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We describe an approach for computing the conductivity associated with long-range hopping on ener-
getically disordered lattices. Using a numerically exact supercell procedure we compute the distribution
pr(y) of block conductances v, associated with conducting cubes of edge length L that are randomly
chosen from the disordered system of interest. This distribution of block conductances is then used in a
self-consistent numerical calculation to obtain the renormalized bulk conductivity. The approach
displays a surprisingly fast approach to the infinite-system limit, allowing finite-size effects to be mini-
mized. In this paper we use this approach to study transport in a series of binary lattices containing a
random distribution of two enegetically inequivalent ions. Specific examples considered include varia-
tions of the nearest-neighbor site percolation problem, long-range hopping on more general binary lat-
tices, and the trapping-to-percolation transition that occurs in such systems.

I. INTRODUCTION

Electronic conduction in a large number of physical
systems occurs as a result of the random hopping of
charge carriers among a set of localized states possessing
some degree of topological or energetic disorder. Impor-
tant examples include transport between localized impur-
ity states in doped semiconductors,! ~* molecularly doped
polymers and low-dimensional organic conductors,>®
molecular crystals,”? and substitutionally mixed electron-
ic ceramics.””!! Hopping transport is also an important
mechanism for several uncharged species, examples of
which include excited electronic energy transport (i.e.,
excitons), spin diffusion, vibrational energy transfer, and
other quasi-particle-like excitations.'>”!* This makes the
development of efficient procedures for computing trans-
port coefficients for such systems an important task. As a
consequence, a number of such procedures have been
developed. Probably the most common approach in-
volves the use of Monte Carlo simulations to randomly
evolve the position of a transport particle as it executes a
specific realization of the random walk in the appropriate
random environment.>”!> This is computationally
efficient for nearest-neighbor walks, but is also extensible
(with some limitations) to long-range hopping processes.
Slightly less common are those approaches which employ
a direct evolution of the site occupation probabilities,
which are governed by an associated master equation.
An advantage offered by this latter approach is that the
evolving probabilities carry information about all possible
random walks occurring in the system. This advantage,
of course, occurs at the computational expense of having
to evolve a more complicated and extensive set of quanti-
ties. As a practical consequence this means that one is
usually restricted to performing computations of this
latter type on smaller lattices than are generally possible
if only the position of the particle is monitored. In some
sense, therefore, the two methods are complementary.
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In this paper we describe a computational approach for
evaluating accurate transport coefficients associated with
long- or short-range random walks on energetically disor-
dered lattices. The approach incorporates the aforemen-
tioned advantages associated with an evolution of the
probabilities, but uses large-cell renormalization-group
ideas'®!® to overcome the difficulties associated with the
limited size of the lattices which can be considered com-
putationally. Using supercell sizes having edge lengths L
in the range of 4-6 lattice sites we have been able to
reproduce the previously calculated conductivity for
site-percolating networks, in which cubic regions having
edge lengths of the order of 20 sites have proven neces-
sary to obtain results which are reasonably free of finite-
size effects.? We also present model calculations which
explore the trapping-to-percolation crossover considered
recently as an explanation for the conductivity minimum
observed in substitutionally mixed small-polaron con-
ducting ceramics.”!® Our numerical calculations confirm
the essential features of this crossover and provide a test
of recent approximate calculations based upon the au-
thors’ energy-projected effective-medium theory.!° The
rest of the paper is laid out as follows. In the next section
we describe the general approach, which requires for its
implementation the ability to compute the block conduc-
tance y; of cubic regions of a given fixed size L. In Sec.
IIT we summarize a general method by which these block
conductances may be obtained using a numerically exact
spectral method,!! which is computationally efficient for
reasonably sized blocks. In Sec. IV we present model cal-
culations intended to demonstrate the efficiency and ac-
curacy of our method.

II. THE METHOD

The basic computational problem which we consider is
one in which charge carriers in fractional site concentra-
tion n hop among the sites of a topologically ordered but
energetically disordered d-dimensional cubic lattice (with
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unit lattice spacing). The energetic disorder may arise,
for example, due to the occupation of lattice sites by ions
of several different species. We denote by x,, the fraction
of lattice sites occupied by ions of species 1 and by ¢, the
energy associated with a charge carrier when it is located
at a site containing an ion of this species. Equivalently,
we can describe the distribution of site energies through a
site energy distribution function I'(¢). A carrier at a
given site m can, in principle, hop to any other site » in
the lattice, with a hopping rate W, , which depends on
distance, energy mismatch, and (for interacting particles)
the probability that the site is already occupied. It has
been noted in a number of theoretical treatments of this
problem that the individual hopping rates between sites
are random variables which can be viewed as (directed)
microscopic conductances v ,,, connecting the nodes of a
hypothetical random electrical network.>!® This obser-
vation has led to a whole class of approximate analytical
treatments which seek to identify an (ordered) effective-
medium network®'>!7 72! in which perturbations due to
embedded defects (i.e., random bonds or sites) of the type
encountered in the actual disordered system self-
consistently average out to zero. Approximate analytical
procedures based upon this idea give surprisingly accu-
rate estimates of the conductivity for nearest-neighbor
networks, but tend to break down when the system under
consideration is close to a critical point—an important
concern in percolative systems.? Roughly speaking, such
a breakdown can be expected to occur when the correla-
tion length £ significantly exceeds the size of the defect
region which is averaged over in the approximate calcula-
tions. Moreover, extensions of effective-medium theory
to the long-range hopping problem are less analytically
tractable than in the case of nearest-neighbor sys-
tems.!®2!

In our approach, we envision the actual disordered
solid as being decomposed into a series of d-dimensional
cubic regions or blocks having an edge length of L sites
(we assume unit lattice spacing throughout), with each
block containing a random configuration of N=L¢ ions
with site energies chosen from the distribution I'(e).
With the ith block we associate a local conductance ten-
sor ¥;, which governs the current flow through that block
in response to electrical potential gradients imposed
across its faces. For low fields this quantity depends both
on the local equilibrium carrier concentration n; and the
Cartesian components D;” of the local diffusion tensor as-
sociated with the carriers in that block. To proceed, we
replace the original cubic network having unit lattice
spacing with one whose lattice spacing is equal to the
edge length L of the individual blocks originally con-
sidered, identifying the (now strictly nearest-neighbor)
conductances coming out of the positive axis at each
super-lattice point with the corresponding Cartesian
components y; of the associated block conductance ten-
sor (see Fig. 1). This new system is intended to have the
same bulk conductivity as the original. Moreover, for a
sufficiently large block size the conductances associated
with different blocks will be independent of one another,
and can be taken as independently distributed random
variables.
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FIG. 1. Schematic illustration of the numerical renormaliza-
tion process. Each disordered supercell containing L? sites is
replaced by a new unit cell containing a single site connected by
equivalent conductances ¥; to its neighbors.

In a traditional renormalization-group approach the
formal procedure outlined above would be analytically
(although often only approximately) repeated on a larger
length scale in an attempt to find a fixed point.!®!° In
practice, however, we can expect the distribution p; (y;)
of block conductances obtained after a single decimation
of the lattice to be both smoother and more narrow than
the distribution p; (v,,, = W,,) of microscopic conduc-
tances (or rates) connecting individual sites in the original
system. This just reflects the fact that the homogeneity
of a system depends upon the length scale at which it is
examined. (Indeed, for a sufficiently large block size, the
distribution will be sharp at the single value associated
with the bulk conductivity.)

This natural smoothing of the distribution function
leads us to reconsider the idea of employing an effective-
medium theory, not at the length scale of an individual
atomic site (as it is usually employed), but on a larger
length scale for which it is expected to become more ac-
curate. Thus, the bulk conductivity o of a (renormalized)
hypercubic lattice whose sites are connected by conduc-
tances drawn from an isotropic distribution p; (y;) is as-
sociated with that of a translationally invariant network
in which nearest-neighbor sites are connected by a single
effective conductance . Within the well-known
coherent-potential approximation the appropriate con-
ductance y is identified with the root of a self-consistent
equation? 12:20.21

Yi™VY _
<y,.+(d—1)y>_°’ ()

in which angular brackets denote averages over the con-
ductance distribution p; (y;).

Thus our basic computational scheme for calculating
the conductivity of disordered systems is the following:
(1) Generate a cubic region of L sites, with site energies
chosen at random from the site energy distribution func-
tion I'(g,) characterizing the disordered system of in-
terest; (2) Calculate the conductance of this region for a
given bulk carrier concentration (which we do using a nu-
merically exact supercell procedure summarized in Sec.
III); (3) Repeat this procedure for a sufficiently large
number N, of blocks, each one representing a randomly
chosen cubic region of the actual disordered system,
thereby accumulating a sample of conductances {y;}
representative of the distribution function p; (y;); and (4)
Numerically find the root of Eq. (1) associated with this
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conductance distribution. This means obtaining the root
of the equation

N,
o Yi—Y
———— = . 2
,.2:17/,.+(d—1)y 0 @

As we will show, the chief practical advantage of this
idea over more traditional supercell calculations (which
might simply approximate the bulk conductivity with the
direct average of the block conductivity) is that the
effective-medium average associated with Egs. (1) and (2)
is much less sensitive to the finite size of the blocks em-
ployed in the calculation. In this way, convergence to the
infinite-system limit is obtained with a substantial savings
in computer time and storage.

To put this general scheme into effect we need a way of
computing the conductance of each block. This may be
done in a number of different ways. In the next section
we describe a general procedure which accomplishes this
task for the physically important case in which the hop-
ping rates connecting sites obey a well-defined detailed
balance relation (which will be true for most systems of
physical interest).

III. CALCULATION OF BLOCK CONDUCTANCES

A long-range random walk on an energetically disor-
dered d-dimensional lattice can be described through the
master equation

dP,
dt = 2 (Fss'Ps'_Fs’sPs ) ’ (3)

s

in which P (¢) describes the probability of finding a parti-
cle at the site of lattice vector s=(s;,...,s;) at time ¢.
(In what follows all distances are measured in lattice
spacings.) The hopping rate

F =F(|s—s'|;e,,€,) @)

from site s’ to s is assumed to depend upon the distance
|s—s’| and upon the randomly and independently distri-
buted energies €, and e of the two sites involved in the
transition. Because of this energy difference, the rates
connecting two sites are not generally symmetric, i.e.,
forward and backward hopping rates are not generally
equal. In most systems of physical interest, however, a
detailed balance relation?? of the form

Fss'p(ss')=Fs'sp(€s) (5)

relates forward and backward hopping rates to one
another through the relative equilibrium probability
ple)=pl(e,u, T) of finding the particle at a site of energy €.
In most cases this equilibrium distribution function
(which also determines the average carrier concentration
in terms of the chemical potential 4 and the temperature
T) is unique and known a priori based upon the statistics
(for example, Boltzmann or Fermi-Dirac) of the transport
particles of interest. We assume this to be the case in
what follows, although we will not need to specify the
precise functional form that the distribution takes.

In keeping with the general procedure outlined in Sec.
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I1, our specific goal is to determine the transport proper-
ties associated with a particular cubic region, or block,
having L sites along each edge. This is somewhat deli-
cate, due to the possibility of long-range hops which
might take a particle outside the original block. We cir-
cumvent this problem by replacing that part of the crys-
tal surrounding the block of interest with identical copies
of itself, infinite in number, identifying the diffusion ten-
sor of each block with that of an infinite crystal that is
periodically repeated from the original block in all direc-
tions. This new system is infinite in extent and invariant
under translations T, along crystal axes by multiples of
the edge length L of the block, with each super-unit cell,
or supercell, containing an identical random array of
N =L%sites (see Fig. 2). Corresponding sites in each cell
have the same energy €, =¢, . ;. The distance and energy
dependence of hopping rates in the new infinitely-
replicated system are assumed to be functionally identical
to those in the original crystal, so that long-range rates
extend, in principle, to all points in the new infinite sys-
tem. Computationally, we seek a means for evaluating
the diffusion constant for this new infinite system in
terms of matrix manipulations performed on finite N-
dimensional matrices. The equations of motion for the
periodically repeated crystal can be written

dp!
dt

- > wrompm=0, 6)

m,s’

in which P! denotes the probability for the particle to be
at lattice vector rJ'=(n +s) of the infinite system, and

Ws,s"’ = s'.?’ _Sm,OSss’Q’s ’ (7)
where the superlattice vector (or supercell index)
n=(ny,...n4)L locates the origin of the corresponding
supercell, the N=L9 intracell position vectors
s=(s1,...54) locate sites within each supercell, and we
have defined

Q=3 FT . (8)

m,s’

In writing these expressions we have used translational
invariance on length scale L to write the hopping rate
connecting sites in different supercells

FI'=F(lm+s—n—s'l;e, e, )=Fmn™" )

as a function of the supercell indices m and n only
through the net displacement vector m-n connecting
them. '

i @b @ ‘b @ 6@ e
@ o o0 @ oo * e e e e e e
® ¢ o@D+ o o ® ¢+ o @+ - O
o o @ o @@ o —> o o @ o o @ o
@ "’**’0'".‘ -0 -® "”’.’”’, ‘&*’*O"’ [ ]
®-00. - . ®-.0..0
s e @@ o o @ o o @ - o @ o

FIG. 2. To compute the equivalent conductance of a given
super cell it is extracted from the disordered crystal and periodi-
cally repeated to form an infinite lattice which is translationally
invariant on the scale of the supercell spacing.
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In a recent publication,!! we have shown how such a
periodically repeated system can be mapped onto an
“imaginary time” Schrodinger equation and the resulting
equations solved to obtain an explicit spectral representa-
tion of the corresponding diffusion coefficient D. A
straightforward extension of the work presented in that
paper allows a similar expansion,

v 2
2d D,={¢p|Vil¢s)+2 3 Kol iign)1® , (10
A#0 €x" %o

to be obtained for the individual components D, of the
diffusion tensor, in terms of the N eigenstates {|#, )} and
eigenvalues ¢, of an N XN “Hamiltonian” matrix H,
and associated matrices ¥} and ¥V} defined'' through
their matrix elements

(s|Hyls"Y=S H , (11a)
(sIVYls')y=i 3 (m,+s,—s, ) HT , (11b)
(11c)

(sIVyls'y= S (m,+s,—s,)*H" ,

which, in turn, are defined in terms of a similarity trans-
form

Hsrsn’nE[p(ss’)/p(ss)]l/zws’;l’;n (12)

of the original transition matrix appearing in (7).

Equation (10) lends itself to an efficient computational
scheme for computing the diffusion tensor associated
with finite blocks of a given size L. A cubic region of this
size containing a random distribution of site energies is
generated in the computer and its transition matrix W
and equilibrium populations p(g;) determined. The ma-
trix elements of the associated Hamiltonian H, and the
operators V| and V7 are then constructed using (11).
[Although (11) implies an infinite sum over all supercells,
it may be easily summed to numerical convergence for
hopping rates which fall off with increasing separation.]
This finite-dimensional Hamiltonian H |, is then diagonal-
ized numerically, and the resulting eigenvalues and eigen-
vectors used to evaluate the three Cartesian components
D, of the diffusion tensor directly through (10) and (11).
To compute the equilibrium (i.e., low field) conductance
of the block we also need the local carrier concentration
n;. This is done by first determining the chemical poten-
tial 4 and temperature 7 which, through the equilibrium
distribution p(e,u,T) and site-energy distribution func-
tion I'(g), determine the bulk carrier concentration

n= [dep(e,u, T)T(e) (13)

of the material. The local carrier concentration is then
easily computed using this value of u and T through the
relation

n;= pleg,u,T), (14)

where the sum now runs over the specific set of sites in
the particular block under consideration. Thus, using the
local components of the diffusion tensor and the local
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carrier concentration we compute the components of a
block conductance which we define through the relation

yi=von: D/, (15)

where y,=e?/kT is the usual combination of factors
which relate the diffusion constant to the mobility. By
computing this conductance for a sufficiently large num-
ber of randomly generated blocks we produce a reason-
able sampling of the distribution p(y;) of block conduc-
tances, which can then be used in conjunction with Eq.
(2) to compute the bulk conductivity of the disordered
system.

IV. APPLICATIONS TO BINARY LATTICES

To demonstrate the utility of the approach outlined in
Secs. II and III we consider a number of applications in-
volving binary lattices, i.e., systems in which lattice sites
are randomly occupied by two types of site, so that the
site-energy distribution function can be written

I'(e)=x8(e—¢g)+(1—x)8(e—¢g,) . (16)

In the calculations that follow we consider only nonin-
teracting carriers in fixed bulk carrier concentration n.
In a future publication we intend to present calculations
appropriate to interacting carriers (fermions), which in-
corporate the effect of site blocking on the conductivity,
and to systems possessing a more extended site-energy
distribution function.

A. Nearest-neighbor conduction on percolating lattices

As an initial example designed to test the robustness of
the general approach, we have applied the method out-
lined in Secs. II and III to study the well-known problem
of nearest-neighbor conduction on a site-percolating lat-
tice.>!® For this problem we take x to be the fraction of
conducting sites in the lattice (which we arbitrarily iden-
tify with sites of type €,), and choose the rates connecting
nearest-neighbor sites on a three-dimensional cubic lattice
as follows:

F(rie;e;)=[Wyd;;8;,, tw(1—§;8,;,)]16(r —a), (17)

with W =W,>w=W,,=W ,=W,,, and O(x) is the
Heaviside step function. With this choice, nearest-
neighbor pairs of type i=j=1 are connected by large
rates Wy, while nearest-neighbor pairs of any other type
are connected by reduced rates w. This corresponds to a
high-temperature limit in which all sites have the same
equilibrium populations, since W,,/W,;=1. It also
represents an extension of the more common percolation
problem in which the small (or less conducting) rate w is
taken to be zero. Unfortunately, the transition matrix
governing transport in the system becomes decomposable
in the limit w—0, reflecting the existence of isolated
clusters each of which tends individually towards its own
equilibrium. This, of course, violates our initial assump-
tion of a single equilibrium state for the entire lattice, and
thus in the work presented here®* we restrict ourselves to
small but nonzero w. In spite of this limitation, with the
small values we are able to use numerically the computa-
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tional method does a respectable job of reproducing the
conductivity of site-percolating lattices above the conduc-
tion threshold.

In Fig. 3 we present both linear and logarithmic plots
of the conductivity versus the conducting site fraction x,
normalized to unity at the conducting end. In this figure
we compare results obtained using block sizes of edge
length L =3, 4, 5, and 6 to show the rapid convergence to
the bulk limit that is obtained using our self-consistent
large-cell renormalization approach. Each numerical
data point for which the curve was calculated represents
an effective-medium average over a set of 300 block con-
ductances in which the magnitude of the “weak link” w
was taken to be IO_SWO, although only values of the con-
ductivity above 107¢ are plotted to emphasize the per-
colative nature of the conductivity above the percolation
threshold. In producing these curves we have kept the
carrier concentration n fixed as a function of x, which
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FIG. 3. Normalized conductivity as a function of the frac-
tional conductive site concentration for a nearest-neighbor site-
percolation-like problem, with supercell edge lengths of L =3,
4, 5, and 6 sites. In the linear plot in (a) the dot-dashed curve
for L =4 is not discernible beneath the solid line representing
L =6. The difference becomes more apparent in the critical re-
gion when plotted on a logarithmic scale as in (b).
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also keeps the carrier concentration in the conducting re-
gion itself constant as x is varied. This choice corre-
sponds in the w =0 limit to the standard site-percolation
model.>!%18 A fit to the numerical data just above the
transition region using a function of the form
Ino =t In(x —x_) yields the values x, =0.318, which is in
reasonable agreement with calculations performed on
larger lattices, and the value ¢=1.47, which is
significantly lower than recent estimates ¢ > 1.8 of the
conductivity exponent.?* This latter difference may arise
from the finite value of the rate w that we have used in
the calculations or from the finite-cell size used (an effect
which will always become important in some immediate
vicinity of the critical point).

B. Long-range conduction on site-percolating lattices

In Fig. 4 we present a set of curves similar to those in
Fig. 3, except that we have removed the restriction to
nearest-neighbor hopping. That is, we consider a binary
lattice with exponentially decaying hopping rates having
the functional form

F(r;e;e;)=[Wy8,;8;; +w(1—5;5, ) ]lexp( —ar) . (18)

These curves were produced with a single cell size L =6,
again using 300 realizations per data point. Plotted
curves correspond to values of the range parameter a =2,
10, 18, and 26. The dashed curve in that figure corre-
sponds to nearest-neighbor transport, being the same as
the corresponding curve for L =6 in Fig. 3. Note the
steady approach to a nearest-neighbor percolation-type
transition in the neighborhood of x =0.3 as the range
ro=a ! of the hopping rate decreases. Note also for
a =18 the signature of a second-nearest-neighbor per-
colation transition between x=0.1 and x=0.2. The
dropoff in this region with decreasing concentration is
due, presumably, to the disappearance of a second-
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FIG. 4. Normalized conductivity as a function of the frac-
tional conductive site concentration with variable-range hop-
ping governed by exponential hopping rates. From upper-left to
lower-right the curves presented correspond to values of the
range parameter a=2, 10, 18, and 26. The dashed curve
represents nearest-neighbor hopping only.
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nearest-neighbor conducting path. This ability to repro-
duce greater-than-nearest-neighbor transition points
recommends the accuracy of the basic computational ap-
proach.

C. Trapping-to-percolation crossover

A variation of the nearest-neighbor site-percolation
problem, which may be more relevant to some physical
systems, relaxes the high-temperature limit implicit in
(17) by applying a detailed balance relation between the
two different kinds of site. Thus, for the curves in Fig. 5
we have considered nearest-neighbor hopping with a hop-
ping rate function given by the expression

F("§5i,5j )= W15i,15j,1 +w218i,25j,1 + W28i,28j,2

+W1,8,,8,,)10(r—a) , (19)

in which W; is the hopping rate between neighboring
pairs of sites of type €;, and in which there is a reduced
rate w,; out of the (assumed lower energy) sites of type g,
when making hops to higher energy sites of type ¢,.
Accordingly, we define the “well depth”
n=w,, /W, =exp[ —B(e,—¢,)] which provides a mea-
sure of the difference in site energies. In Fig. 5 we
present calculations in which the well depth 7 is varied,
while the rate between sites of the same type is kept fixed.
Thus, in the curves presented, we take W, =W,=W,,,
and 7=10"8 107% and 1073 For comparison, the
dashed curve in this figure represents the nearest-
neighbor site percolation curve, as in Fig. 3. The
difference observed between the two curves above the
percolation point is real and results from the fact that
with different energies and a fixed bulk carrier concentra-
tion n, the relative concentration of carriers among the
lower energy sites increases as the relative fraction of
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FIG. 5. Normalized conductivity as a function of the frac-
tional concentration of deep energy sites with nearest-neighbor
hopping. Note the trapping-to-percolation transition exhibited
by these curves. End member conductivities are equivalent.
Curves displayed correspond, from top to bottom, to a well
depth n=1073, 1073, and 1078 Nearest-neighbor site percola-
tion is shown as a dashed line.
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lower energy sites decreases. That is, for large energy
differences A=¢,—¢; most of the carriers end up in the
lower energy states. This implies, for example, that for
small x the relative carrier concentration among the few
lower energy sites gets much larger than the bulk carrier
fraction. Above the percolation threshold, by contrast,
the carrier concentration in the percolating cluster de-
creases with increasing x towards that of the site percola-
tion model, until they coincide at x =1.

These curves clearly show the effects of the trapping-
to-percolation crossover that occurs in binary systems of
this type.”!° For small x the carriers spend a great deal
of time trapped in isolated clusters and sites of energy ¢,,
making infrequent excursions among the higher energy
sites. Conduction is then trap limited. At higher concen-
trations, above the percolation point x., carriers do not
need to leave the lower energy manifold in order to parti-
cipate in conduction. Thus a transition takes place be-
tween trap-limited and percolative conduction in this
kind of system.

In Figs. 6 and 7 we present long range versions of the
curves presented in Fig. 5, with exponential rates of the
form

F(r;s,«,ej):[Wlﬁi,lsj,1+w215i,28j’1+ Wzsi’zsjyz

+W1,8,18;,)exp(—ar) . (20)

In Fig. 6 we take the range parameter @ =6, and in Fig. 7
we take a=10. In both curves the relative value of the
parameters W, W,, W,, and 7 are the same as the cor-
responding curves in Fig. 5. While the same trapping
behavior is seen at low concentrations, the transition
which takes place occurs at lower concentrations as the
effective hopping range ro=a ™! is increased. It is in-
teresting to note that the sharpness of the transition is
not necessarily diminished with the increased range asso-
ciated with exponentially decaying hopping rates.
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FIG. 6. Normalized conductivity as a function of the frac-
tional concentration of deep energy sites for a system with ex-
ponential hopping rates, showing a trapping-to-percolation-like
transition. In each of these curves the range parameter takes
the value =6, while the well depth takes the values 7=10"3,
1073, and 1078, respectively, from top to bottom.
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FIG. 7. Normalized conductivity as a function of the frac-
tional concentration of deep energy sites for a system with ex-
ponential hopping rates, showing a trapping-to-percolation-like
transition. In each of these curves the range parameter takes
the value a= 10, while the well depth takes the values =103,
1073, and 1078, respectively, from top to bottom.

As a final example of the method, we present a family
of curves in Fig. 8 in which we fix the well depth n=10"%
and the range parameter « is varied from 2 to 26 with an
increment of 4. Otherwise the rates are the same as in
Fig. 5. The dashed line corresponds to the nearest-
neighbor curve in Fig. 5 having the same well depth. Itis
interesting to note that the same kind of second-nearest-
neighbor shoulders discussed in connection with Fig. 4
are also clearly evident in this plot.

V. SUMMARY

We have presented a general method for accurately
calculating the conductivity of energetically disordered
solids and demonstrated the approach on a series of mod-
el binary systems. The method works well on model cal-
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FIG. 8. Normalized conductivity as a function of the frac-
tional concentration of deep energy sites for a system with ex-
ponential hopping rates, showing a trapping-to-percolation-like
transition. In these curves the well depth n=10"% is kept fixed,
while the range parameter is varied over the values =2, 6, 10,
14, 18, 22, and 26, respectively, from upper left to lower right.
The dashed curve represents the nearest-neighbor trapping-to-
percolation transition as depicted in Fig. 5.

culations describing conduction on a site-percolating lat-
tice and provides data for the trapping-to-percolation
crossover to which analytical theories can be compared.
In a future publication we will extend the formalism
presented here to treat continuous site-energy distribu-
tions and interacting electrons. Further extensions of the
method to treat systems in which topologically disor-
dered hopping sites (i.e., not distributed on a lattice) are
also currently under development and will be presented
in a later publication.
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241t is straightforward to extend the present approach to calcu-
late the conductivity of a percolating lattice with w =0. To
do this requires only that the sites belonging to the percolat-
ing cluster spanning each cell (should one exist) be identified,
so that the transition matrix could then be produced only for
the connected set of sites within the percolating cluster
(which will have its own unique equilibrium state). The
diffusivity/conductivity of the (periodically repeated) per-
colating cluster could then be obtained in the manner de-
scribed above.



