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A theory of the inAuence of isotopic impurities on phonon frequencies and bandwidths, based on the
formalism of the retarded Green's functions, is presented. The theory takes into account both harmonic
and anharmonic processes in the crystal and yields a proper self-energy that includes impurity-activated
contributions depending on the concentration of the impurities and on a parameter A, defined as the ratio
of the mass difference to the mass of the impurity atoms. The theory is developed up to second order in
the parameter I, and in the concentration of impurities. Central to the theory is the technique of averag-
ing the anharmonic-phonon propagators over the ensemble of impurity configurations. This gives rise to
a proper self-energy that includes harmonic and anharmonic contributions to both the phonon shift and
damping. The most important result is that processes linear in the quartic anharmonicity, that in the
pure crystal contribute only to the phonon shift, in the presence of isotopic impurities give rise also to a
contribution to the damping.

INTRODUCTION

It is well known that the presence of randomly distri-
buted impurity sites in a crystal lattice can give rise to
significant variations of its mechanical, electrical,
thermal, and optical properties with respect to those of
the pure solid. All these properties are, more or less,
directly related to the structure of the manifold of pho-
non states and any variation induced in this structure by
the presence of the impurities, will produce a correspond-
ing alteration of the physical properties of the material.

If a given number of atoms or molecules of a difFerent
chemical nature are randomly substituted at the lattice
sites of a crystal to corresponding atoms or molecules of
the host crystal, both the kinetic and potential energy of
the crystal are locally altered and, depending upon the
size and nature of the guest species, the unit cells in
which the substitutions take place, experience a deforma-
tion that propagates to the neighboring cells and may ex-
tend over several unit cells until, by progressive relaxa-
tion of the deformation, the original unit-cell structure is
eventually recovered. This deformation is sufficient alone
to induce changes in the phonon density of states and
therefore to affect the physical properties of the material.
In addition, however, new levels, associated to the vibra-
tional motions of the guest species, will appear and these
may fall in frequency regions where no levels of the host
crystal are present, thus giving rise to new bands in the
optical spectrum.

Of particular interest is the case in which the impurity
species is of the same chemical nature, but with a
difFerent mass, i.e., the case of isotopic impurities. In this
case no deformation of the unit cells at the substitutional
sites occurs and, since the crystal potential remains the
same as in the isotopically pure material, only the vibra-
tional kinetic energy is affected by the mass impurities.
The mechanisms by which the impurities perturb the
phonon distribution will depend on the mass difference
between the host and guest species.

Lattice phonons in an atomic crystal are true collective
motions of the atoms. The impurity atoms are driven in
the collective motion but, owing to their different mass,
they will follow the motion with a different amplitude,
giving thus rise to a change in the phase of the motion.
The impurities play therefore the role of scattering
centers for the phonons and their effect can then be de-
scribed in terms of scattering processes. As a conse-
quence, the collective motion is no longer a pure eigen-
state of the harmonic crystal Hamiltonian, but corre-
sponds to a superposition of several eigenstates, with
different wave vectors k;. In the case of optical phonons
this will lead to a broadening of the phonon band in in-
frared or Raman, since the presence of impurities breaks
the translational symmetry and k&0 phonons will ac-
quire optical activity.

If the mass difference is small, the variation in the am-
plitude of the impurity atoms is also small and the new
phonons will have a spread of energy levels Rheo; cover-
ing a range of wave vectors k; which differ very little
from the wave vector k of the unscattered phonon. This
situation is often referred to as the "amalgamated band
limit" in the sense that the new levels will fall inside the
dispersion band of the original phonon. In the amal-
gamated band limit the scattering then becomes a true
resonant scattering process whose efficiency is larger the
closer the new levels are to that of the phonon con-
sidered.

If, instead, the mass difference is large enough, the im-
purity atoms will not be able to follow the collective
motion and their displacement will be decoupled from
those of the neighboring atoms, giving rise to isolated lev-
els (separated band limit) which fall outside the phonon
dispersion band and cannot propagate in the crystal. An
isolated impurity level can than act as an energy trap in
population decay processes, as long as the energy
difference hE between the host and guest levels can be
compensated by creation of another phonon.

In the case of molecular crystals the situation can be
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described in exactly the same way as for atomic crystals
in the region of the lattice vibrations. For phonons of
translational nature the mass difference is between that of
the molecule with one or more impurity atoms and that
of the isotopically pure molecule. For librational pho-
nons, in which the molecules perform small-angle rota-
tional motions about their inertia axes, what matters is,
instead, not the mass of the molecules but their inertia
moments.

For high-frequency internal vibrons in molecular crys-
tals the situation is slightly more complex, since the effect
depends on the relative amplitude of the motion of the
impurity atom with respect to the other atoms of the
same molecule. Consider, for instance, a linear triatomic
molecule like CO2. In the symmetric stretching motion
v& the carbon atoms is at rest and therefore an isotopic
impurity of ' C will have no effect on this vibration. In
the case of the vz bending and of the v3 antisymmetric
stretching modes, the carbon atom moves and a molecule
with a ' C isotopic impurity will possess a different fre-
quency, giving rise to a different Davydov splitting of the
crystal modes.

The most significant body of information on the effect
of isotopic impurities on the optical phonon spectrum is
obtained experimentally from phonon lifetime measure-
ments by time-resolved spectroscopy or from equivalent
band-profile measurements by infrared absorption or Ra-
man scattering. ' Phonon lifetimes are actually con-
trolled by anharmonic terms of the crystal Hamiltonian
which, by coupling together the phonons, give rise to a
variety of energy decay or scattering processes. The
effect of the impurities is to modify the channels open to
phonon decay in the pure crystal, to add new channels as
well as to give rise to new scattering processes. Any
theoretical treatment of isotopic impurities in a crystal
must be, therefore, necessarily carried out at the anhar-
monic level owing to the fact that the experimental data
that can be used to test the theory are dominated by the
anharmonic interactions.

The dynamics of crystals with impurities and defects
has been the subject of a large number of investigations.
Experimental data have been collected for ionic, molecu-
lar, and covalent crystals and different theoretical ap-
proaches have been proposed. Exhaustive reviews have
been given by Maradudin and by Elliott. ' '" Most of
the recent work has been concentrated on semiconduc-
tors' and molecular crystals. Recently the thermal
conductivity of isotopically disordered anharmonic crys-
tals has been discussed by Gairola' ' whereas Gupta
and Gairola' have treated the problem of the infrared
absorption of anharmonic crystals with impurities.
Molecular crystals with impurities have been discussed
by Klafter and Jortner' in the framework of the Frenkel

excitons theory and by Abram and Hochstrasser' for
time-domain experiments.

In the present paper we address the general problem of
the effect of substitutional isotopic impurities on the opti-
cal phonon spectrum of a crystal, presenting a theoretical
treatment that allows actual calculations of phonon fre-
quencies and lifetimes in crystals in presence of impuri-
ties. The treatment takes into account both harmonic
and anharmonic processes involving isotopic impurity
centers and, even if designed for crystals made of atoms,
is easily extended to the lattice phonons of molecular
crystals.

THEORY

Here Hh„ is the harmonic Hamiltonian of the umper-
turbed crystal,

(p/Q. )2 I a
H.- =sr " + —Err+. i p2M 2„

where p„' and u „are the pth components of the momen-
tum and displacement of atom a in unit cell I, respective-
ly, and the

are the harmonic force constants. The impurity Hamil-
tonian H; can be written in the form

1
lfllp X X

p la
(3)

where cI~= I if lo.' is an impurity site and el~=0 if /a is a
site of the host atoms. In what follows we shall treat
I c& I as independent random variables defined by c&

= 1

with probability c, and cI =0 with probability 1 —c.
If we retain only cubic and quartic terms, the anhar-

monic Hamiltonian Hanh has the form

In this section we consider an atomic crystal with an
arbitrary structure. The positions of the atoms compris-
ing it are given by the vector ri =rI+r, where rI defines
the position of the Ith unit cell and r (a=1,2, . . . , n )

gives the position of atom o. in the lth unit cell. The mass
of each atom of the unperturbed crystal is M. In the per-
turbed crystal a fraction c of all lattice sites is occupied
by isotopic impurities of mass M'.

The vibrational crystal Hamiltonian can be written as

H =Hh„+H; +H,„h .

=1 I l' l" l
anh 3f X X+X Pv1T a P y p, v 77 4) g ggg g p~~p a /3 $ +p

@vs lo. I'P I"y pvm. p Ia l'P l"y I'"6

(4)
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where

j'I j'll

pv17 a P y

and

l l' l" l"'
epvvrp a P y

are the cubic and quartic force constants, respectively.
In these expressions 1, I', I",l'" count unit cells, a, P, y, 5
count atoms in the unit cell, and p, v, ~,p label Cartesian
components (p, , v, vr, p =x,y, z) of the atomic displace-
ments.

The transition to phonon field Ak and momentum Bkj
operators is carried out through the expressions

~kj bkJ'+ b —kj

kj kj —kj

and satisfy the commutation relations

(6a)

(6b)

Here cukj is the frequency of the normal mode of the har-
monic crystal defined by the wave vector k and the
branch index j, w(a~kj) is the corresponding unit polar-
ization vector and N is the number of primitive unit cells
in the crystal. The N values of k allowed by cyclic
boundary conditions are uniformly and densely distribut-
ed through the first Brillouin zone of the crystal. The
operators Ak and Bk can be expressed in terms of
creation bkJ and destruction bkJ operators of the cokJ pho-
nons as

la
)M 2iVM

1/2

g (cok )
' w„(a~kj)e

kj
(5a)

[ Akj Ak'J '] [~kj '+k j )''

[ Ag~, Bk ) ]= —25(k+k')5 ' .

(7a)

(7b)

1 AM
P

1/2

g (IIIkj ) wp(alkj )e '&kj
kj

(Sb) Hh„m, H; p, and H,„„ofEq. (1) assume, in terms of
these operators, the form

=1Hh- ——&& k)[&k,&k, + Ak, Ak, ]4 kj
(8a)

2
HimP X X Vk j,k j&~k&jI+k&j&

kIJ) k2J2

(8b)

Vk J, kjkj ,Ak j Ak J' Ak j + g g g g Vk) j),k~j~, k313k4j4 Ak) j) Ak~j~ Ak3j3 Ak~j4
k) jl k2J2 k3j, k, j, k2J2 k3j3 k4j4

(8c)

where
I II

(co .co -)' gc,~w(a I~') w(a~~")e
la

In these expressions A, =(M/M') —1 and the coefficients Vk J. k ~ k J and Vk '
k k

.
k are the Fourier transform1J1, 2J2, k3J3 t»I 2J2~ 3J3 4J4

of the cubic and quartic force constants, respectively. For simplicity we shall use from now on the collective symbol x
for both the wave vector label k and the branch label j. The label —~ will mean obviously —k,j. Only when necessary
shall we specify both labels in the text.

In order to obtained the line shape of the phonon cok we solve the equations of motion for the retarded Green's func-
tion

G(Ir;~', t) = —iO(t)([ A„(t), A ..(0)]), (10)

where O(t) is the Heaviside unit step function and the symbol ( ) denotes the average with respect to the canonical
ensemble defined by the Hamiltonian.

In the frequency space the equation of motion has the form

X~(( A. ; A„', )) =X([A., A.', ])+(([A.,H]; A'. , &) (11)

=X&[A., A.', ]&+«[A.,H„., +H, ,+H.„„];A.', )&,

where the symbols (( . )) and ([ . ]) represent the Green's function in the frequency space and the average of
commutators respectively. Using the standard commutation properties of the phonon operators we obtain

( [A., A'. , ] & =0, (12)

« [A.,H„„];A.', » =~~.&(a.; A'. , &&, (13)
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« [A.,H, , ];A'., 8= —4y v'"..« B. ;A'„, )),
K1

« [ A, H,„„];A, )) =0 .

By substitution in Eq. (11)we have

e~&& A. ; A.', )) =X~.&&B.; A'. , &)+ y( —4V'".. )&&B. ; A'. , )) .
K1

(16)

Equation (16) involves the Green's function G (K;K', co ) = « A, ; A ) ) and the new Green's functions
F(K;K', co) =«B;A ~ ) ) and F(K&', K', co)= «B;A )). To obtain these new functions we write down their equations

1

of motion and continue the process until we can truncate the resulting system of equations by a decoupling procedure.
In this way we obtain

COK

G(K;K';co)=g, [b(k —k')5) +U' ']+g, gU'„' G(K~ , K;cd)'
1

1

+g, y [h(k —k, )5,, + U',P ]« [ B, H,„„],A,t)),
K1

(17)

where

y.(2)
(2) 4 KK

KK

2COK

CO COK

For the calculation of the new Green's function
« [B,H,„„];A t ) ) we shall limit ourselves to the two

1

lowest-order anharmonic processes, represented in the di-
agrammatic expression of the self-energy by the two dia-
grams in Fig. 1. The contribution to the self-energy of
these two processes is given in many books and review ar-
ticles' and can be written in the form

« [B, ,H, „h ];A )) = g W, , « A, ; A, ))
K1K2

In these expressions n is the statistical average of the
phonon occupation number given by

ACOK
n = exp —1ET (22)

+go y U(2)

K1

1

2
G (K„'K', co )

+g'. y [a(k —k, )t'„+U.".' ]
K1K2

Inclusion of higher-order diagrams simply requires the
addition to 8' of their contribution to the self-energy

1 2

which can be found in recent literature. ' When Eq. (19)
is substituted in Eq. (17) we obtain

G(K;K';co)=g [h(k —k')5 '+ O',P ]

= g W, G(K~;K';co),
K1K2

(19) X W„„G(K2',K';co) .
1 2

(23)

where

with

K3

(20)

(21a)

Equation (23) is a stochastic equation because the
coefficients U' ' and U' ' are stochastic quantities. We

1

need thus to average these quantities over the ensemble of
impurity configurations, i.e., we do not need G(K;K;co) it-
self but its average & G (K;K', co ) ) . From this averaged
Green's function we can extract the proper self-energy

K3K4

n +n +1
3 4

CO CO CO
K3 K4

n —nK
3 4

CO+ COK COK

K

n —n

CO COK +COK
(21b)

FIG. 1. Diagrammatic expression of the self-energy.
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which determines the frequency shift and width of the
phonon co due to the combined effect of anharmonicity
and disorder. We begin by introducing the Green's func-
tion

A comparison of Eqs. (25) and (26) shows that the
effective vertex function U' „' is given in terms of the ver-

1

tex function U' ' by
1

G (ic;v', co)= « 3 (24)
2

U"I =y [I+0"~j-,'U" ~

K
1

COK~

which is the solution of Eq. (23) when the effect of anhar-
monicity is neglected. It therefore satisfies the equation

6 (ic;ic';co)=g [b,(k —k')6JJ. + U,',']
U(2) ~ U(2) U (2)

KK ~ KK1 K1K
K

1
COK

(27)

+go yU(2)
K1

COk

G (Ic„lc';co) . (25)
We can now apply the smoothing method to obtain

from Eq. (27) the equation satisfied by &6 (ic;ic';co)).
The result can be written in the form

In order to obtain & G (ic;ic', co)) we rewrite Eq. (25) in
the standard form of Dyson's equation:

&6 (x",Ic', co)) =b, (k —k')6 'g„

+g +&M, (co)) &G (Ic„lc';co)),

G (K;K';co)=g, b(k —k')5. '+g, gU' '6 (ic, ;x';co) .

(26)

(28)

where the averaged proper self-energy & M„(co)) is
1

given by

&M, (co)) =
& 0 «')+ g I & U', &G (Ici', Icq', co)) U,',', ) —

& U«, ') &G (ici, icq,'co)) &
0''«' ', ) I+0(0' )

K1KP

(29)

Equations (28) and (29) must be solved together to yield both & G (ic, ic', co) ) and &M, (co) ). Since we are primarily
interested in qualitative rather than in quantitative results, we can simplify the solution of these equations by making
the assumption, well satisfied by most isotopic impurities, that the parameter A, is small compared to unity and working
only to second order in A, . We also use the result that the restoration of periodicity to the disordered crystal has the
consequence that both & G (ic, ic', co) ) and & M„(co)) are diagonal in k and k':

& G ( ice', co)) =b, (k —k')G (kjj', co),

&M,.(co)) =b, (k —k')Mk . (co) .

The fact that G (kjj', co) and Mk~j (co) are not diagonal in j and j' is referred to as polarization mixing:

6'(ki J';~)=[(g k)
' Mk),)' . —

From Eqs. (27), (29), and (30) we find that the equation for Mk" (co) takes the form

(30a)

(30b)

(31)

CO

M„, (co)=5"c A(1 —A, )
2COkj

wPalkj) 1 w, (alki ji), w.*(alki j~) w. (alkj')+ c(1 c)gg— , zz
—g g, G (k,j,jz',co), z

p~ ~kj k1 j1jz ~k1 j1
1/2j

MkJ
(32)

When Eq. (31) is substituted in Eq. (32) the result is a nonlinear integral equation for Mk" (co), which can only be
solved numerically. The solution of Eq. (32) yields a proper self-energy that gives rise to a frequency-dependent shift
and damping of the phonon cok. . This can be seen from the result for Mkj~ (co) that is obtained when 6 (kjj, co) is re-
placed by its unperturbed value

2Cok J6 (kj,g~;co)=5, ,
CO CO k1 j1

(33)

w„(alkj) 1 w„(alkiji)w*(alkij, ) w (alkj')
2COk J COk-J

(34)
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This result could serve as the starting point for the iterative solution of Eq. (32). It is clear that the first term on the
right-hand side of Eq. (34) contributes only to the shift of the phonon frequency due to the isotopic disorder, while the
second term contributes to both the shift and width of the phonon.

We now turn to a consideration of Eq. (23). Using Eq. (25) we can rewrite Eq. (23) in the more convenient form

G(K;K', CO)=G (K;K';CO)+ gG (K;K„'CO)W, G(K2', K', CO)
1 2

K(K2

(35)

from which we see that, if we seek the proper self-energy to no higher than the first in W„, it suffices to solve Eq. (35)
by iteration to first order in 8' ~ and to study the equation

(G(K;K;CO)) —(6 (K;K';CO))+ g (G (K;K) , CO)8'', , G (K2;K';CO)),
Kl K2

(36)

which requires the evaluation of the average (G (K;K,;co)G (K2, K', co) ). For this we make use of the fact that W
2

vanishes unless k& =k2, which has the consequence that the average we need to consider is

( G (kj;k,j,;co)6 (k,j2,k'j', co) ). If we denote the transpose by a tilde 6 (k,j2, k'j', co) =G (k'j', k, j2, co), the aver-

age of interest is thus ( G (kj; k( j)',co)G (k'j', k) j2,co) ) which satisfies the following Bethe-Salpeter equation.

(G (kj;k,j, )G (k'j';k, j2)) =(G (kj;k)j ) ))(6 (k'j', k(j2))

+g g g g(6 (kj kj ))(G (k J;k J ))(rk jk, k jk,
k,j3 k4j4 k,j5 k6J6

X (G (ksj s;k,j, )6 (k6J6,'k) J2) ), (37)

where, to simplify the notation, we have dropped explicit reference to the frequency cu. The function
(I k J k j k j k j ) is the irreducible vertex function. It is given, in general, by '

3J3 4J4 5J5 6J6

n(M„', „, &414

3 3 4 4 5 5 6 6 $ ( 6 k ~ k )sjs~ 6J6
(38)

This relation, which has the nature of a Ward identity, shows that one cannot consistently approximate
( I k .

k J. k j. k ) independently of the approximations made in obtaining the proper self-energy (Mk k
. ). If we

3J3 4J4 5J5 6J6 4J4

use the approximation of Eq. (29) for the latter function, our approximation to the former must be

( I ) ( g (2) P (2) ) ( P (2) ) ( P (2) )
3j3k4j 4k5j 5 k6J6 k3j 3 k5 j5 k4j 4k6J6 k3j 3 k5 j5 k4j 4k6J6 (39)

However, since we have approximated U k k', by ( Ukjk.j )(CO /2COkj ) in evaluating the second term on the right-hand
side of Eq. (29) to obtain Eq. (32), our consistent approximation to the irreducible vertex function is

c(1—c)b,(ks —ks+k6 —k4)„, X Xe)', (~ ksjs)e„(«sjs)e.*(cc k6j6)e.(~lk4j4),
(~k3j3~k4j4~ksjs~k6j6) a )4v

(40)

where e„(a~(kj )=to„(a~kj)exP(ik r ). The ProPortionality of (I k j. k j k j k j ) to b(ks —ks+k6 —k4) is general and
3J3 4J4 5J5 6J6

not specific to the approximation made in obtaining Eq. (40). Equation (37) can now be written as

(6 (kj;k, j) )G (k'j';k, j2)) =h(k —k()b(k' —k, )G (kjj))G (k'j'j2)

6 (kJJ'3) G (k'J J4) 1

4 + 1/2 1/2,,j, ( k ..) ( k j )

b, (k —ks+ k6 —k')
xg g

k5J5 6J6 k5J5 k6J6(CO CO )

If we make the ansatz

Xg ge„*(a~kjs)e (a)(ksj 5)e„*(a~k6j 6)e (a~k'j4)
a pv

X(G (ksjs k)J()6 (k6J6 klj2)) . (41)

(Go(kj;k, j, )G 0(k'j ', kj, ) ) =b(k —&')6'(kjj, lk(j'j2),
the equation satisfied by G (kjj),k)j j2) is

(42)
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6'(kjj
~ ~k,jj'2)=b(k —k, )G (kjj ~

)G (kj'j2)

g~~4 G (kjj3)G (kj'j4)+ c(1—c) g
(~kj,~kj, )' ' N

(a~ksjs) e*(a~ksje)
X g gee„(alkj3)e„(alkj4) 6 (ksjsjl klj6j2) .

k5JSJ6 a Pv ( )1/2 ( )
I /2

This is an integral equation with a separable kernel whose solution is

6'(kjj, ~k,j'jz)=b(k —k, )G (kjj, )6 (kj'j2)

k co o . . 1+ c(1—c) g QG (kjj, )—
J3J4 JgJ6

e„*(a~kj3)e (a~kj~)

ap py o~ (~kj3~kj4), . p~p~

e (P~ k,j s ) e,*(P~k, js)
6'(kjJ~, )G'(kj,j ) .

(43)

(44)

In writing Eq. (44) we have used the matrices

p~ g~ ap-PV O7- ~
=5M 5 (45a)

pv ov
=—gf„( Palk)f ..(aPlk),

k
(45b)

where

e„(a~kj ') e*(P~kj')
f„(aPlk)=g ",, 6'(kjj')

( )1/2 )1/2 (46)

With the use of Eqs. (42) and (44) we find that

g g (6 (kj;k,j, )Wk 6 (k, j2, k'j')) =A(k —k') gG (kjj, )Mk (co)G (kj2j'),
ki JiJ2 J)Jp

(47)

where

A, ct) 1 e„'(a~kj, )e (P~k, js )
M„'J j (co)=Wkj + c(1 c) g g —g—ggg ", I c(1 c)D— —

j,j~ J,j~ k~ &P p& ~~ kj, k,js

e,*(P ~ k,j ~ )e, (a
~ kj 2 )XG (k,j sj 3)Wk . G (k(j4j q)

(~k,j~~t J, )

We can now combine the result given by Eqs. (36), (30), (31), and (47) to write

(G(kj;kj'';co)) =b(k —k') 6 (kjj';co)+ QG (kjj, ;co)Mk . (co)G (kj2j';co)+-
J»z

=—h(k —k') [(G k )
'

Mk ( co) ]~~''—
=6,(k —k')[(6 )

' —M „(co)—M '(co)]. ' .

(48)

(49)
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The essential new result obtained here is the contribu-
tion to the proper self-energy that is obtained when the
vertex 8 k . in the second term on the right-hand side

1~3~4

of Eq. (48) is replaced by Wk'J'. J [see Eqs. (20 and (21)].
The imaginary part of this contribution that results from
replacing co by co i—q [Eq. (52)] is a frequency-dependent
contribution to the damping constant I k. ( co ) that is
linear in the quartic anharmonicity and is nonzero only
because of the presence of the impurities. From Eq. (21a)
it follows that this defect-activated contribution is a
linear function of the absolute temperature T in the clas-
sical regime of high temperatures. The contribution to
the proper self-energy that is obtained when 8'k in

the second term on the right-hand side of Eq. (48) is re-
placed by Wk z J [see Eqs. (20) and (21)] yields a defect-

activated contribution to I k (co) that is of second order
in the cubic anharmonicity. However, inasmuch as the
first term in Mkjj (co) [Eq. (48)] already yields a contribu-
tion to I kj(co) of the same order in the anharmonicity in-

dependent of the presence of impurities, the defect-
activated contribution is a small addition to the latter.

Thus, the proper self-energy matrix Mk" (co) is given
by

Mkj (co) =M&~~ (co)+M&~~'(co) . (50)

Mk~j'(co )= 5~~'Mk~~ (co ) = 5~~'Mk~ (co )

and define

(51)

Mk ( co+ irI ) = 6k .( co ) + I kj ( co ), (52)

where g is a positive infinitesimal, then the spectral densi-
ty pkj (co) of the phonon cokj, defined as

The contribution Mk", (co) is that from the isotopic im-
purities alone; the first term in Mk '(co) is the contribu-
tion from the cubic and quartic anharmonicity alone; the
second term in Mk, '(co) is the contribution that arises
from the combined effect of the anharmonicity and of the
isotopic impurities.

If we approximate Mk", (co) by its diagonal part, to ob-
tain a qualitative feeling for the content of these results

Pkj )
—Ace/KT

n . (gati)= —e

21 „(co)+
2 . (54)

e)+cokj. +5k (r0)+I k (co)

The corresponding spectral density pj,j(co) for the perfect
crystal in the harmonic approximation is

s kj(~)=, ,», [o(~ ~kj ) &(~—+~k, )] .o 277

e
—Rco/KT (55)
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In the perfect harmonic crystal the spectral density has
5-function peaks at co =+cukj. In the presence of disorder
and/or anharmonicity the spectral density has quasi-
Lorentzian peaks centered at values of ~ that differ from
+cok~ [quasi-Lorentzian because both bk~(co) and I k~(co)
are frequency dependent]. If both b, l~(co) and I k~(co) are
small, we can set co=cok~ in 5k~(co) and I k~. (co), in which
case the former describes the shift in the frequency cok of
the phonon induced by the disorder and the anharmonici-
ty, while the latter gives the uncertainty in the frequency
of the phonon ~k caused by the disorder and the anhar-
monicity. I kj(cok~ ) is the reciprocal of the lifetime of the
phonon amplitude, according to the uncertainty princi-
ple. Consequently, the full width at half maximum of the
peak in the spectral density centered at co=coIJ+hk~(co)
is the reciprocal of the lifetime of the phonon cokj, since
the energy of the phonon is proportional to the square of
the modulus of its amplitude, at least approximately.

Finally, we notice that the contribution to I kj. (co) and
to b, kj(co) from Mijj (co) is temperature independent,
while the contributions from the two terms of Mk (ru).
are both temperature dependent, and are linear functions
of the absolute temperature T in the classical regime of
high temperatures. The application of this theoretical
treatment to a linear chain with mass impurities and the
comparison with a computer simulation are in progress
and will be published later.

pk (co)= f dt e' '( Ak (t)Ak (0))

[(G(kj;kj;co+irI) )—A~/KT

—( G(kj;kj;co ig) )]—
becomes

(53)
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