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Self-consistent-phonon-approximation study of a double Morse hydrogen-bonded chain
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We propose a one-dimensional hydrogen-bonded chain model, where temperature is introduced using
a variational form of the self-consistent-phonon-approximation method to evlauate the semiquantum
free energy. The parameters of the model are chosen self-consistently and the hydrogen bond is de-
scribed by a double Morse interaction. The behavior of the chain is studied with a defect and without
one and the Peierls barrier is calculated. Introduction of an anharmonic O-O interaction results in slight
qualitative changes.

I. INTRODUCTION

There are many hydrogen-bond solid-state systems
consisting of one-dimensional chains like imidazole,
acetanilide, hydrogen halides (HF, HCl, HBr), lithium
hydrazinium sulfate (LiN2H~SOz), and proteins across
biomembranes. Protonic conductivity in such systems in
the direction of the hydrogen-bonded chains is about 10
times greater than in the other two directions. In fact, it
can be comparable or even larger than the protonic can-
ductivity in ice. Many two- or three-dimensional sys-
tems can be regarded as a compound system of multiply
linked one-dimensional H-bonded chains. This is the
case with the Bernal-Fowler filaments in ice, or the four
helices in the polypeptide of bacteriorhodopsin in holo-
bacterium holobium. While it has not been possible to
determine the exact conductivity mechanism, ' the ex-
istence and mobility of ionic or bonding defects play a
crucial role in electrical conductivity and dielectric
response. ' " ' However, both their equilibrium concen-
trations and mobilities are indirectly determined quanti-
ties from the analysis of the experiments.

In what follows we shall use the example of Bernal-
Fowler filaments in ice, where there is considerable exper-
imental data. In the model to be discussed, the tech-
niques and the qualitative conclusions are valid for vari-
ous hydrogen-bonded systems, but the parameters to be
used are taken for ice, where many measurements exist.
In ice, the transfer of a proton from one water molecule
to the next, creates a hydroxonium (H30+) with a posi-
tive effective charge (about 0.62e) and a hydroxyl (OH )

with a negative effective one, which can migrate under an
applied electric field. The activation energy for the
creation of a pair of ionic defects is 0.96 eV. It is also ac-
cepted that the creation of bonding or rotational Bjerrum
defects is necessary to keep pumping the conduction
mechanism in a two-step relay process. '

For an ionic defect to move, it must overcome a con-
siderable barrier, so that hopping-type motion cannot be
effective. For this reason solitonic models of collective
proton motion, which present a lower barrier seem very
promising. This includes models with collective proton
motion in rigid or moving substrates. In fact, the two
sublattice models' can lower the effective barrier by con-

traction of the heavy-ion separation. ' This happens for
both optical-type motion about the O-O center of mass or
for acoustic motion. Improvements have been intro-
duced, where the substrate has two barriers, ' so that it
allows the simultaneous existence of ionic and Bjerrum
defects. '

In almost all the previous work, however, temperature
has not been taken into account while quantum effects
were neglected. However, even at zero temperature,
quantum effects for a light species in a potential with nar-
row wells can be very important. It is known that the
Peierls barrier of dislocations in crystals can vary very
strongly with the dislocation width. ' ' Thus the activa-
tion energy for motion of the ionic defects dressed with
thermal and quantum fluctuations will vary with temper-
ature. So that over a temperature range, it is possible to
have either a situation of single proton hopping for a nar-
row defect and correspondingly a large Peierls barrier,
which does not contribute to conductivity significantly,
or a ballistic-type solitonic motion.

In this paper, we will introduce temperature to study
the structure of a defectless chain and the Peierls barrier
of an ionic defect. This is very useful since it is a parame-
ter that will enter in any model to explain conductivity.
Temperature can be introduced using a variational form
of the self-consistent phonon approximation (SCPA) '
for the evaluation of the semiquantum free energy.
SCPA has been used extensively in the past for light no-
ble gas atoms, where quantum effects can be significant,
and for ferroelectrics, where the dipole moments can
have two equivalent orientations. This corresponds to
the two degenerate minima of a double-well potential in
the absence of an external field.

In Sec. II we will discuss the hydrogen-bonded chain
model we study. In Sec. III we describe the SCPA varia-
tional method we used to evaluate the free energy for the
chain with a defect or without one. In Sec. IV, we give
values for the physical parameters used in the model, and
discuss their large variability in the literature. In Sec. V,
we present the numerical results, while in Sec. VI an
anharmonic O-O interaction is taken into consideration.
In Sec. VII, we present a discussion emphasizing the re-
sults that must be taken into consideration, when con-
structing a model to explain conductivity.
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II. DESCRIPTION OF THE MODEL

In ice or more complex biological systems, the proton
transfer takes place along the Bernal-Fowler filaments. It
has been a common practice, after the work of Anton-
chenko, Davydov, and Zolotariuk, to represent such a
filament, by a one-dimensional (1D) chain consisting of
two interacting sublattices. The one is made of protons
(H) and the other one of the heavy ions, here to be called
oxygen atoms (0). Each proton "belongs" to two oxy-
gens and it can jurnp between two equivalent positions of
the double-well potential along an 0—0 bond. The form
of this potential used in the literature, may vary from a
piecewise quadratic to a P (Refs. 23 and 25) or a Morse
potential, ' depending on the method used. For exam-
ple, the piecewise quadratic potential is convenient for
analytical computations, while the P potential has been
used in the continuum lattice limit approximation. As
for the Morse potential, it is widely accepted that it is a
more realistic description of the hydrogen bond.

In the present work we consider a Morse potential for
the coupling between the two sublattices so that the pro-
ton feels a symmetric double Morse (DM) potential, cen-
tered between every two oxygens. Its variable is the rela-
tive position of the proton and the oxygen and has an im-
portant property (as shown in Fig. 1): the barrier be-
tween the two wells is much lower when the two neigh-
boring oxygens approach each other. This is an essential
ingredient, which allows an easier migration of the pro-
tons, when the bond is stronger.

The oxygen displacements (p„) are measured from the
fixed oxygen positions while the proton (u„) displace-
ments are measured from the middle point between equi-
librium positions of the oxygen atoms. Displacements p„
and u„are continuous variables that depend on the
discrete lattice site n.. Thus the double Morse potential
part of the Hamiltonian is
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FIG. 1. The barrier of the double Morse potential increases
as two oxygens are far apart and it reduces as they approach
each other.
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The Hamiltonian of the model is the sum of the above
three terms:

%—&oH +&H +JVo (4)

III. THE VARIATIONAL METHOD

Introduction of temperature in a nonlinear system, in
the exact quantum-mechanical regime is a rather impossi-
ble calculation even for the one degree of freedom for a
discrete system. Therefore, one has to limit oneself to an
approximation for the free energy like SCPA, which in-
cludes zero-order quantum fluctuations. The evaluation
of an upper limit to the free energy is based on the
Gibbs-Bogoliubov inequality:

UQH .

R is the equilibrium lattice spacing of the oxygen sublat-
tice and the potential parameters are the potential well
depth D, the position of the minima r, measured from the
oxygens, and the force constant which is related to d
(koH=2d D).

The protons (of mass m) are coupled to each other by a
harmonic interaction depending on their relative dis-
placements, with a characteristic force constant kHH.

&o is a trial Hamiltonian, chosen as a variational Hamil-
tonian for &, and 9'0 is its respective free energy. Quan-
tum mechanics enter in the calculation of Vo and the ex-
pectation value ( . .

&, which is evaluated by the quan-
tum density matrix of &0. The choice of %0 is practical-
ly limited by the fact that its Vo and density matrix 5O

must be known exactly. Therefore, we use a set of in-
dependent displaced harmonic oscillators for each lat-
tice site, that is a self-consistent phonon approach:

1
+mcoH „(u„—aH „)2 „m Qu2

1
~H g +kHH(un+1 un )

2 „m Qu
(2) + +Mcoo „(p„—ao „)M (jp~

In the last part of the Hamiltonian, the oxygens (of mass
M) are subject to a parabolic on-site potential, to simulate
the environment with a force constant k and a harmonic
coupling, which depends on their relative position and
the force constant KQQ

This independent-site approximation is improved by
choosing different parameters at each site, for each type
of atom: the local oscillator frequency and its mean posi-
tion. The free energy corresponding to &o is well known
analytically:
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n

~~H n +k~ T ln(1 —e "'"
) &o(y,y) = mm

2n sinh(A'co lk~ T)

1/2

&~o n+ ' +k~T ln(1 —e '"
) . (7)
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These parameters a and co, are used now variationally in
order to minimize the free energy X The density matrix
for one harmonic oscillator,

is incorporated in the calculation of the expectation value
of Eq. (5), which permits analytic evaluation of the in-
tegrals. Therefore,
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R
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where

mcoH „AmH „
tanh

o „, &~o
tanh (12)

The approximate free energy V now is a function of the
VariatiOnal P~~~~~t~~~ ~H, n& ~o, n& ~H, n& and COO, n& that
are actually the mean particle displacement and the local
frequency. For the numerical minimization we use both
the simulated annealing Monte Carlo (SAMC)
method ' and the gradient method. The SAMC
method was used selectively to check for the global
minimum where it is very efricient. Additionally, the
steepest descent or another gradient method is helpful to
locate the exact minimum while already in the potential
well rninirnum. In Ref. 33, the ground state of the system
was investigated using the SAMC method and it was
found that the assumed period 1 structure is the ground
state. Thus in this work we use the gradient method
since the global minimum is already known.

IV. PARAMETERS OF THE MODEL

It is a common practice (Ref. 34 and references
therein) to model the proton transport in quasi-one-

TABLE I ~ Parameters of double Morse potential.

D
(kcal/mole)

69.98
9.27

50.00
76.04

d
(A -')

2.77
7.39
2.89
2.68

re
0

(A)

0.97
1.01
0.95
0.97

Reference
number

26
27
35
39

dimensional hydrogen-bonded systems, with a 1D ice
crystal. The way, though, that the physical parameters
of the DM symmetrical potential describing the
0—H . - 0 hydrogen bond are chosen, is quite
different. ' ' Table I shows several sets of the DM po-
tential parameters taken from different sources. The big
variety in these sets of parameters rejects the different
approaches used to fit them. Kryachko defines the DM
parameters from ab initio calculations of the (H~O2)+
complex. In Ref. 27 the rather different parameters come
from experimental values of the barrier height in the
double-well potential and also from spectroscopic charac-
teristics of the H bonds in ice. The set of the DM param-
eters from the Matsushita and Matsubara paper is the
result of analysis of geometric and spectroscopic charac-
teristics of the 0—H . 0 bonds. Finally, ab initio cal-
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D d r, R koo k k
(kcal/mole) (A ') (A) (A) (N/m) (N/m) (N/m)

10.7 7.8 0.94 2.76 36.6 29.1 22.0

TABLE II. Set of parameters used in the numerical simula-
tions.

and one can obtain simple expressions for the variational
parameters that is due to the use of the DM potential.

First of all we have to minimize the free energy V for
the chain with a structure of period equal to one lattice
spacing R. In that case, we have the following conditions
for the variational parameters:

COQ „—COQ, nH & eH

culations of the parameters of the DM potential are given
in a very recent paper. The authors here fitted the pro-
ton transfer potentials in protonated water and ammonia
pentamers by several simple analytical functions such as

Gaussian, sinusoidal, Morse function, and fourth-
order polynomial. The Morse potential gives the best re-
sults and, most importantly, it is found to be fairly insens-
itive to the H-bond length, i.e., the same parameters in
the Morse potential can fit the energy profile for proton
movement for various 0-0 distances.

The DM potential depends on four parameters that
have to be defined: the equilibrium distance between oxy-
gens R, the potential well depth D, the 0-H equilibrium
length of the single Morse potential r„and the exponen-
tial factor d related to the harmonic force constant of the
0—H bond. Our choice of R =2.76 A is the well known
value of the 0-0 distance in ice Ih. In order to define the
parameters D, d, and r, we use the following characteris-
tic values of ice Ih: the critical distance of disappearance
of the double well R„=2.38 A, the 0-H bond length
ro=1.01 A, and the force constants KQH =658 N/m,
k QQ 36.6 N/m and k =29. 1 N/m. The ion mass is
M = 17m = 17m, where m is the proton mass, and the
hydrogen-hydrogen coupling constant is taken as
kHH=22 N/m. It should be mentioned here that the
value of this constant is not uniquely experimentally
known and therefore it has been calculated theoretically
in a number of ways. A detailed analysis of the H-H cou-
pling in H-bonded chains based on ab initio calculations
of water and ammonia pentamers is performed by Duan
and Scheiner. The value of the hydrogen-hydrogen
coupling force constant defined there is close to the one
used in the present paper. The calculation of the parame-
ters of the DM potential should take into account the
change of the potential relief due to quantum and tern-
perature effect. In the framework of the SCPA approach
proposed here, the DM part of the potential is given by
Eq. (10). The self-consistent method for the calculation
of the parameters D, d, and r, is presented in the Appen-
dix. The results of this calculation are shown in Table II.

V. RESULTS
OF THE NUMERICAL CALCULATIONS

A. Ground state

aQ „=nQ for all n . (13)

= ay
BAH

a& U,„&
BCXH

(14)

BV
k + OHa&U

Bo.Q Bo.Q
(15)

= ay
COH

kHH

2

Pl Cd H 8 & UoH )+
4 B(1/yH) d H yH

(16)

a& U,„)+ +
2 4 4 B(1/yo) dcoH yo

(17)

where

yo yo, n!mo (19)

Noting that

~& UoH &

aaQ

a& U,„)
BAH

we obtain the following solutions of Eqs. (14)—(15):

eQ=0,
and three possible solutions for eH with

e'"=0eH

(20)

(21)

ol

aH =+—arcosh —exp ——d f+d ——r,(1,2) 1

d 2 4 2

These conditions describe an unperturbed chain, where
all protons and oxygens occupy correspondingly
equivalent positions. Using the free energy V expressions
shown in Eqs. (5), (7), (9), and (10), and taking into ac-
count the conditions (13), we have

In order to be able to study the structure and energies
of the ionic defects in the present hydrogen-bonded chain
model, we must define the ground state of the unper-
turbed system. Using the SAMC method it was verified
that the period 1 structure is indeed the ground state for
the system in the range of parameters used. Here we use
a simple analytical approach to treat period 1 structure

where

f= +
VH 7Q

Using

(22)

(23)
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m~H k m~o2 2

oo (24)

CO
1

m

a&U „&
2kHH+4 (25)

Substituting (21) in (25), we obtain

d2f/4 —d(R/2 —r )

m

a&U „&
a( I /r H)

from Eqs. (16) and (17) we have for coo and AH the follow-
ing equations:

B. Ionic defects

We studied ionic defects in a one-dimensional chain
with X =100 cells, and used the Polak-Ribiere conjugate
gradient method to minimize the free energy of the sys-
tem. The boundaries of the chain are held fixed:
ao ] ao f QQ 0, aH, = —aH, OO

=+aH [upper sign cor-(2)

respond to positive ionic defect (I+), and lower sign cor-
responds to negative one (I )]. The minimization prob-
lem for V, given by the Eqs. (5), (7), (9), and (10) with the
boundary conditions mentioned above admits two kinds
of stationary solutions. We define the stationary states of
the defected chain for which the central proton (n =51)
is situated in the position aH 51=0 as the centered states,

d f 2d(R/2 —r —
)+2e

Analogously, from (22) and (25) we have

d2f —2d(R/2 —r )

~H, 1,2

(26)

(27)
1750.—

O

3

(a

We solve the two systems of Eqs. (24) and (26) and Eqs.
(24) and (27) numerically. The results of the calculations
for the model parameters are shown in Fig. 2(a) —2(c). In
Fig. 2(a) we plot the dependence of the local frequencies
coH and coo [Eqs. (24), (26), and (27)] versus absolute tem-
perature T. The system of Eqs. (24) and (26) gives the
curves corresponding to the roots (co~H', coo'') as a func-
tion of temperature, while at the system of Eqs. (24) and
(27) possesses two sets of roots: (AH" ', co&" ) and
( cl)H coQ ). The roots ( AH ', coo '

) and ( AH, coo '
) corre-

spond to the local minima V' '= V(co~H', coo') and
V' '=V(cog', cog') of the free energy V and the roots
( ctlH coQ ) correspond to a local maximum
V"'=V(AH'", coo'") [Fig. 2(b)]. At temperatures higher
than a critical temperature T2 the system has only one
minimum, 9'' ', while at an even lower temperature there
is a crossover to a single-well effective potential as the
ground state. The dependence of the extremum values
for the average proton displacement aH versus T is
shown in Fig. 2(c). One has to notice that the value of
aH", corresponding to AH', does not exist in the low-
ternperature region, where the argument of the hyperbol-
ic inverse cosine [see Eq. (22)] is less than 1. This means
that in that temperature region [T& T, =500 K, where
a~&'(T)=0], the free energy presents a minimum, V~ ',
corresponding to aH' and the frequencies AH(' and coo(',

and a local maximum V' ', corresponding to the frequen-
cies AH' and coo' with aH'=0.

At the temperature of T, =1650 K (T& & T, & T2) the
system undergoes a phase transition from the ground
state with free energy V' ' and proton location in left or
right well, to the ground state with free energy V' ',
where the proton is situated between two oxygens
(aH~'=R /2). This phase transition corresponds to transi-
tion from ferro- to paraelectric phase in hydrogen-
bonding ferroelectrics.

0.
0. 1000.

Ternperat, ure (K)

QJ 0
0

4.0

—0.2-

—4.5
0. 1000.

Temperature (K)

0.4

(c)

0.0
0.

I I I

1000.
Temperature (K)

2000.

FIG. 2. Temperature dependence (a) of the roots AH and coo,
(b) of the free energy, and (c) of the extremum values o.H.
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and those for which two central protons occupy symme-
trical positions (aH ~0= —aH ~I) as the symmetrical
states. Two kinds of initial configurations of the system
were chosen for each type of defect that correspond to
the two possible stationary states, without, of course, im-
posing any symmetry. The first kind of initial conditions
in the iteration procedure of the minimization problem,
corresponding to the symmetrical stationary solution are

(2)H, 1 H, 2 H 50 —H d +H, 51 H, 52
(2). . =aH, 00=+aH . The second one corresponds to

the centered stationary solution: aH 1=aH 2=
(2)

H 50 —H H 51 d H 52 +H, 53
(2)=aH 100= + aH . The upper sign corresponds

to the positive defect I+ and the lower one to the nega-
tive I . The initial conditions for the other variational
parameters a& „=0,AH „=coH, ~o „=coo, for all n, are(2) — (2)

used for both kinds of the stationary states of the defect.
As a result of the minimization procedure we have a

solution which is the well-known kink or domain-wall
solution. The temperature dependence of the free energy
of the ionic kink defects is shown in Fig. 3 for both kind
of stationary states. In all the cases the free energy shows
a quite slow decrease in the physically interesting temper-
ature interval (0—300 K). The formation energy for the
I+ defect is always higher than the I formation energy.
The difference between the values of the free energy F for
centered (I„„,) and symmetrical (I,„)stationary states
of the ionic defect is rather small comparatively with
their absolute values. As one can see from Fig. 3, for low
temperatures, F,+ (F,+,„, and F,„(F,,„, (F,+y

denotes free energy of the symmetrical stationary state of
the positive and negative ionic defects and F—,,„, denotes
the same for the case of the centered defect). At T =600
K for the I+ defect, the inequalities for I,ymm and I«„,
change sign. For the I defect this temperature is
T-800 K.

For a certain temperature of 250 K we show in Fig. 4
the shapes of the different kink solutions. The average
displacement of the central chain atoms are shown for
the hydrogen and the oxygen atoms. Away from the

'0.4 04

0.0- 0.0- o-.

44, 46. 48. 50. 52. 54. 56.
&lain site

~.4 ~i . i . i . I . I

44. 46. 48. 50. 5K 54. 56.
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r+
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04
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—0e4 . I . I . I . I . I

44. 46. 48. 50. 52. 54. 56.
&lain site

I . .i-
44. 46. 48. 50. 5P 54. 56.

Chain site

FIG. 4. Oxygen (0) and hydrogen ( X) displacements for
positive, negative, symmetric, and centered defects at T =250
K.

center, the oxygens approach their equilibrium position,
while the hydrogens are situated in one of the two poten-
tial wells. Near the center, the atoms rearrange them-
selves to form the kink; the hydrogens climb the potential
barrier, while the oxygens move now away from their
equilibrium position. It is important to note that the neg-
ative defect oxygen atoms are displaced significantly,
with respect to the hydrogens and also to the positive de-
fect.

The Peierls-Nabbarro barrier as a function of tempera-
ture is shown in Fig. 5, for both the positive and negative
defect. Due to the protonic repulsion, it is easier for a
positive defect to move along the chain, once it has been
created, than a negative one. This argument is true for a
certain low-temperature region, while for higher temper-
atures the negative defect is favored. In order to investi-

--- ------- —-- —.It;ent

r+
'symm

0.8
0

I
I

I

04

500.
Temperature (K)

1000. pp
0. 500.

Tem perature (K)

1000.

FIR. 3. Temperature dependence of the positive and negative
ionic kink defect free energy for the symmetric and the centered
type.

FIG. 5. The Peierls-Nabbarro barrier for the positive and
negative defect as a function of temperature.
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TABLE III. Set of parameters for the anharmonic O-O interaction.

D
(kcal/mole)

10.8

d
(A ')

7.74

~e
0

(A)

0.94

R
(A)

2.76

k
(N/m)

29.1

kHH

(N/m)

22.0

Dp
(kcal/mole)

5.07

dp
(A ')

2.28

coupling constant kQQ which is chosen to be equivalent
in both cases. On the other hand, co is sensitive to the po-
tential well shape and therefore has a different behavior.

VII. SUMMARY

This model contributes two important points to the
study of hydrogen-bonded chains. First, it simulates the
hydrogen bond in a realistic way. This is accomplished
by the double Morse potential, which has the advantage
to describe the protonic motion for various 0-O distances
with the same potential parameters. Second, this model
is for a variable (TWO) temperature and includes zero-
point energy efFects and entropic contributions, which are
very important for the light mass protons, and the effect
on the proton barrier due to the heavy sublattice motion.
The study of the ground state of the chain, which is the
period 1 structure, reveals that for low temperatures, the
free energy has two symmetrical global minima, with one
loca1 maximum in between. As temperature rises, the
central local maximum transforms to a local minimum
and two other 1ocal maxima are created symmetrically.
At the phase transition temperature the central local
minimum becomes the global one and the ground state is
now the paraphase, which means that the average proton
position is in the rniddle point between two oxygens.

The two kinds of stationary defects (positive and nega-
tive), in their symmetrical and centered configurations,
which can exist on the chain, are both stable for the
chain. In the physically interesting temperature region of
0—300 K, the energy of the positive defect is always
higher than the negative ones and the symmetrical state
has a lower energy than the centered one, for both the
harmonic and anharmonic O-O interactions. This fact is
related to the changes in the barrier of the effective pro-
ton potential, due to the heavy sublattice motion. Of
course, there are also important entropic contributions.

It should be remarked that it is not surprising that the
centered configuration is stable. In this case the central
atom sits in a 1ocal minimum of the free energy hypersur-
face, unlike the classical case, where the particle sits on a
maximum of the potential energy. This is similar to the
case of the Kapitza inverted pendulum, ' which is stabi-
lized under fast Auctuating forces. It is the entropic
effect that lowers the free energy, since the available
phase space in this case includes both wells. This situa-
tion can exist even at T =0 due to the zero-point energy,
which includes quantum fluctuations. Depending on the
form of the O-H potential, the effect can vary. In fact,
the a =0 can also become a global minimum.

With this model we demonstrate the importance of
zero-point energy. In fact, the efFect of the zero-point en-
ergy and thermal Auctuations is to lower the energy of
the ionic defects significantly. This lowering is much

more important than that which is produced by a
significant change of the interaction parameters and it is
also important at higher temperatures. The parameter
values are chosen for the particular case of ice. Never-
theless, the exact numerical results have only a qualita-
tive value and, in fact, are not trustworthy much higher
than 300 K. This is related with the limited validity of all
the parameters used, over a range of temperatures. Out-
side this temperature region, there are significant charge
redistributions compounded by dynamical effects due to
the light proton that cannot be taken into account in this
simple model.

It is important to note that the increased mobility (low
Peierls barrier) found within this model, i.e., the energy
required to move a defect once it is created, is due to the
thermal Auctuations and the zero-point energy. A classi-
cal model with the same parameters has found a higher
effective Peierls barrier.

Significant effects will come from the dependence of
the 0-H stretching vibration due to the O-O vibration
amplitude. The inclusion of anharmonic O-O interac-
tion does not change significantly the displacements of
protons and heavy ions but inAuences a lot the local fre-
quencies, which are important for the determination of
the free energy. On top of this the anharmonicity of the
O-O vibration will act on the 0-H vibration as discussed
in the previous section.
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APPENDIX

Taking into account the ground-state conditions (13)
the expression (10) for the DM part of the ground-state
free energy 7 takes the form

d f/4 —d(R/2+aH —r )

OH/

d f—2d(R/2+aH —r )+e
d2f f'4 —d(R/2 —a —r )

2e H e

d f —2d (R /2 —
uH —re )

) (Al)
where f is expressed by Eq. (23). It is important to em-
phasize that the solutions (co(H), coo()) of the system of Eqs.
(24) and (26), corresponding to the case aH=O, can give a
local maximum or local minimum of the free energy V,
depending on the distance R between the heavy ions. If
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the distance R is large enough the potential (Al) has two
minima aH, 2 [Eq. (22)] that gives us an expression for
the equilibrium OH-bond length:

From (A2) and (A3) we have the formulas for parameters
r, andD:

R 1 1 3 2 R
ro =———arcosh —exp — d f—+d ——r,

2 d 2 4 e
R 3 1 Rr =—— df ———ln '2cosh d ——r
2 4 d 0 (A4)

(A2)
and a maximum at aH=O. When we decrease R, at some
distance this maximum transforms into local minimum of
the energy X At critical distance R =R„ this local
minimum will become the global minimum of the free en-

ergy 9, i.e., V~ =o(V~ =,when R &R„.
Using Eq. (27), one can write the following expression

for the stretching force constant kQH

r) V
kQH

BaH
d2f —2d(R/2 —r )+2Dd 2( d f/2+ 4e

— f "e
)

(A3)

D = (k —2k )e I cotanh d ——r1 R
2d 2 OH HH 0

(AS)

Finally, the algorithm to define the parameters d, r„
and D is the following. We fix the distance R =R„and
change the parameter d. For each value of d, using Eqs.
(A4) and (AS) we define parameters r, and D and calcu-
late the values of the energy 7 at the distances aH =0 and
aH=aH &. When these two values are equal we have the
parameter d that needs to be found. This algorithm can
be easily realized numerically.
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