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During low-temperature impact-ionization breakdown in extrinsic germanium, quasiperiodic current
oscillations arise spontaneously. If the two competing frequencies (strictly speaking, the corresponding
oscillatory components) can be localized in two spatially separated regions of the sample, mode locking
can hardly be observed. However, if the two frequencies can be detected all over the sample, the fre-
quency ratio undergoes an exemplary mode-locking sequence under variation of a transverse magnetic
field. We find that the mode lockings are in accordance with the Farey-tree configuration, originally pre-

dicted to hold for periodically driven systems.

I. INTRODUCTION

The theoretical predictions made for the complex
dynamical behavior of a nonlinear dissipative system with
two competing frequencies were the subject of many ex-
perimental investigations in hydrodynamics,! chemical
reaction kinetics,? or semiconductor breakdown,’ for ex-
ample. They started from a discrete mapping, the so-
called “sine circle map,”

6n+1=9n+ﬂ—%sin(21r6,,) (mod 1), (1)

where ©, denotes the angular variable, Q the frequency
ratio, and K the coupling constant. The mean number of
rotations per iteration is given by the winding number
W=lim,_, (0, —6,)/n. Equation (1) describes the an-
gular dynamics in the Poincaré section through a two-
torus on which the continuous dynamics of a quasi-
periodic motion takes place. Moreover, it provides
several universal conjectures for the dynamics of two
coupled oscillators.* Taking into account that such
theory assumes a system with only one intrinsic frequen-
cy, which is modulated periodically by an external driv-
ing force, most of the experiments undertaken were real-
ized under the following conditions: A periodic modula-
tion of some control parameter was used to generate

quasiperiodicity in a hitherto periodically oscillating sys-

tem. Advantages are the direct accessibility of both mod-
el parameters, namely, the coupling strength and the fre-
quency ratio, via two corresponding experimental param-
eters, namely, the amplitude and frequency of the exter-
nal modulation. Predictions such as the mode-locking
phenomenon (i.e., synchronization of the two frequencies
leading to a rational winding number), the hornlike struc-
ture of the locked regions in the K- phase diagram (i.e.,
Arnol’d tongues), as well as their hierarchical ordering
according to the Farey tree, even the fractal dimension of
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the devil’s staircase for K =1, could be confirmed experi-
mentally with astonishingly high accuracy.

However, in contrast to these investigations, experi-
ments focusing on the mode-locking phenomenon in un-
driven (i.e., not periodically driven) systems with two in-
trinsic, self-generated oscillation frequencies are scarce so
far.>~7 This paper reports on experimental investigations
of self-generated quasiperiodicity and mode locking
that develop during impurity-impact-ionization-induced
avalanche breakdown in p-type germanium at low tem-
peratures. The outline of the paper is as follows. In Sec.
I1, we give a brief description of the experimental setup
and the underlying physics. In Sec. III, we present re-
sults of different mode-locked oscillatory behavior ob-
tained from the analysis of quasiperiodic states in two pa-
rameter regimes. Finally, in Sec. IV, we discuss the re-
sults and deduce an explanation for the distinct proper-
ties of both states. Moreover, a comparison of our results
with predictions of the theory for externally driven sys-
tems is performed.

II. EXPERIMENT

Our system consists of a homogeneously doped p-type
germanium single crystal with an acceptor concentration
of about 10 cm™® The sample of dimension
(8.0X2.0X0.2) mm? was furnished with ohmic contacts,
evaporating aluminum and alloying it afterwards with
germanium by heat treatment. The electric circuit used
in the following measurements is shown schematically in
Fig. 1. The outer contacts of the sample were connected
to a dc voltage source ¥V, via a variable load resistor R,
allowing to adjust the current flow Ig. A dc magnetic
field B perpendicular to the current and the broad sample
surface could also be applied using a superconducting
coil. A copper metal shield surrounding the sample
avoided disturbances by external irradiation. The two
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FIG. 1. Schematical illustration of the experimental setup.
The dark areas on the surface of the semiconductor sample indi-
cate the ohmic contacts.

inner contacts (of about 0.2 mm diameter) allowed a
rough localization of potentially existing oscillating
centers. Finally, the current Iy and the voltage Vg were
determined via the voltage drops upon a constant 100-Q
load resistor and the sample, respectively.

At liquid-helium temperatures, the semiconductor
sample becomes nearly insulating. Because of the reduc-
tion of the thermal energy, almost all charge carriers are
frozen out at the impurities, having a binding energy of
about 10 meV. Upon application of an electric field of a
few V/cm, an avalanchelike multiplication of the mobile
charge carriers takes place, leading to impurity-impact-
ionization breakdown. A nonequilibrium phase transi-
tion from a weakly conducting (T'Q) resistance range) to a
strongly conducting state (100 Q resistance range), ac-
companied by spatiotemporal structure formation, takes
place. Current filaments as spatial structures and spon-
taneous current (and/or voltage) oscillations as temporal
structures can be related to the presence of negative
differential conductance in the S-shaped current-voltage
characteristic.®. A model based on a semiconductor-
physical ansatz which is able to explain such phase-
transition phenomena was put forward by Scholl.’

III. RESULTS

In dependence of the external parameters (i.e., magnet-
ic field B, sample current [y, and temperature 7T), our
semiconductor system reveals many different modes of
self-generated oscillatory behavior, thus representing an
interesting study object of nonlinear dynamics. Under
variation of the appropriate parameter, the well-known
routes from regular to chaotic motion, like intermitten-
cy,!? period doubling,!! and quasiperiodicity,'? can be ob-
served. In this section, we present two quasiperiodic re-
gimes with different features.

In the first regime, the quasiperiodic signal is com-
posed of two incommensurate frequencies, the oscillatory
components of which are generated in spatially separated
parts of the sample. This can be verified by looking at
the power spectra of the voltage drops V(z), V5(¢), and
Vs(t). Superposition of the spectra obtained from the
partial voltages V;(¢) and V;(¢) corresponds to that of
the global voltage V(). !
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The successive emergence of both frequencies under
variation of a control parameter (i.e., either decreasing
the sample current or increasing the transverse magnetic
field) can be described as follows. Starting from a stable
fixed point, the system first bifurcates to spontaneous lim-
it cycle oscillations (discernible in part 1 of the sample).
Before the periodic oscillation becomes stable, a stochas-
tical switching between both states can be observed.
Upon further varying the control parameter, the second
frequency arises from a similar transition to another limit
cycle oscillation that takes place in a different part (i.e.,
part 3) of the sample. The resulting current signal then
undergoes an intermittentlike transition of stochastically
switching between periodicity with a single intrinsic fre-
quency and quasiperiodicity with two incommensurate
intrinsic frequencies. Finally, the quasiperiodic signal be-
comes stable.

Protruding characteristics of the present quasiperiodic
oscillatory state are its robustness and insensibility to dis-
turbances over a relatively large parameter regime and
the nearly ideal time trace shown in Fig. 2. In what fol-
lows, we refer to the temporal voltage profile Vg(z). Su-
perimposed to the steady dc voltage of a few volts, the os-
cillatory ac signal typically displays a relative amplitude
of about 1073 and frequencies in the range between 0.1
and 10 kHz. The corresponding phase portrait in Fig. 3
shows off the toroidal structure of the underlying attrac-
tor, as is expected for a quasiperiodic dynamics.

In order to come across the mode-locking
phenomenon, the sample current Iy was varied by chang-
ing the bias voltage V,, accordingly, while all other pa-
rameters were kept constant. (Note that the transverse
magnetic field B turned out to be another appropriate
control parameter leading to equivalent results.) Hereto,
we recorded the time traces for different parameter values
and calculated the corresponding power spectra from
which the two fundamental frequencies f; and f, were
extracted. Their control parameter dependence is plotted
in Fig. 4. Determining the actual ratio of the frequencies
and rescaling it to the unit interval'* leads to the accord-
ing development of the winding number shown in Fig. 5.
Presence of a weak coupling can be deduced from the fact
that the two frequencies are locked onto a 1/1 ratio (cor-
responding to the 0/1 plateau in the course of the wind-
ing number) over a finite interval of the control parame-

t (4 ms/div.)

FIG. 2. Temporal structure of the self-generated quasiperiod-
ic voltage signal obtained at the constant parameters time-
averaged voltage V5=2.178 V, current I3=2.527 mA, trans-
verse magnetic field B=11.5 G, and temperature 7=2.1 K.
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FIG. 3. Phase portrait of the quasiperiodic voltage signal of
Fig. 2 constructed via the time-delay method (A1 =0.48 ms).
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FIG. 4. Development of the two fundamental intrinsic fre-
quencies under variation of the sample current obtained at the
constant parameters V¢=2.15V, B=10.0 G, and T=1.8 K.
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FIG. 5. Winding number as a function of the sample current
obtained from the data of Fig. 4.
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FIG. 6. Temporal structure of the self-generated mode-
locked voltage signal obtained at the constant parameters

Vs=2.21V,I3=2.53 mA, B=—0.4 G, and T=2.01 K.

ter, as is expected for the case of two coupled nonlinear
oscillators. We emphasize that any attempts to increase
the coupling strength via changing other parameters
(magnetic field and/or temperature) were not successful.
It turned out that strongest coupling could be accom-
plished just by applying the parameter set of Figs. 4 and
5. At a higher temperature (T =2.1 K), even the 1/1 fre-
quency locking step disappeared.

Next, let us turn to the second parameter regime of
self-generated quasiperiodicity. Therefore, we reverse the
polarity of the bias voltage ¥, tune the time-averaged
sample voltage and current to the values Vg =2.21 V and
I¢=2.53 mA, respectively, and further apply a weak
transverse magnetic field. In contrast to the first regime,
there is only a very small parameter range where the
present quasiperiodic state persists. The individual
power spectra obtained from different parts of the sample
reveal no significant difference from each other. Thus,
unlike in the former case, oscillating centers cannot be
detected.

An exemplary time series of the voltage signal in ques-
tion is shown in Fig. 6. Since both frequencies are locked
onto a rational ratio (1/5), the spectrum reveals peaks
only at a multiple of the smaller fundamental’® frequency
f1, while the second one f, must be assigned to the fifth
peak (harmonic) of the power spectrum plotted in Fig. 7.
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FIG. 7. Power spectrum of the mode-locked voltage signal of
Fig. 6.
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FIG. 8. Phase portrait of the mode-locked voltage signal of
Fig. 6 constructed via the time-delay method (Az =0.24 ms).

The closed mode-locking structure of the underlying at-
tractor becomes evident in the phase portrait of Fig. 8. A
minute change of the transverse magnetic field leads to a
quasiperiodic state with two incommensurate frequencies,
as shown in Fig. 9. The formerly closed trajectory (cf.
Fig. 8) traces out an invariant two-torus in phase space.
Note that, because of the extreme sensitivity of the semi-
conductor to smallest changes of the sample current and
a somewhat stronger robustness respective to the trans-
verse magnetic field, the latter one turned out to
represent the more appropriate control parameter for the
subsequent investigations.

Following the scheme used in the first regime of quasi-
periodicity, the development of the two intrinsic (i.e.,
self-generated) frequencies under variation of a control
parameter (here, the transverse magnetic field) was
detected. As we can gather from Fig. 10, both frequen-
cies change their magnitude in a synchronous way over
the whole parameter range examined. Plotting the ratio
of the two frequencies versus the applied magnetic field

V(t+At)

V()

FIG. 9. Phase portrait of the quasiperiodic voltage signal ob-
tained at the constant parameters Vs=2.21 V, I¢=2.53 mA,
B=—0.38 G, and T=2.01 K (Ar=0.24 ms).

FIG. 10. Development of the two fundamental intrinsic fre-
quencies under variation of the transverse magnetic field ob-
tained at the constant parameters Vg=2.21 V, Iy=2.53 mA,
and T=2.01 K.

(again rescaled to the interval [0,1]) now yields a stair-
caselike pattern, characterized by distinguished plateaus
at each rational value of the winding number, according
to the theoretical predictions for the devil’s staircase (Fig.
11). The hierarchical ordering of the widths of the pla-
teaus can be followed up to the 6/11 locking that belongs
to the sixth generation in the Farey tree, as can be recog-
nized in Fig. 12 (a closeup of Fig. 11). The pronounced
scattering in the winding number at higher magnetic
fields (around the 2/3 step) can be related to chaotic
breakouts that take place due to overlapping Arnol’d
tongues. Additional measurements performed at lower
temperatures (with all parameters kept constant) clearly
unveil a switching process between the two mode-locked
states 1/2 and 1/3. This finding confirms our assumption
that Arnol’d tongues do overlap in the present semicon-
ductor system (in contrast to observations made for other
experiments?”).

Finally, an estimation of the relating fractal dimension
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FIG. 11. Winding number as a function of the transverse
magnetic field obtained from the data of Fig. 10. The dashed
rectangular area is magnified in Fig. 12.
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FIG. 12. Blowup of Fig. 11.

(all values of about 0.5) indicates that the coupling
strength already exceeds the one corresponding to the
critical line in theory. Systematic investigations on the
parameter dependence of the coupling strength led to the
following correlations: It increases with decreasing sam-
ple current, increasing transverse magnetic field, and de-
creasing temperature. Finding a parameter range of near-
ly critical coupling strength turned out to be practically
impossible. Before reaching the aim, the present quasi-
periodic state immediately becomes unstable if one leaves
the close vicinity of the above parameter values.

IV. DISCUSSION AND CONCLUSION

In contrast to most publications dealing with quasi-
periodicity, we have presented the behavior of two oscil-
latory components (respectively, their frequencies) that
are intrinsic to our semiconductor system. The first
quasiperiodic state, although having some nearly ideal
characteristics, did not fulfill our expectations. The cou-
pling strength between both frequencies could not be in-
creased in a sufficient way, in order for the frequencies to
undergo a distinct mode-locking sequence. One reason
for this lack was found to be the fact that the frequencies
are generated by two spatially separated oscillation
centers. Their existence was detected by concerning the
partial voltage drops (V; and V) of the sample, each re-
vealing only one of the two intrinsic frequencies by which
the quasiperiodic signal of the total voltage drop (V) is
composed.
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However, in the second case of quasiperiodic behavior,
where the partial voltage drops did not show any
significant difference from each other (i.e., the two fre-
quencies could not be localized), the prevailing coupling
strength was strong enough to cause the two intrinsic fre-
quencies to lock onto different rational ratios over a finite
parameter range, as predicted by theory. An estimation
of the fractal dimension of the obtained staircase as well
as the presence of chaotic breakouts at higher magnetic
fields give rise to the assumption that the coupling
strength already exceeds the critical value where the
Arnol’d tongues begin to overlap. Unfortunately, the
coupling strength could not be decreased down to criti-
cality [corresponding to K =1 in the sine circle map, Eq.
(1)]. There, the quasiperiodic state becomes unstable.

Nevertheless, we point out that, in the first instance,
any direct comparison with the well-known phase and pa-
rameter space of externally (periodically) driven model
systems seems to be inadequate for the present undriven
experimental system. The critical coupling strength, in
theory corresponding to a critical line at K =1 in the K-
Q plane, in practice turns out to be a quite complex and
irregular function of all relevant parameters, thus leading
to a (more or less) complicated surface in the high-
dimensional parameter space. A measurement along this
critical surface would require the simultaneous variation
of at least two control parameters under the assumption
that the course of the surface is already known.

In summary, one can say that some predictions made
by theory for externally driven systems were also realized
in our nondriven experiment. The tendency for both cou-
pled frequencies to lock onto rational ratios, even the
hierarchical ordering of the widths of the mode-locked
steps in the winding number according to the Farey tree,
could be clearly detected in the present intrinsic system
(up to the limits of our resolution). There remain some
other interesting investigations, such as the transition
from self-generated quasiperiodicity to chaotic motion
along the golden mean [while keeping the winding num-
ber at a constant value of (V'5—1)/2]. Hereto, the cou-
pling strength needs to be adjustable over an adequate
range.
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