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Numerical calculations of thermal conductivity ~( T) are reported for realistic atomic structure models
of amorphous silicon with 1000 atoms and periodic boundary conditions. Using Stillinger-Weber forces,
the vibrational eigenstates are computed by exact diagonalization in harmonic approximation. Only the
uppermost 3% of the states are localized. The finite size of the system prevents accurate information
about low-energy vibrations, but the 98% of the modes with energies above 10 meV are densely enough
represented to permit a lot of information to be extracted. Each harmonic mode has an intrinsic (har-
monic) diffusivity defined by the Kubo formula, which we can accurately calculate for co & 10 meV. If
the mode could be assigned a wave vector k and a velocity v=Bco/Bk, then Boltzmann theory assigns a
diffusivity Dk =

—,
' vl, where l is the mean free path. We find that we cannot define a wave vector for the

majority of the states, but the intrinsic harmonic diffusivity is still well-defined and has a numerical value
similar to what one gets by using the Boltzmann result, replacing v by a sound velocity and replacing l by
an interatomic distance a. This appears to justify the notion of a minimum thermal conductivity as dis-
cussed by Kittel, Slack, and others. In order to fit the experimental sc( T) it is necessary to add a Debye-
like continuation from 10 meV down to 0 meV. The harmonic diffusivity becomes a Rayleigh m law
and gives a divergent ~(T) as T~O. To eliminate this we make the standard assumption of resonant-
plus-relaxational absorption from two-level systems (this is an anharmonic effect which would lie outside
our model even if it did contain two-level systems implicitly). A reasonable fit and explanation then re-
sults for the behavior of a.( T) in all temperature regimes. We also study the effect of increasing the har-
monic disorder by substitutional mass defects (modeling amorphous Si/Ge alloys). The additional disor-
der increases the fraction of localized states, but delocalized states still dominate. However, the
diffusivity of the delocalized states is diminished, weakening our faith in any literal interpretation of the
minimum conductivity idea.

I. INTRODUCTION

The thermal conductivity tc of amorphous silicon (a-Si)
has recently been measured. ' Two factors make this an
attractive case for detailed theoretical study. First, a-Si
has technological applications, and especially for poten-
tial thermoelectric applications, a deeper understanding
of thermal conductivity might be important. Second,
from a purely theoretical point of view, a-Si can be used
as a model system for studying generic effects seen in ~ of
glasses. Figure 1 shows the experimental data, and also
our theoretical fits explained in Sec. III. The behavior of
tc(T) is customarily classified into three regimes: (l) At
low temperatures, where only low-energy vibrations are
excited, n.( T) is approximately a quadratic function of T.
The model of scattering from two-level systems seems to
give a satisfactory fit. Our theory adds nothing to the
conventional view of this regime. (2) At somewhat higher
temperatures, typically 10—30 K as seen in Fig. 1, there is
a "plateau" region. (3) At T )30 K, a.( T) rises smoothly
to a T-independent final or "saturated" value. In this last
regime, we believe that the dominant mechanism is the

intrinsic harmonic diffusion of higher-energy delocalized
vibrations. These modes have not been well described by
most previous theories. It is also our belief that most of
the effects seen in a.(T) of glasses have close analogs in
electrical transport of disordered metals; this provides a
third motivation for our study.

The vibrations which dominate the high-T heat trans-
port in our theory lie near the borderline of Anderson lo-
calization. However, except for a small minority
(=3%), the vibrational eigenstates are not localized.
Neither are they "propagating, " that is, there is no sensi-
ble way to assign a wave vector or velocity. Nevertheless,
they carry heat, contributing to tc( T) an amount
C;( T)D; /V per mode i, where the specific heat C,. is k~ at
high T and D; is a temperature independent "mode
diffusivity" defined in the previous paper. Boltzmann
transport theory (which is not applicable) would have
given D; =v;l;l3. As observed by Kittel, if the sound
velocity is used instead of U; and the interatomic spacing
is used instead of the mean free path l;, then tc( T) is qual-
itatively and semiquantitatively fit at temperatures above
the plateau region. Slack has discussed how such a mod-
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FIG. 1. Thermal conductivity vs tempera-
ture in amorphous Si. Diamonds are data
from Ref. 1, X's are from Ref. 2. Lines are
our theoretical fits discussed in Sec. III. In ad-
dition to the total ~( T) (solid line), the theoret-
ical contributions are shown separately from
vibrations with energies above (long dashed
line) and below (short dashed line) 5 meV.
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el is also useful for crystalline insulators with strong
scattering. In this paper we report numerical calcula-
tions on realistic finite size models which explain why
this picture is qualitatively sensible, and agree well
enough with experiment to support this picture. This
picture is also supported by recent simulation results of
Sheng and Zhou, and by a phenomenological analysis of
Love and Anderson. Our work does not ignore localiza-
tion. Our system sizes are large enough that the location
of the mobility edge is relatively precise and unambigu-
ous. Both the standard participation ratio calculation,
and the D; calculation show a sharp breakpoint at the on-
set of localized states, where D, becomes zero modulo ex-
ponentially small finite-size errors. Our theory stays
within harmonic approximation, and therefore there are
no inelastic processes which could permit localized states
to carry heat at any temperature. Thus our theory of
heat conduction is in explicit opposition to models of
hopping between localized states proposed by various au-
thors. ' '" The accuracy of the harmonic restriction de-
pends on the material under consideration. In an early
simulation, Payton, Rich, and Visscher' saw evidence
that turning on anharmonicity increased the value of ~ at
higher T. However, silicon in crystalline form is very
harmonic (its thermal conductivity rivals Cu at room
temperature, and exceeds it at nitrogen temperature). In
spite of an argument to the contrary by Michalski, " we
see no reason why the amorphous state should greatly
enhance anharmonic interactions (except for the "two-
level-system" effects which are intrinsically anharmonic,
but very dilute and important only at low T). Our pre-
liminary classical simulations of a-Si with the fully anhar-
monic Stillinger-Weber (SW) ' potential confirm that
anharmonic effects are weak in this model.

There is a common notion that eigenstates are either
propagating or localized, and that states near the margin
of localization cannot give very large transport currents,
perhaps because the regime near the margin is presumed
to be narrow. Further, it is sometimes taken to be obvi-
ous that most vibrational states in glasses are localized.
As an example, lagannathan, Orbach, and Entin-
Wohlman' mention ".. . a theoretical consensus that the
Ioffe-Regel condition signals localization. " The "Ioffe-

Regel condition" means I =a, i.e., states not propagating,
and is ubiquitous in glasses. Our calculation demon-
strates that the identification of the Ioffe-Regel condition
with localization is wrong. We find only a narrow region
of localized states at high frequencies, but a wide region
where the Ioffe-Regel condition is obeyed, with enough
heat transport in these nonpropagating delocalized states
to explain the experimental ii(T) at temperatures above
the plateau. A similar situation applies in the case of
electron eigenstates in metallic glasses or disordered al-
loys, and it is worth presenting the arguments because
electrons are in one sense simpler. In principle, vibra-
tions can never completely localize (the long wavelength
hydrodynamic modes always can propagate) whereas the
relevant electrons within —10k~ T of the Fermi level of a
metal can in principle all localize. An "Anderson heat
insulator" is forbidden, but an "Anderson electrical insu-
lator" is not. Very disordered metals often have resistivi-
ties within a factor of 2 of 150 pQ cm and show very little
T dependence. This is just the value that emerges when
each one-electron state has a diffusivity vFI /3 and I is set
equal to a lattice constant a, i.e. it is the Ioffe-Regel con-
dition. These one-electron states are not localized, as can
be deduced from three different experimental observa-
tions. (I) The resistivity does not diverge as T~0 but in-
stead remains almost independent of T. (2) At higher T
the resistivity is still T independent, whereas conduction
in localized states should improve as T increases because
of thermally activated hopping and also possible thermal
activation of carriers into delocalized states. (3) The
overwhelming majority of these metals cannot be made
into Anderson insulators by any form of abuse (alloy sub-
stitutions or radiation damage) except diluting them
severely with very nonmetallic elements like Ar. Ap-
propriating somewhat loosely the language of attractors
and fixed points, under a wide range of disordering condi-
tions, both electrical conductors and electrically insulat-
ing heat conductors collect at the "diffusive fixed point"
where they are neither Anderson insulators nor quasipar-
ticle conductors. This is probably not a mathematical
fixed point of a well-defined class of Hamiltonians, but in-
stead a phenomenological fixed point (much as the notion
of a Fermi liquid as a physical fixed point seems more



48 THERMAL CONDUCTIVITY OF AMORPHOUS SILICON 12 591

general than can yet be warranted by the scaling proper-
ties of real Hamiltonians).

The usefulness of Si as a model system derives from the
fact that there are microscopic models for interatomic
forces and for atomic coordinates, both of which are
needed for microscopic theory. In most ways we believe
a-Si can be considered a typical glass. Some people
reserve the word "glass" for systems which can be pro-
duced in bulk rather than only thin film form, but we be-
lieve that this distinction refers simply to relative heights
of energy barriers to recrystallization, and has no funda-
mental importance for our considerations. In one
respect, a-Si may not be a typical glass. The linear term
y T in the specific heat (seen at very low T in a-Ge) disap-
pears in a large B field. ' Apparently the linear term is
caused by nearly free spins at dangling bonds, loosely
coupled to neighboring spins to form singlet and triplet
states with random splittings. The contribution to y
from "two level systems" is apparently suppressed by at
least an order of magnitude in a-Ge and probably also a-
Si. The similarity of ii(T) in Fig. 1 to the "universal"
behavior of other glasses shows that this difference is
probably not important.

The previous paper (hereafter denoted by AF) gives
the formalism, i.e., the use of exact harmonic eigenstates
of specific disordered atomistic models containing N
atoms with periodic boundary conditions. The resulting
3X eigenfrequencies co; and eigenvectors e; are used to
evaluate the Kubo formula for ~. This paper is organized
as follows. Section II describes the network models for
a-Si. Section III presents our fit to the thermal conduc-
tivity of amorphous Si which has already been seen in
Fig. 1. Three fitting parameters are used to described in-
elastic effects necessary for the low-frequency vibrations.
Higher-frequency vibrations are only weakly inAuenced
by these inelastic processes, and their intrinsic harmonic
diffusivity dominates. This part of the calculation has no
adjustable parameters. The computation of the intrinsic
harmonic effects is described somewhat superficially in
Sec. III, but further details are given in Sec. IV, devoted
to finite-size effects. Specifically, we examine the depen-
dence of calculated values of ~(T) upon X, upon the
choice of boundary conditions at the edges of the unit
cell, and upon the direction of heat Aow. The method of
extrapolation to zero frequency is discussed. The prob-
lematic contribution of low-frequency modes to ~ is evi-
dent in Sec. IV, but is cured by the phenomenological
treatment of inelastic processes given in Sec. III. Section
V contains calculations of spectral functions which il-
luminate the question of the assignment of a wave vector
and a mean free path to a vibrational eigenstate. Section
VI presents new results for mass-disordered amorphous
Si, „Ge alloys, and hypothetical alloys with even larger
mass disorder. These results shed light on the concept of
minimum thermal conductivity and the transition from
delocalized to localized vibrational eigenstates.

II. NETWORK MODELS FOR AMORPHOUS SILICON

The atomic coordinates are vertices of random
tetrahedral networks containing 8n atoms in a large

cube of side n Xa, where a =5.515 A. The networks
obey periodic boundary conditions with period na (1,0,0),
etc. , and are constructed starting from the crystalline dia-
mond structure, using the bond interchange algorithm of
Wooten, Winer, and Weaire (WWW). ' During the im-
plementation of this algorithm, the Keating potential' is
used to relax atomic coordinates. After the network is
built, we make a further relaxation to the nearest local
minimum of the Stillinger-Weber (SW)' potential. Force
constants are taken from derivatives of the SW potential.
The Keating potential would not be very satisfactory for
this purpose, because unlike SW it is intended only for
small deviations away from perfect tetrahedral coordina-
tion. Even more than the original WWW models, our
SW-relaxed WWW models contain significant deviations
from perfection, including occasional (of order 2%) local
fivefold coordination, and the SW potential is designed to
give realistic forces under such circumstances. Cowley'
has shown that SW forces are reasonably good for bulk
crystalline Si, and I.i et al. ' showed that SW forces still
gave reasonable vibrations on the highly distorted 7 X7
reconstructed (111) surface. We reported earlier results
for an n =3, N =216 atom model, ' and then for an in-
completely relaxed n =5, N = 1000 atom model. In this
paper, more complete results are given for a completely
relaxed N = 1000 atom model. Further details are in Sec.
IV.
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FICx. 2. Vibrational density of states N(co) of amorphous Si.
Data are from Ref. 22. Theoretical values are compiled from
3000 eigenfrequencies calculated with periodic boundary condi-
tions (Q=O) and 3000 eigenfrequeucies calculated with an-
tiperiodic boundary conditions [Q= (n/5a )(1,1, 1)]. A. lso
shown are mode di6'usivities and inverse participation ratios as
discussed in Sec. III. The vertical line at 71 meV shows the lo-
cation of the mobility edge. The arrows locate the frequency of
the propagating mode of minimum energy, whose wavelength is
twice the diagonal of our 28 A cell.
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Although we believe our model to be as good as any
available, there is no way to claim that it accurately
represents real amorphous Si. The actoal microstructure
depends somewhat on the synthesis, and important de-
tails are still under discussion. ' We only claim that our
model is a very sensible network model. Also, the subject
of interatomic forces in Si is not settled. We only claim
that the SW forces are neither pathological nor unphysi-
cal. A measure of the realism of our model is shown in
Fig. 2 which gives the vibrational density of states com-
pared with neutron-scattering experiments by Kami-
takahara et al. The mathematical definition

N (co ) =+5(co co; )—
l

was used, where 6 is a rectangular approximation to a 6-
function centered at discrete frequencies co with width
equal to 0.715 meV. The energy of the upper end of the
spectrum is overestimated by about 20%%u&. This seems to
be a fault of the SW potential, rather than of the WWW
procedure for generating structural models. The SW
model makes the same overestimate when applied to
crystalline Si.' Compared with the crystalline case, a-Si
has a fairly similar phonon density of states, the most im-
portant difference being the softening of the lowest-
energy peak in the amorphous material.

III. PURE AMORPHOUS SII.ICON

The central result of our theory is the intrinsic har-
monic diffusivity D;, defined in Eq. (22) of AF, and shown
in Fig. 2. Actually, Fig. 2 shows D; averaged over modes
in a frequency interval similar to Eq. (1), that is,

D(co) =QD, o(co co; )/N(co) . —

In order to calculate D, for a finite system where the
eigenfrequencies are discrete rather than infinitely dense,
it is necessary to use in Eq. (22) of AF a broadened 5
function with a width greater than the level spacing. In
principle, the width of the 5 function goes to zero after
the system size goes to infinity. We have used a Lorentzi-
an of width 0.0429 meV. The resulting values of D;
showed large fluctuations [rms fluctuations of -25%
within the bins used in Eq. (2)]. A larger width of the
Lorentzian would probably have diminished these fluc-
tuations, but the interesting possibility exists that in the
infinite-size limit, the value of D; has significant random
fluctuations from state to state, reflecting the idiosyncrat-
ic nature of these delocalized but nonpropagating states.
In any event, they average out smoothly in Eq. (2) and
Fig. 2.

There are two regions of large diffusivity, the lowest
frequencies, and the region around 35 rneV. In crystal-
line Si, this second region is a portion of the spectrum
above the transverse acoustic vibrations, where longitudi-
nal modes have large velocities and are probably very
effective carriers of heat. The reason for the high
diffusivity in the amorphous state is that there is a local
minimum in the density of states, so that the structural
disorder mixes these pseudolongitudinal vibrations with

relatively few other modes, preserving something of their
propagating character. Perhaps it is possible to assign
these modes a velocity and mean free path. As a crude
estimate, set the diffusivity D=2X10 m /s equal to

3
vl and choose for v the longitudinal sound velocity

found for this same model of a-Si, vL =7.64X 10 m/s.
0

This yields an estimated mean free path of 8 A (safely
smaller than our 28 A cell size) for this especially
diffusive region of the spectrum. With such a short mean
free path, the notions of wave vector, velocity, and mean
free path can only be marginally meaningful.

Above 40 meV there is a smooth decrease of diffusivity,
approximately linear in energy [D, ~(co, —co;t with a
critical exponent p = 1] and a critical energy co, =71 meV
where D; vanishes to within a very small noise level. The
critical exponent of 1 agrees with scaling and other
theories of Anderson localization, " and we believe that
this locates the mobility edge above which the diffusivity
would be strictly zero in the infinite size limit. As a fur-
ther test of this, we have calculated the "inverse partici-
pation ratio" 1/p, -, defined as

(3)

where e, (l, a) is .the ath Cartesian component of the nor-
malized polarization vector of the ith mode on the lth
atom. The square of this polarization vector when
summed over all atoms gives 1. Here it is squared a
second time before summing. If the vibration were local-
ized on a single atom, the result would still be 1, whereas
if the vibration were equally distributed on all atoms, the
result would be 1/N. Thus p; measures n;, the number of
atoms on which the ith vibrational mode has significant
amplitude. For a delocalized mode, I/p, ~0 as the sys-
tem size ~~, whereas for localized mode, I/p, remains
nonzero. Figure 2 shows a sharp increase in I/p, at
co; =71 meV, just where the diffusivity approaches zero.
The 3% of eigenstates above this energy seem very clear-
ly to be localized. On the scale of our cell size (28 A)
97% of the phonons are delocalized. We think that this
estimate is not sensitive to system size, or to fine details
of the structural model. The same result holds for both
smaller 216-atom models, and has been confirmed by
Biswas et al. We believe that this is the normal situa-
tion for vibrations in glasses, provided that they are
reasonably dense, i.e., not too porous.

There are possibly a very few localized modes at
co; =31 meV, where there is a sharp minimum in the den-
sity of states separating the low-energy transverse peak
from higher-energy modes. The lowest nonzero mode
also appears localized, an effect also seen by Biswas
et al. The energy of this mode is 4.15 and 4.11 meV for
periodic and antiperiodic boundary conditions, respec-
tively. Based on the inverse participation ratio, this
mode involves roughly 21 and 53 atoms (of the 1000
atoms in the model) for periodic and antiperiodic bound-
ary conditions, respectively. (Given the sensitivity of the
inverse participation ratio to the boundary conditions it
is clear that this mode is not completely localized within
the scale of the model. ) It seems likely that this is a
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a(T)= ~ den N(co) C(co/T )D (co )

0

%co/2kii T
sinh(irido/2k~ T )

C co/T =kii

(4)

where the last formula is the specific heat of an oscillator
of energy co. The results are shown as the middle curve in
Fig. 3. There is a significant finite-size problem in this
theory which will be discussed both here and in the next
section. By inspection of Fig. 2 it is obvious that we have
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FIG. 3. Thermal conductivity vs temperature for amorphous
Si. The middle curve comes from integrating the numerical
X(co) and D(co) curves of Fig. 2; the lower curve is the same
with the integrals cut off at a lower frequency of 10 meV; the
upper curve has %{co) and D(m) smoothly continued to low co

but the integrals cut off below 5 meV.

finite-size effect. In a larger system, there would be more
modes in this energy region. Probably these modes
would be pseudoacoustic progagating modes. At the
lowest energy, finite-size effects, even for large model sys-
tems, will cause an unphysical gap at the bottom of the
spectrum, and the states closest to this gap might be or
appear to be localized in the finite-size theory, although
not localized but propagating (and maybe resonant) in a
macroscopic sample. It is well documented by specific
heat and neutron scattering that glasses have "extra"
low-energy modes. These are probably related to defects
or "soft" parts of the sample, and are unlikely to be
correctly incorporated in our model. In particular, we do
not think they account for the small peaks in 1/p seen at
low energies in Fig. 2.

Now we are ready to calculate ~( T), using the standard
result

1 1 1 1

D(co) Di, (co) D„,(co, T) D,d(co, T) (6)

very poor statistics for properties of modes with m & 10
meV. Although the density of states N(co) is small, the
diffusivity D(co) is big, and the heat capacity for all but
low T is saturated at its biggest value k~. The product
N(co)D(co) is not small and is fiuctuating badly because of
poor statistics arising from the finite system size. The na-
ture of the problem is worsened when one realizes that, in
principle, the harmonic diffusivity at low co is a property
of propagating modes which must obey a Rayleigh law
D(co) ~ co at low co, and this is sufficiently singular that
the integral (3) for x(T) diverges at all T. (For an imagi-
nary harmonic material, the divergence is cut off by the
system size, and ~ will scale as L' .) This property of
harmonic systems is well known, although it is perhaps
surprising to realize that it applies not just to weakly
disordered crystalline matter, but also to strongly disor-
dered amorphous material.

One way to estimate the importance of the low-cu re-
gion is to replace the low-co parts of N(co) and D(co) in
Fig. 2 by appropriately chosen smooth extrapolations.
For the density of states, we used a Debye extrapolation,
N(co)=CD' with the coefficient CD determined by the
sound velocities Ul =7.64X10 m/s and UT=3. 67X10
m/s previously calculated for this model. This not only
matches nicely with the numerical results at co=11 meV,
but also fits fairly well with the measure T specific heat
(the corresponding theoretical Debye temperature is 446
K, while specific heat gives 528+20 K). To extrapolate
D ( co ) is far more dangerous because there are no firm
guidelines, but we will see later that the method is not
very important. Therefore, we arbitrarily chose the Ray-
leigh m law and used it to continue smoothly onto our
calculation at co= 11 meV where D(co) first becomes
smooth. Figure 3 shows three curves. The middle one is
just the raw calculation which is uncontrolled at low co.
The upper one is the calculation using the smooth con-
tinuation just described for D(co) and N(co), but with a
lower frequency cutoff of 5 meV to avoid the divergence.
The lowest curve is the integral of the raw calculations,
but with a lower cutoff of 10 meV which avoids the re-
gion where the calculation is uncontrolled. These results
show that the low-co region in harmonic theory is making
a significant contribution to ~( T) at all T.

Real materials always have anharmonic interactions,
and even the mild anharmonicity of crystalline rnatter is
sufficient to cure the divergence. However, glassy materi-
als have anomalously small low-T conductivity, which re-
quires an exceptionally effective inelastic process. The ac-
cepted description involves scattering from "two-level
systems" (TLS). Since atomic TLS's seem scarcer in a-Si
(Ref. 14) than in most glasses, the inelastic mechanism
may be different, for example, perhaps the spin singlet-
triplet systems causing the linear specifi heat are scatter-
ing the low-energy vibrations.

At co low enough that modes propagate and a
Boltzmann description applies, the usual lowest-order
treatment gives Mattheissen's rule, that is, a summation
of the various resistive mechanisms:
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The first term is the intrinsic harmonic term which we
calculate numerically at higher co and continue smoothly
at lower ~. Since the last two terms dominate at low co,
the answers should not be sensitive to the extrapolation
procedure used for DI, . The second term refers to reso-
nant absorption where a propagating vibration of energy
co is absorbed by a TLS of energy splitting co which is ini-
tially in its lower-energy state:

The third term refers to absorption by structural relaxa-
tion processes. Although logically independent of the
second term, TLS's give one mechanism of relaxational
absorption. In the regime where the phonon-induced
TLS Gipping rate is greater than its energy splitting, the
environmental damping has destroyed the simple two-
level problem. Vibrational modes perceive this as a clas-
sical viscous damping. Hunklinger and Arnold summa-
rize a unified theory of these effects, which yields a com-
plicated formula for the additional absorption due to re-
laxational effects. A simplified version of this formula is

(TITO)'

D„)(~) " 1+(k~ To/A'co)( T/To)

This form was used by Sheng and Zhou, with the addi-
tional constraint that the coefficients d„& and d„, had the
ratio 2. We see little reason for this constraint and use
three independent adjustable parameters, To =20 K,
d„&=2.5X 10 m /s, and d„,=1.7X10 m /s. The
ratio is remarkably close to 2; fixing the ratio at 2 would
not much affect the quality of the fit to experiment.

Although the Mattheissen's rule form is only justified
for the low-frequency propagating modes, the extra in-
elastic terms in Eq. (6) are fairly unimportant at higher co

where the harmonic resistivity is large (Dh is small).
Therefore, there is no harm in using the form of Eq. (6)
for all frequencies. The results are shown in Fig. 1. Also
shown are the separated contributions of the frequencies
above and below 5 meV. The contribution from above 5
meV should be compared with the upper curve of Fig. 3,
which is the same thing without the additional inelastic
terms, and therefore slightly larger.

An interpretation of the plateau phenomenon can now
be offered which is only slightly oversimplified. As seen
by Figs. 1 and 3, the total thermal conductivity can be
thought of as the sum of two different conduction chan-
nels. The first, which dominates at low T, is heat carried
in a conventional way by propagating long wavelength
acoustic modes, scattering strongly from the special in-
elastic processes available in a glass. These processes kill
off the low-frequency contribution at higher tempera-
tures, leaving a peak at =20 K which becomes the pla-
teau. The second channel, although less familiar, is quite
elementary. It is the heat carried by nonpropagating
modes which are strongly influenced by the glassy disor-
der but mostly not localized and therefore able to con-
duct by intrinsic harmonic diffusivity. This is a very
smooth term which closely resembles the specific heat

and saturates like the specific heat at high T. Following
Slack we could call this piece the minimum thermal
conductivity. " The sum of these terms will produce a
plateaulike feature for a fairly broad range of parameters.
This picture is a sort of "shunt-resistor model, " reminis-
cent of the model which has often been used to describe
the resistivity of metals with strong electron-phonon
scattering. When the propagating modes become
reasonably well damped and are no longer able to carry
much heat, the great reservoir of delocalized and poorly
conducting vibrations (the "shunt") takes over, giving a
net result in good accord with Kittel's old picture.

Precisely the same explanation of thermal conductivity
was given by Sheng and Zhou, and even earlier by us' in
a short communication about this work. The work of
Sheng and Zhou used a less realistic model, but calculat-
ed diffusivities by direct simulation which enabled larger
systems to be explored. It also seems to us that the simu-
lations by Michalski" largely support this picture, but
have been misinterpreted as providing support for the
picture of Jagannathan, Orbach, and Entin-Wohlman. '

On the other hand, the notion of "minimum conductivi-
ty" still has no strong theoretical basis. The results of
this section simply show that the nature of thermal con-
duction in a-Si is consistent with and adequately de-
scribed by this notion. In Sec. VI we present further cal-
culations to test the limits of this notion, and learn that it
is not very robust or absolute. Nevertheless, it is undeni-
able that, from an experimental point of view, "minimum
thermal conductivity" is a very real effect (see, for exam-
ple, a recent study of disordered crystals by Cahill, Wat-
son, and Pohl '). We conclude that it is a real effect with
a fuzzy explanation, namely, that the crossover from
propagating to localized is gradua1 enough that many
real materials are found in the crossover region.

IV. SIZE EFFECTS

Invoking the shunt-resistor picture, we see that it is
possible to calculate the intrinsic harmonic diffusive con-
ductivity contributed by higher-frequency modes, using
finite-size systems, and exact diagonalization methods.
From now on we will discuss only this contribution to the
conductivity, on the assumption that it dominates I~(T) at
higher T; the remaining contribution can be estimated
and tacked on if desired. The present section provides
further details about these calculations.

In order to document the effect of system size on our
calculations, this section compares previous results' for
the 216-atom model' with new results for the 1000-atom
model described in Sec. II. Also, a second 216-atom
model is introduced her for comparison. This new model
is denoted by 216b to distinguish it from the previous
model, denoted by 216a. All three models have been re-
laxed to a minimum of the SW potential. Model 216a
used the original WWW coordinates, while models 216b
and 1000 were created using the same algorithm except
without prohibition of fourfo1d rings. Before relaxation
with the SW potential, model 216b had six fourfold rings,
and model 1000 had 19. After relaxation, these numbers
did not change, but a few threefold and fivefold coordi-
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nated atoms appeared. The density of models 216b and
1000 is about 2%%uo less than model 216a which in turn is
about 2% less than crystalline Si.

Figure 4 shows the frequency-dependent K for the
1000-atom model at T =175 K, evaluated using the for-
mula

1.0

0.9—

0.8—

L

0.6—

0.5—

0.4
0.0

I

1.0
I

2.0
~ (meV)

3.0 4.0

FIG. 4. Thermal conductivity vs frequency for the 1000-atom
model of a-Si, calculated at T=175 K. The solid curve shows
the result with periodic (Q=O) boundary conditions, and the
dashed curve shows the result with antiperiodic
[Q=(vr/Sa)(1, 1, 1)]boundary conditions.

7l

(co; —co, —co) +i)

This is just Eq. (20) of AF with the delta function
broadened into a Lorentzian of width g=0.043 meV.
The eigenfrequencies co; and eigenvectors ~i & are found
by diagonalization of the 648 X 648 or 3000 X 3000
dynamical matrices using the IBM 3090 at the Cornell
Supercomputer Center. The force constants in the
dynamical matrices are derivatives of the SW potential
energy. The heat current matrix elements (i ~$

~j) are
calculated using Eq. (A7) of AF. To diminish the statisti-
cal noise, Fig. 4 shows the average of K Kyy and K„.
The separate s (co) curves agree well with each other for
o.=x, y, and z. For 216-atom models, the size of the ran-
dom differences between, e.g., K„and Kyy are a few Per-
cent of K, and also the off-diagonal elements like K„are a
few percent of K. This shows that our model is isotropic
at a level of accuracy equal or better than the other
sources of finite size error. The two curves of Fig. 4 are

results obtained for periodic and antiperiodic boundary
conditions for the atom motions. Antiperiodic boundary
conditions means that a displacement vector —u is as-
signed to the six equivalent atoms in the six face-sharing
cubes if the displacement of the original atom is u. This
is the same as assigning a wave vector Q=(~/na )(1,1, 1)
to the "phonon" eigenstates which are found when the
model is considered to be a crystal with an n =5, 1000-
atom cell. Periodic boundary conditions correspond to
Q=0. As can be seen from the figure, the results are rel-
atively insensitive to the choice of boundary conditions.
This property suggests that a 1000-atom cell is more than
suKciently large to describe the bulk behavior, at least at
frequencies which are not too low. The sensitivity to
boundary conditions is enhanced at small co. The princi-
pal difference between Q=O and Q=(ir/na)(1, 1, 1) lies
in the lowest modes. At Q=O, there are three zero-
frequency eigenvalues which are uniform translations; the
next modes up, apart from the previously mentioned
quasilocalized one, are disordered versions of crystalline
states which would have been transverse vibrations with
wavevectors equal to (2 lima)(1, 0,0). Taking into ac-
count the six equivalent wave vectors, there are twelve
such vibrational states, which all would be degenerate in
a crystal, but are mixed and split by the structural disor-
der. The energies of the first nonzero eigenstates of our
1000-atom model are =S. 1 meV. In our calculations of K

the modes of uniform translation are omitted. For an-
tiperiodic boundary conditions, there are no co=0 modes
of uniform translation, and the lowest-lying modes, apart
from the quasilocalized one, are those which would have
been transverse vibrations with wave vectors equal to
(~/na)(1, 1, 1) in a crystalline situation. There are 16
such modes in a crystal. The lowest energies of vibra-
tions with antiperiodic boundary conditions in our 1000-
atom model are =4.6 meV.

In the dc limit, the mechanism of heat conduction is
transfer of energy between delocalized modes of equal en-
ergy by the heat current operator. For a finite disordered
system, there are not any modes of precisely equal ener-
gy. Having no symmetry-allowed level crossings, the
eigenstates tend to repel each other, and the typical level
spacing is just co „/3N, or =0.01 meV. By broadening
the delta function in Eq. (20) of AF by an amount propor-
tional to the mean level spacing, a theory is obtained
which converges to the desired answer in the N~ Oo lim-
it. We discover in our numerical work that the lowest-
lying states carry a disproportionate amount of heat
current. This can be seen from the fact that there is a
small excess heat current in the case of antiperiodic
boundary conditions, associated with the lower lying and
more numerous pseudoacoustic modes.

Figure 5 compares the thermal conductivities of the
216- and 1000-atom models. From now on, all calcula-
tions of K refer implicitly to results which are averages of
xx, yy, and zz components and also averages of results for
periodic and antiperiodic boundary conditions. The
Lorentzian broadening parameter g was set to 0.17 meV
for models 216a and 216b and to 0.043 meV for model
1000. At co) 1 meV, models 216b and 1000 have a very
satisfying agreement, while the topologically distinct
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1.0 Since the argument of AF and the results of Fig. 6 both
show that the dip disappears as N —+ ~, therefore it is ap-
propriate to develop a method to eliminate the dip in a
physically correct or at least sensible manner. As a hy-
pothesis, let us assume that «(co) has the form of a Drude
conductivity minus a Lorentzian of width q:

O.B—
Kp

«(co) =
1+co r 1+co /q

(13)

07—

0.6—

0.5—

OA-

0.0
I

1.0 2.0
~ (meV)

I

3.0 4.0

FIG. 5. Thermal conductivity vs frequency for three models
of a-Si at 175 K. Solid line: model 216a; dashed line: model
216b; dotted line: model 1000.

The idea is that the first, or Drude term, represents the
true (N~ ~ ) thermal conduction. There are three un-
known parameters, Kp 6, and ~, which can be uniquely
fitted to the three parameters of the calculated 1~(co), «(0),
~~, and AM, where the last two are the maximum value
of Ir(co) and the frequency where this maximum occurs.
Closed form solutions can be found for the three parame-
ters of Eq. (5) in terms of the three data points, which
gives an automatic procedure for finding an extrapolated
dc value, namely, ~p. The results of this procedure are
shown in Fig. 7 for several choices of q. Unfortunately,
an g-independent answer does not emerge.

The source of the problem is that the Drude form does
not describe the calculated 1~(~) well. The curves of Fig.
4, in the range 1 meV&co&4 meV agree well with a
Drude form («o=0.43 W/mK, 1/v=2. 3 meV) plus a
constant background «Bo=0.42 W/mK. This form ex-
trapolates to a zero-frequency value of Kp+K~~=0. 84
W/mK, considerably less than the value of 0.93 W/mK

model 216a (without fourfold rings) has a somewhat
higher «. There are two features needing discussion: (a)
how to extract the ~=0 limit, smoothing out the dip at
low co, and (b) whether the 1000-atom model has a larger
co =0 value of ~.

All «(co) curves have a dip at the lowest energies, for
reasons that were discussed in AF. The origin of this dip
is shown numerically in Fig. 6, which plots the level-
spacing distribution q(co) defined as

q(co) = 1

~N(N —1),.~. (~—~, —~.
~

)2+ i12
(10)

This distribution has a dip near co=0 reminiscent of the
dip in the «(co) curves. As argued in AF, this dip goes
away as the system gets large. This can be seen from the
rigorous identity

q(co) = f de'p(co')p(co'+co)

where p(co) is the density of states, defined as

(12) 0.0
I

1.0
I

2.0
~ (meV)

3.0

From Eq. (11) we see that q(co) differs from a smooth
convolution of two smooth densities of states only by a
subtracted Lorentzian at the origin of width g and weight
1/(N —1). The solid curves in Fig. 6 show the results of
adding the missing Lorentzians back in.

FIG. 6. Level spacing distributions. The lower curve is for
model 216a with g=0. 172 meV, and the upper curve for model
1000 with q=0.043 meV. Dashed curves are the correct distri-
butions calculated from Eq. (10), and solid curves contain the
missing Lorentzian part added back in.
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FIG. 7. Thermal conductivity vs frequency for model 1000 at
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0.172 meV, and extrapolated to zero using Eq. (5j.
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FIG. 8. Spectral density for longitudinal polarization fre-
quency for six wave vectors. This gives the frequency spectrum
needed to construct a (nonstationary) propagating state with a
pure wave vector Q and pure longitudinal polarization [Eqs.
(14) and (15)].

obtained from the automatic procedure described above
and given in Fig. 7. Note that the value of 0.84 W/mK is
obtained from numerical data in the range 1 —4 meV in-
dependent of the choice used for g (as shown in Fig. 7) or
the choice of periodic versus antiperiodic boundary con-
ditions. This last observation tells us that the difficulty is
coming from the low-co modes, because this is the only
place where boundary conditions have a significant effect.
The parameters of Eq. (13) obtained by fitting to the peak
of Ic(co) are strongly altered by the contribution of low-
frequency modes, and this contribution changes with
boundary condition (Fig. 4), system size (Fig. 5), and
broadening parameter g (Fig. 7).

V. SPECTRAL DENSITY

A;(Q)=pe;(l) Qe
l

(15)

Here A;(Q) is the amplitude for the mode i to consist of
a longitudinally polarized wave of wave vector Q. Figure
8 shows six wave vectors which are all reciprocal lattice
vectors of the 1000-atom supercell. Five of them are of
the form (2'/5a)(m, 0,0) for m =1,2, 3,4, and 5. Since

Figure 8 provides further analysis of the vibrational
states, and helps to illuminate the question of whether or
not vibrational modes can be regarded as propagating.
The spectral density for longitudinal polarization is
shown versus energy for a selection of wave vectors.

(14)

0
a =5.515 A is almost the same as the conventional cubic
cell size of crystalline diamond-structure Si (5.43 A),
these wave vectors are the counterparts to crystalline
wave vectors going from near the zone center to the zone
boundary in the [100] direction. The dashed curve shows
a less symmetric wave vector, (2n/5a)(2, 3,0). The
lowest-energy peak, at 11 meV, belongs to a wave vector
—,'th of the way to the zone boundary, and would corre-
spond to the lowest LA phonon of energy 12.5 meV that
would have appeared if the atoms had been given their
crystalline coordinates. If a peak in S(Q, ro) has a
Lorentzian shape, then its full width at half maximum
gives the lifetime broadening 1/~. Let us define y to be
the ratio 1/au~ where co is the peak frequency. For the
first peak in Fig. 6, y=0. 17. For an acoustic mode, the
ratio of mean free path to wavelength, I/A. , is 1/2my, or
=1 for this mode. This is consistent with the finding of
Love and Anderson that for a-SiO2, states with co)4
meV have l =A, . The second peak in Fig. 8 has about the
same value of y, whereas the third peak has narrowed,
corresponding to the diffusivity peak in Fig. 2 at 31—35
meV. This peak sits on a broader background than is
found in the first two peaks, but has a very narrow
Lorentzian component with a lifetime at least as long as
the first peak. A group velocity can be assigned by taking
a slope of a graph of peak frequency versus wave vector.
This velocity (=7X10 cm/sec) is slightly smaller than
the acoustic velocity seen at smaller Q's. The mean free
path is about the same as for the first peak, namely, the
cell size. At larger wave vectors there is a dramatic
change in the spectral shape. Insofar as they can be
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defined, full widths at half maximum are 30—60%%u f h

p quency, which corresponds to m feak fre u
oo te

(with a
mean ree paths

2 or more
wi a generous choice of acoustic velocities) a f

or more smaller than the corresponding crystalline
wavelengths. Clearly the mod t th 1

spectrum are marginally propagating, whereas the major-

p opaga ing in anyof energies an wave vectors, are not pro a t'

e, i usive, andsense. evertheless, they are extended d'ff
contribute a significant heat current.

VI. EFFECT OF MASS DISORDER
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response determines force constants, this suggests that
force constants in the amorphous alloys will change in
complicated ways. Nevertheless, it is reasonable to be-
lieve that mass disorder is the dominant new effect, as has
been argued in the context of thermal conductivity stud-
ies of crystalline Si& Ge alloys. This is supported by
the fact that radial distribution functions of amorphous
germanium and silicon are very similar. We have stud-
ied the three cases x =(0.25, 0.50, 0.75) and also a case
where x =0.50 and the impurity mass is 145 amu, twice
the germanium mass. This hypothetical heavy germani-

um atom will be denoted by Ge*. Our results for X(co)
and i/p are very similar to those of Bouchard et al.
These in turn compare quite well with Raman data,
providing further evidence for the realism of this model.

Figure 9 shows the frequency dependence of the
thermal conductivity for several Ge concentrations, as
well as 50%%uo Ge*, but at a single temperature (400 K). As
before, all results are averaged over boundary conditions
and Cartesian components. Figure 10 compiles the extra-
polated zero-frequency results as a function of Ge com-
position. Unlike the case of Fig. 1 for pure a-Si, no effort
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has been made to estimate the additional heat current
coming from the long wavelength modes omitted in our
finite-size calculations. These are our "raw data, " a
lower bound on the total. Note that if the "minimum
conductivity" idea were robust, i.e., if structural disorder
were large enough that additional disorder could not
cause additional decrease of conductivity, then contrary
to Fig. 10, monotonic behavior would have occurred.
This is amplified below.

A virtual crystal model was developed by Abeles for
the thermal conductivity of crystalline Si-Ge alloys. Indi-
vidual atomic masses are replaced by an average mass,I=(1—x)ms;+xmo, . If the "minimum conductivity"
model and the virtual crystal model were both correct,
thermal conductivity would scale in a very simple way
with the scaling parameter

s= I falsi (16)

Since each mode would have its frequency co; scaled to
co;/s, the molar specific heat would be just the value for
the pure (x=0) material, Co at a scaled temperature
C(T)=CO(sT). The only T dependence of a= —,'Cua is
the T dependence of C, and the only other mass depen-
dence is in the velocity which becomes U/s. Thus we
would get s~(sT) =ao(T), where ~o is the x =0 result for
pure a-Si. This scaling is rigorously obeyed at the pure
Ge endpoint x = 1, and is tested for the various alloys in
Fig. 11. At low temperatures all the scaled results lie on
the same curve, but for scaled temperature ST~ 80 K
there is a significant effect of mass disorder. Contrary to
the notion of "minimum conductivity, " these results
demonstrate a systematic increase of the scaled thermal
resistivity with increasing mass disorder. In crystalline
Ge, Geballe and Hull measured the shift of x(T) caused
by isotope mass disorder. In Boltzmann theory one finds
that the thermal resistivity should have an additive term
proportional to ((1/m —(1/I ) ) ). Our T =402 K re-
sults, for example, can be shown to be crudely consistent
with this effect except smaller by an order of magnitude
than what would have followed by scaling the crystalline
Ge results.

These results can be understood in more detail by ex-
amining the properties of the vibrational eigenstates as
shown in Fig. 12. Not surprisingly, mass disorder en-
larges the region of localized modes at the upper end of
the spectrum, and diminishes the diffusivity of the delo-
calized modes in the middle of the spectrum. These ca1-
culations permit quite a reliable determination of the mo-
bility edge co, . In pure a-Si (Fig. 1), co, =71 meV; in the
alloy Sip 75Gep 25, co, =68 meV, while for both Sip 5Gep 5

and Sip25GeQ75 co =43 meV; and in Sip5Gep5 co, =31
meV. Figures 1 and 12 show a small number of low-
energy states with enhanced values of 1/p. However,
these are not true localized states, for when we change
boundary conditions from periodic to antiperiodic, the
values of 1/p for the high-energy localized states are al-
most unchanged, but values of 1/p for low-co states are
affected. We agree with Bouchard et al. that the pres-
ence of threefold coordinated atoms enhances the value
of 1/p at low co.
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The trends in the value of co, can be understood in a
simple way. Light mass defects, as occur in Sip 25GeQ 75,
lead to localized modes, and heavy mass defects, as occur
in Sip 75Gep 25, lead to resonant modes which are not 1o-
calized. Thus adding small amounts of Ge to pure amor-
phous Si does not perturb co, far from the pure Si mobili-
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ty edge, as seen in Sip 75Gep z5. Our model for pure a-Ge
is identical to pure a-Si except all frequencies are scaled
down by the square root of the mass ratio, i.e., co, =44
meV. Adding Si to pure amorphous Ge introduces new
localized states above the mobility edge of pure amor-
phous Ge, but as seen in Sip $5Gep 75 and Sip ~Gep &, this
does not shift the position of the mobility edge. Ap-
parently the location of co, moves abruptly from the pure
Si value of 71 meV to the pure Ge value of 44 meV some-
where between Sip 7&Gep 25 and Sip 5Gep 5.

Besides the effect of localized states at high energies,
the additional disorder caused by mass substitutions
cause a decrease in diffusivity of the delocalized states
which is greater than would be predicted by the formula
D = —,'va and simple mass scaling. This is shown in Fig.
13. Figure 14 shows some spectral functions, for
Sip 75Gep 25 which are significantly broader than the ones
shown for pure a-Si in Fig. 8. This agrees with modern
ideas about the Anderson transition being continuous,
but is in apparent convict with the empirical idea of a
minimum conductivity. It seems to us that the resolution

of this convict is the human tendency to perceive
"universal" aspects even of accidental events. Apparent-
ly, naturally disordered systems like glasses tend to occur
with D = —,'va. We see no reason why this should occur,
except for observing that the crossover between propaga-
ting and localized states tends to be broad and gradual.
Seeing no dramatic deviations from this rule, normal cus-
tom leads to the loose label "universal. "
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