe the sequence of m moments up followed by n mo-
ments down F. or a periodicity of four sites [N =4, Fig.
2(a)], the same two states as for N =2 are also present,
i.e., the sequences (22) and (40), but there is an additional
intermediate configuration (31) stabilized between
H„/HO=0. 625 and H, 2/Ho =0.867, corresponding to a
net magnetization of one half of the saturated value.

As the period (i.e., N) increases, the number of inter-
mediate configurations grows, as shown on the curve for
N =10 [Fig. 2(c)] where some sequences however, e.g.,
(82), are never the ground state for any field, so that the
magnetization jumps at H, /H~=0. 806 from —,OMo [se-
quence (73)] to Mo (IF state). For N =50, the incom-
mensurate limit is approached, and the free energy curve
exhibits a curvature increasing monotonically until it
crosses the IF variation at H, /Hc =0.792 [Fig. 2(d)]. At
the incommensurate limit, the magnetization process no
longer presents any steps but the magnetization increases
continuously up to the field transition where one single
step occurs. In the case of odd periodicity [e.g, N=7,
Fig. 2(b)], the initial nonzero slope of the free energy vari-
ation is consistent with the existence of a spontaneous
ferromagnetic moment arising from the lack of compen-

from Eq. (8) because the summation must be truncated
(see above). Finding this Qc vector requires the
knowledge of the actual shape of J(q) in the entire first
Brillouin zone, and appears to be a formidable task. Nev-
ertheless, as shown by the temperature variation of the
free energies (see Fig. 1), one can expect that Qc will very
likely correspond to a short-period commensurate vector.
It is worth noting that J(Qc) is always smaller than J(Q),
therefore, at 0 K, the (oss of energy due to the first har-
monic J(QO) must be overcoinpensated by a larger gain
of energy due to all the higher-order harmonics.

IV. FIELD DEPENDENCE OF THE FREE ENERGY

The second part of this study is devoted to the exter-
nal field dependence of the free energy. Calculations
have been performed in the same conditions as above,
i.e., for the same set of exchange parameters and periodi-
cities, using reduced units. Note that the magnetic field
has been renormalized by

3k~ T~
Ho=

gJ @~i (J+ I )

Figure 2 shows the field variations when only J(0) and
J(Q) are considered. The case N =2 is the simplest one
[Fig. 2(a)]; a single first-order transition for a critical field

H, /Ho=0. 746 separates the simple antiferromagnetic
state (11), i.e., a sequence up down, fro-m the induced fer
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sation in the (43) magnetic sequence.
For all curves, the starting point at H =0 depends on

the magnetic periodicity as explained above for the T =0
limit. However, if we compare the two extreme situa-
tions, i.e., N =2 and 50, it turns out that both field varia-
tions intersect for H, /Ho=0. 665, considering the same
set of exchange parameters. This critical field should be
reduced according to the actual magnitude of J(Q) for
the vector corresponding to the simple antiferromagnet,
if the incommensurate structure is considered as the most
stable at T&. The main conclusion is that the resurgence
of the incommensurate or long-period commensurate
structure in high field appears as quite probable, because
its free energy decreases more rapidly in increasing field
than that of commensurate structures with a shorter
period. This is related to the fact that, in long-period
structures, a larger number of magnetic moments "see" a
reduced exchange field and can then Aip in a smaller op-
posite external field.

The two other figures 3 and 4 show the effects of
higher-order exchange coefficients on the free-energy
variations. According to their sign, they shift the curves
for the different configurations up or down, so that some
forbidden states may become stable in a limited field
range as, for example, the sequence (82) with N =10 for
a positive J(3Q) [see Fig. 3(b)]. More surprisingly, new
exotic sequences may be stabilized, such as the sequence
(4111)with N =7 [Fig. 3(a)], emphasizing a strongly dis-
torted shape for the exchange fie1d over one period, due
to the presence of a large third harmonic J(3Q). In the

same way, the X =100 curve reveals the appearance of
an intermediate configuration for a positive J(3Q) value,
leading to an intermediate step and two large discontinu-
ous jumps in the magnetization process. Similarly, in-
cluding a second rank exchange coefficient J(2Q) pro-
duces new possible configurations, as shown by the se-
quence (6121) for N =10 [see Fig. 4(b)]. All these curves
underline the variety of possible situations which can be
stabilized under an external field. Describing experimen-
tal systems requires the knowledge of the actual exchange
coupling, i.e., J(q). This exchange coupling can be deter-
mined either from inelastic neutron scattering on single
crystal or from the fit of the right sequence of propaga-
tion vectors and magnetization as a function of field and
temperature.

V. DISCUSSION

The above results are useful in that they give some very
general features of the field-temperature phase diagrams
of systems with axial anisotropy, taking into account the
real variation of J(q). As quoted above, the propagation
vector Qz of the magnetic structure just below Tz is that
for which J(q) is maximum. Due to the long period and
oscillatory character of the exchange interactions, the as-
sociated magnetic periodicity can also have any value, in-
commensurate or long- or short-period commensurate,
with the lattice. As we will see later, the former situation
is observed for a lot of compounds. In most cases at
lower temperature the value of Q~ does not minimize the
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FICx. 4. As in Fig. 3, but for another set of exchange coefficients J(n Q).

free energy, in particular, at T =0 K. As shown by the
curves in Fig. 1, commensurate magnetic periodicities
with short-period Q, are always favored as long as

J(Q, ) and higher-order harmonics are not too small
compared to J(Q& ) and higher-order harmonics of the
high-temperature state. The most favored states at 0 K
are the simple commensurate states with N = 1 (ferro), 2,
or 4, i.e., Qo=0, —,', or —,

' in reduced units. Obviously

among these three states the system will choose that
which has the largest associated J(q) value. Let this
value be J0; in the case of X =50, which is close to the in-
commensurate limit, and ignoring the higher-order
J(nQ&)'s (n ) 1), calculation shows that if the ratio
J(Q~ )/Jo is not larger than 1.23 the simple commensu-
rate state is stabilized at low temperature. Such a situa-
tion is the most probable and indeed we will see below
that the majority of experimental systems enters this
category. Free energies calculated (Fig. 1) for Q =

—,',

with J(3Q)= —0.5 and 0.8 allow us to appreciate the
efFect of higher-order harmonics on the stability at 0 K
of the simple commensurate state compared to the in-
commensurate one. We can then conclude that generally,
within the framework of our assumptions, magnetic
structures are incommensurate (or long-period commens-
urate) and sine wave modulated at T& and transform to-
ward a simple equal moments commensurate state below
a given temperature T, through a first-order transition.
This is illustrated in Fig. 5 assuming that the maximum
of J(q) occurs for Q =

—,
' and that J ( —,

'
) =5.71 K

whereas J(—,')=5.43 K and J(0)=—2. 86 K [instead of

Q =
—,'„which leads to the same energy, Q =

—,', has been
chosen so that the values of J (0), J( —,', ), and J( —,

'
) corre-

spond to a realistic variation of J(q) j. The state with
the lowest energy is the long-period (N =10) state be-
tween T&=10 K and T, =7.4 K, and becomes the N=2
state below this later temperature. Depending on the real
variation of J(q), intermediate states with intermediate
propagation vectors can be stabilized. Furthermore, cal-
culation shows that, except near T&, a commensurate
long-period state tends to be stabilized instead of a true
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FICx. 5. Temperature dependence of the free energy for N =2
and 10 but with different associated J(q) values. The inset
shows the energy difference of the two states between 6 and 10
K.
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FIG. 6. Fields dependences of the free energy in the two situ-
ations of Fig. 5.

incommensurate state. Figure 6 shows field effects on the
low-temperature magnetic structure of the above exam-
ple. This figure demonstrates an important result: the
long-period structure, corresponding to the maximum
value of J (q), is restored before the IF state is stabilized.

In Table I, we have reported the magnetic structures of
a large number of rare-earth based intermetallic com-
pounds in which the large axial magnetocrystalline an-
isotropy imposes collinear magnetic structures. This
table clearly supports the thermal characteristics set out
above. All these compounds have incommensurate
modulated structures at T& and transform toward equal
moment commensurate states at low temperature. Note

that almost all these compounds are simple commensu-
rate of the type N =1, 2, or 4 at low temperature. The
case Q = —,

' is especially scarce and appears only once in
our list (TbCo282). In our examples only two compounds
(HoAlGa and PrGa2) are not simple commensurate at
low temperature, although, for the first compound, the
extremity of the propagation vector ( —,', —,', —,') falls on a
high-symmetry point of the Brillouin zone. In some com-
pounds (e.g., PrCozSi2 and NdCozSi~) intermediate states
with intermediate propagation vectors are observed.
Moreover, in some cases (e.g., TbAuz, TbZnz, and ErSi)
the propagation vector seems to continuously change
with temperature down to a given temperature below
which it locks on to a simple commensurate value
whereas in the majority of compounds the propagation
vectors are temperature independent over a large temper-
ature range.

The number of studies devoted to the determination of
the field-induced magnetic structure is quite limited.
Among the compounds listed in the table only PrCo2Si2
(Ref. 42), TbNizSi2 (Ref. 43), and HoAIGa (Ref. 44) have
been studied by neutron diffraction under the magnetic
field on a single crystal. In these three compounds, in the
low-temperature metamagnetic process, the high-
temperature propagation vectors are recovered. Note
that in the two latter compounds this means that an in-
commensurate phase is induced by the field; a property
which at first sight can seem unexpected. In PrCo2Si2,
which exhibits three steps in the low-temperature magne-
tization process, the first metamagnetic step stabilizes the

2 propagation vector and the second step stabilizes the 9

TABLE I. Propagation vectors of many rare-earth —based intermetallic compounds in which crystal-field e6'ects impose collinear

magnetic structures.

Compound Symmetry Sequence of Q (in reduced units) and transition temperatures Ref.

PrFe2Ge2
PrCo2Si2

NdCo2Si2

NdCo2Ge&
NdRu2Si2
NdRu2Ge2
TbNi2Si2

TbCo2B2
NdIn3
Ce4Bi3
DyGa2
HoGa2
HoAlGa
CeGa2
PrGa2
ErAu2
HoAu2
ErAg2
TbAu2
DyAu,
DyAg2
Tbzn2
ErSi

Tetragonal

Cubic

Hexagonal

Tetragonal

Orthorhombic

(0,0, 1)9 K—
(0,0, 1)» K-
(O, O, 1)» K—
(0~0~0)1o K—
(0,0,0)1o K

(4~ 4~0)1o K—
( 1~0~0)4.6 K—
(0,0,0)3 3 K—

( —
2 0)6.s K—

1 1 1

(0 0 0)8.s K—

0 0)4K
(1,0,0)7 8

(1,0,0)3.s K-
( &~0~0)42.s K
(1,0,0)3
(1~0~0)9.s K—
(0~0~ 2 )6o K—
(2~0~ 2)s.7s K—

(1,0,0.02)s 1 K—

(0 08 1 ~2Tyo)1o 4

(Oporto 476)13
(0 0 —)3o K

(O, O, ',4)» K

(0,0,0.739)28 K
(0. 13,0. 13,0)
(0. 12,0. 12,0)17
(0.574,0.426, 0),
(0.244&0. 244&0)19 K

(1,o,o.o4),
(0~0~ 0 506)4 4

(0.433 0.433 0)11 2 K

(0 439 0 439' 0)7
( 3 ~ 3 s . )32 K

(0. 14,0. 14,0)„
(0 148yo 148&0 023 )7 3

(0 801yoyo)6 7

(0 8 14~ 0~ 0 )9
(0.783,0,0),
(7",0,0) with 0.833 «& 0.843ss „
(0.826,0,0)2s s K
(0.855&0&0)1s K

(0)0,~) with 0.394«&0.43875

(~,0,~') with 0.460~~~0. 5

and 0.5~~'~0. 512» s K

19
20
21

22
23
24
25

26,27
28
29
30
31
32
33
34
35
36
37
38
39
39
40
41
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vector whereas a third transition is necessary to reach the
IF state. These two vectors are precisely those which
are successively observed when temperature is increased
(see Table I). Although no reliable crystal-field parame-
ters have been determined, it is in this compound that the
deepest analysis in terms of exchange interactions has
been performed. ' In particular, a J(q) variation has
been determined which quantitatively accounts for the
H-T phase diagram.

We did not mention the well-known CeSb compound
because its very complex phase diagram, with many
different magnetic structures, cannot be accommodated
in Table I. Although this system exhibits some unique
properties (in particular, the existence of paramagnetic
moments below Ttv) and although other interpretations
of its magnetic phase diagram have been proposed we are
forced to observe that it presents the behavior charac-
teristic of our model, i.e., (i) a devil s staircase is observed
from the high-temperature propagation vector Q =—', to
the low-temperature simple commensurate vector Q = —,

'

through five intermediate phases with intermediate prop-
agation vectors and (ii) during the low-temperature mag-
netization process one observes a recovery of some of the
high-temperature propagation vectors.

In conclusion, a realistic mean-field model allowed us
to account for the origin of the main characteristics of
the complex magnetic phase diagrams observed in many
rare-earth based intermetallics compounds, in which the
magnetocrystalline anisotropy imposes collinear magnetic
structures. These are (i) just below the Neel temperature
the magnetic structure is modulated and incommensurate
or long perio-d commensurate, (ii) when the crystal-field
ground state is magnetic, at low temperature the magnet-
ic structure becomes an equal moment and simple
commensurate, and (iii) during the low-temperature
metamagnetic process a resurgence of the high-
temperature incommensurate or commensurate propaga-
tion vector(s) is induced by the field before the IF is
reached. Note that in Spin-Peierls systems it has been
found that, at low temperature, an applied magnetic field
could induce a simple commensurate to incommensurate
phase transition of the lattice distortion. It is important
to stress that all these features arise from exchange in
teractions alone, the role of crystal field being to impose
the moment direction and to contribute to the exact posi-
tion of the boundaries of the H-T phase diagram, in par-
ticular, the exact values of T&, the T, 's, and the critical
fields.
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