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As a crystal is disordered, a point may be reached where the typical mean free path of phonons is so

short that the wavelength and mean free path are no longer sharp concepts, and the textbook phonon-

gas model for thermal conductivity breaks down. This paper proposes an alternate theory for the disor-

dered regime, and the subsequent paper implements the theory for a realistic model of amorphous sil-

icon. The idea is that the dominant scattering is correctly described by a harmonic Hamiltonian, which

is, in principle, transformable into a one-body problem of decoupled oscillators. From this the thermal

conductivity can be exactly calculated by an analog of the Kubo-Greenwood formula for electrical con-

ductivity of disordered metals. Anderson localization is correctly contained in this theory; localized
states contribute no currents in harmonic approximation. What is required is an atomistic model with a
large unit cell and periodic boundary conditions (to avoid undesired surface effects). The linear size of
the model should be larger than the mean free paths of the dominant phonons. A Kubo formula and

then a Kubo-Greenwood-type formula are derived for this problem. A "mode diffusivity" D; for the ith

exact oscillator state is de5ned. The heat is carried by off-diagonal elements of the heat current opera-
tor, which have a nonzero contribution because the temperature gradient introduces nonzero off-

diagonal elements of the density matrix (a; a, ). An efFort is made to interpret these results physically.
Schemes for implementing this formalism are discussed.

I. INTRODUCTION

In semiconductors and insulators, lattice vibrations are
the carriers of heat currents. This can give very high
thermal conductivities, as in diamond, or fairly low
thermal conductivities, as in glasses. The high thermal
conductivity of crystals like diamond was explained by
Peierls' using the idea of a weakly interacting phonon
gas. Peierls wrote down the appropriate Boltzmann
equation for this problem. Kittel noticed that glasses
had thermal conductivities that could be modeled as pho-
non "liquids" with very short phonon mean free paths,
I =a where a is comparable to an interatomic spacing.
The Peierls-Boltzmann theory no longer applies in this
regime, because if / =a then the "phonon*' does not prop-
agate far enough to sample the periodicity of the medi-
um, and it is not possible to assign with any accuracy a
wave vector or group velocity (or mean free path) to the
vibrational eigenstates. Currently it is common to associ-
ate the condition I =a with the "Ioffe-Regel criterion"
and to presume that therefore the vibrational eigenstates
are at the m.argin of Anderson localization. This has
motivated efforts to explain the thermal conductivity of
glasses as a type of hopping of vibrational energy between
localized vibrational eigenstates.

The present paper formulates a theory which applies in
an intermediate regime, where disorder is sufficient that
vibrations do not propagate, but insufhcient to cause a11
the states to localize. Also it is necessary that the materi-
al be stiff enough or the temperature low enough that the

harmonic approximation is applicable. The Hamiltonian
then, in principle, can be transformed into 3N decoupled
oscillators, and all properties can be calculated (again in
principle) from the eigenvectors and eigenvalues of the
harmonic problem. In this model, localized states con-
tribute no heat current (anharmonic terms are needed to
permit hopping). Nevertheless, significant heat currents
are carried by modes that are neither localized nor propa-
gating.

The mechanism by which this heat is carried is subtle,
and we attempt to illuminate this. The basic idea is that
the heat current operator has off-diagonal matrix ele-
ments S;. between the decoupled harmonic eigenstates i
and j. The diagonal elements S;; are zero, which just
confirms that they are nonpropagating. The temperature
gradient ensures that there are off-diagonal elements of
the density operator, i.e., (a;ai)%0. This allows the
off-diagonal elements of S to carry heat. These aspects of
heat conduction are explained in Sec. III and the appen-
dices where the heat current operator and Kubo formula
are derived, and in Sec. VI, which is devoted to interpre-
tation.

The companion paper, denoted FKAW, implements
this formulation for a realistic model of glassy silicon.
Nearly all of the vibrational modes of this model turn out
to be delocalized but nonpropagating, and the calculated
thermal conductivity agrees well in magnitude with ex-
periment. We believe that this situation is generic in
dense glasses, failing only for foamy glasses. Similar
behavior occurs in strongly disordered but crystalline
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solid solutions, like KBr (CN), „, and also in certain
weakly disordered crystals with very complicated unit
cells, like YB68. A preliminary report of this work was
given in Ref. 9.

Flicker and Leath' have developed the coherent po-
tential approximation for lattice thermal conductivity.
Our method is akin to theirs, except that rather than
making a self-consistent approximation to the lattice
Green's function, we use an exact representation for a
large but finite-size system. This has the disadvantage of
requiring an even larger computer calculation, but has
two advantages: (1) the only errors are from the finite
size of the model system, limited by the computational
cost and (2) there are no restrictions on what kind of dis-
order can be studied, unlike the coherent potential ap-
proximation (CPA) which can only easily handle mass
disorder.

II. PEIERLS-BOLTZMANN THEORY

The heat current in the phonon gas model is

1J=—g v, fico, 5X, ,

where i stands for phonon quantum numbers (Q, n ), v; is
the group velocity Boo,. /BQ, and 5N, is the deviation of
the distribution function from the equilibrium Bose-

PA
Einstein value n; =(e ' —1) . In the next section we
shall derive a formula for the heat current operator S
which gives the heat current, i.e., J=trpS. An explicit
formula is worked out in Appendix A. Keeping only the
parts of S which are consistent with our use of the har-
monic approximation, the operator S has the form

(2)

Even a harmonic Hamiltonian generates terms in S which
are third order in the operators (a, a ). However, these
contribute a measurable heat current which is smaller by
(u/a) than the contribution of the quadratic part of S of
Eq. (2) and thus of the same size as the neglected anhar-
monic contributions. To be consistent with Eq. (1), 5N,
must be the deviation of (a,. a; ) from equilibrium, the
off-diagonal density matrix elements (a; a. ) must vanish,
and the diagonal form of the heat current must be
S;;=%co;U;/V. This is verified in Appendix A. Even in
the phonon-gas model, S has nonzero off-diagonal ele-
ments, but for weak disorder they are unimportant be-
cause the density matrix is diagonal. " The Peierls-
Boltzrnann kinetic equation determines 6X, . In particu-
lar, in steady state to first order in the temperature gra-
dient V T, Mt; has the form

an VT5X;=QQ; '
co vj.

where Q; is the linearized scattering operator. Common-
ly one approximates Q,. by 5;, /~; where ~; is a suitable
relaxation time for mode i. Since the heat capacity has
the form C =g;C;, where

C;=
VT

(4)

therefore the thermal conductivity ir &
———QJ /i)('(lp') js

approximately

+ap X ~iavip+i Ci

~ &= —,'Cul5
&

. (6)

III. KUBO FORMULA
AND HEAT CURRENT OPERATOR

Parallel to the well-known Kubo formula' relating the
electrical conductivity to the (electrical) current-current
correlation function, there is a Kubo formula' relating
the thermal conductivity to the (heat) current-current
correlation function. This second Kubo formula seems to
inspire less confidence than the first. The reason is that
in the electrical case there is a term in the Hamiltonian,

Equation (6) holds for cubic symmetry, and the mean
sound velocity U and mean free path l = U ~ are defined by
comparing (5) and (6).

This gas model is very successfu1 for crysta11ine matter.
For example, Pettersson' has shown that careful micro-
scopic calculations for alkali halides agree with experi-
ment, and Sham' has derived the Peierls-Boltzmann
equation from the rigorous Kubo formula (derived in the
next section), assuming the existence of quasiparticle
states. For disturbances varying slowly' in space and
time, the only known limitation of the Boltzmann ap-
proach is either (a) that each phonon i should have a
sufficiently long mean free path l,. = ~v; ~; that its wave
vector Q can be defined, i.e., l; »A, ,

=2m. /~Q~, or alter-
nately (b) if the wave vector Q is impressed externally,
then the resulting oscillation should have a long enough
lifetime (or dephasing time) ~; that its frequency co; is
well defined, i.e., ~;))r;=2m. / ,a.iFor acoustic modes
the two criteria are the same, but for the optic branches
(where group velocity U; is often much smaller than phase
velocity co;/~Q~) the second criterion is less restrictive.
Probably the less restrictive criterion is sufficient; optic
phonons, when they satisfy (b) but not (a), are not con-
tributing much to ~ anyway. Amorphous materials have
relatively few phonons which satisfy either criterion (only
very long wavelength acoustic modes). It is, therefore,
unrealistic to expect a phonon-gas model to apply, and
transport properties can be expected to be more liquid
than gaslike. Nevertheless, equations like (5) and (6) con-
tinue to be surprisingly useful for serniquantitative pur-
poses. Slack' (following Kittel ) made an analysis of
both crystals and glasses and proposed that I; for each
propagating mode in Eq. (5) could be replaced by its
wavelength, in the limit where scattering is strong. The
resulting formula for ~ represents a hypothetical
"minimum thermal conductivity" in the spirit of Ioffe
and Regel and Mott. One of our aims is to test the
robustness of the minimum thermal conductivity con-
cept.
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Z

where h (x) is the Hamiltonian density operator, and the
Hamiltonian is H = f d x h (x). In harmonic approxima-
tion, the Hamiltonian is

PI 1 82EH=g +g — uu
2m, 2 au, au

—Jd x j A/c, which drives the electrical current. The
electrical Kubo formula follows from standard perturba-
tion theory. No similar term involving the temperature
gradient is available in the Hamiltonian to drive a heat
current. Thus the thermal Kubo formula requires an ad-
ditional statistical hypothesis. Several derivations' exist
in the literature. We sketch below one of the proofs, be-
cause it illuminates the otherwise somewhat obscure
mechanism of heat conduction that holds for delocalized
but nonpropagating states. The statistical hypothesis is
that a system in steady state has a local space-dependent
temperature T(x) = [kiiP(x) ]

' described by a local equi-
librium density matrix

p=exp —f d x P(x)h (x) (7)

2

S= 1 PI Pt + V(RI ) +H. c.2V, m& 2mI

1 PI+ . g (Ri —R ),V(R ) +H.c.

(13)

where H.c. means Hermitian conjugate. The first term of
13 has the obvious meaning that the local energy at RI
moves with the local atomic velocity pI /m&. This carries
nearly all the heat in a gas, but very little in a solid. The
second term can be interpreted as a rate at which atom m
is doing work on atom l, multiplied by the distance
R I

—R over which this energy is transferred. This term
carries essentially all the heat in a solid (either crystalline
or glassy).

The measured heat current J= trpS vanishes in equilib-
rium [when p(x) is constant]. If the temperature modula-
tion 5T(x) is weak, p(x) can be written as
P[1 5T(x)/—T], where (keP) ' is the average temPera-
ture T. Then Eq. (7) is

Atom l of mass m, is located at position I"i=R,+u,
where RI is the average position and uI is the displace-
ment. E is the Born-Oppenheimer energy, and only the
lowest interesting term in powers of the atomic displace-
ments u is kept. In a nonrelativistic theory such as this,
the local energy density h (x) is not defined uniquely, but
we can make a reasonable choice that at each site l there
is a local energy hI given by

p=exp[ p(H +M—')]/Z,
H'= ——f d x 5T(x)h (x)1

T

=—f dt f d x 5T(x)V.S(x, t)
0

00

= ——f dt fd'x VT(x) S(x, t) .1

T 00

(14)

1 c}~Ehi=tI+ V(RI)= + g — uiu
2m I 2 BuI Bu

h (x)= g hI5(x —RI ) .
1

(10)

For slowly varying temperatures, the inherent ambiguity
in h (x) is eliminated by averaging over distances larger
than interatomic interaction lengths.

A heat current density operator S(x) and a total heat
current operator S are now defined by the condition of lo-
cal energy conservation,

+V.S(x)=0,
at

S=—fd xS(x).1

V
(12)

Hardy ' has shown that these requirements lead to the
following choice for the heat current operator:

The kinetic energy tI is automatically local, but the po-
tential energy V has no unique spatial location. This
model takes second derivatives of the energy, and assigns
the unmixed (I =m) terms all to the atom l (regardless of
the fact that the source of this energy is mostly interac-
tions with other atoms). Mixed terms are assigned half to
atom l and half to atom m. The Hamiltonian density
h (x) is then

~„=—f dA f dt(e S (t)e S (0)) . (17)

Now we can time shift the time integral, and define
e Se =S( itic, ), whic—h yields the Kubo formula

~ „(co)=—f dk f dt e' +'""(S (
—iA'A, )S (t)) .

Here co represents the frequency of an ac applied temper-
ature gradient. The experimental case corresponds to
co=0, but it is useful theoretically —both to the formal-
ism and to the numerical evaluation —to consider the ac

Here we have used the integrated form of Eq. (11), and
performed an integration by parts. The temperature gra-
dient VT(x) can now be taken to be spatially constant
and removed from the integral, and Jd x S(x) can be re-

placed by VS. The operator H' formally plays the role of
a perturbation. Just like the case of electrical conduc-
tion, the driving term of H' involves the current opera-
tor. The density matrix Eq. (14) can be expanded in
powers of the perturbation:

t'~+~ '=e ~ 1+ dye~ ~'e ~~+ . (16)
P

0

Evaluating the heat current, trp0S is still zero, but the
first correction from Eq. (16) is not, and this term is
identified as —~ V T, giving
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generalization. Further interpretation of this formula
will be made in Sec. V.

(
—dn /Bco; ). Equation (4) related this to the specific heat

C; of the ith mode. The result is

IV. THERMAL CONDUCTIVITY FORMULAS ~=—g C;(T)D;
1

(21)

For a disordered harmonic solid the exact many-body
states are simply the various ways of occupying the 3X
harmonic-oscillator states. Postponing the question of
whether these states can be realistically calculated, we
now assume that we know these exact eigenfrequencies ~;
and polarization eigenvectors e (l,i) for all 3X modes i at
all N atoms l and three Cartesian directions a. The Ham-
iltonian operator is

H = g A'~; (a;ta; + —,
'

) . (19)

~„„(co)= g (S„);.(S );5(co;—coj —co),

(20)

where n; is the equilibrium (Bose-Einstein) occupation of
the ith exact oscillator mode. This result is explained in
Appendix B.

A special case of the harmonic solid is a perfectly or-
dered harmonic crystal, with eigenvectors e which are
also eigenvectors of the translation operator, labeled by
k =(Q, n). These states carry currents, which are the di-
agonal matrix elements Skk of the heat current and have
the form Acokuk/V, as shown in Appendix A. Examining
Eq. (20), we see that the value at co=0 is infinite, corre-
sponding to a perfect heat conductor. As soon as there is
any disorder, finite values of ~„must occur, which can
only happen if the diagonal matrix elements of S are zero.
Then the heat must be carried by off-diagonal elements of
S. The interpretation of this result is discussed further in
Sec. V.

When disorder or interactions are weak, perturbation
theory carried to infinite order with the help of diagrams
can be used to evaluate Eq. (18). The lowest-order "con-
serving" approximation (which includes the "ladder dia-
grams") gives the Peierls-Boltzmann equation, ' and
higher-order perturbation theory has not proved tract-
able, in general, although special limits (e.g., "weak local-
ization" effects ) have been explored. The principal
point of the present paper is to argue that Eq. (20) is use-
ful for model calculations in glasses or highly disordered
crystals. This is the pho non analog of the "Kubo-
Greenwood" approach for electrical conductivity of
disordered metals.

Examination of Eq. (5) suggests another way to write
the formula for ~. In the limit co~0, because of the 6
function in (20), the factor (n n;) (/co;

——co.;) becomes

Then we can write the heat current operator Eq. (13) in
terms of these oscillator states. Consistent with the har-
monic approximation, the heat current operator has the
general form given in Eq. (2). The specific form of the
matrix element S," is worked out in Appendix A. Using
these harmonic results, the Kubo formula Eq. (18) can be
evaluated. The result is

(22)

For a harmonic disordered sample, Eq. (22) provides a
microscopic, temperature-independent definition of the
"mode diffusivity" D;. It is an intrinsic property of the
ith normal mode, and provides an unambiguous criterion
for localization. Localized modes have D; =0 and make
no contribution to v. Of course, once inelastic (anhar-
monic) processes are included, a nonzero contribution to
~ will occur by a mechanism analogous to electron hop-
ping.

For actual calculations on periodically repeated clus-
ters, the delta function in (22) must be broadened (to a
Lorentzian of width g ) level spacing). Numerical calcu-
lations of D; are given in FKAW and clear evidence for a
mobility edge is shown.

V. INTERPRETATION OF RESULT

Now we pause to interpret our formula (20). The basic
assumption is that if the two ends of a system are coupled
to heat baths at two different temperatures, the system
evolves to a steady state with a local temperature T(x)
which smoothly interpolates. In order to achieve this lo-
cal equilibrium, there must presumably be some inelastic
(anharmonic) processes which redistribute vibrational en-
ergies among the states i. Just as in the standard
phonon-gas theory of specific heats, we assume that these
anharmonic interactions can be neglected apart from
their role in achieving the steady state.

Next we ask how can heat be transported by decoupled
harmonic eigenstates which do not themselves carry heat.
In the corresponding Kubo-Greenwood treatment of
electrical conductivity, it is the external E field which
couples the states (via the current operator) and permits
an electrical current. In a different way, the temperature
gradient also effectively couples the different harmonic
eigenstates (via the heat current operator). This is ap-
parent mathematically from Eqs. (15) and (16), but the
physical reason is not so obvious. We should ask what
sort of vibrational wave function would represent a sys-
tem with a temperature gradient. All possible vibrational
wave functions can be represented by linear combinations
of of harmonic states with different occupation numbers.
If vibrational eigenstates were all localized, it would be
easy to construct states with a temperature gradient, sim-

ply by having states localized near the hot end be more
populated than states near the cold end. Such a state has
a purely diagonal density matrix, and no heat current, be-
cause S has vanishing diagonal matrix elements. If the
states are delocalized, then in order to have greater vibra-
tional amplitude at the hot end than the cold end, it is
necessary to use nonstationary localized states (like wave
packets) which are superpositions of the harmonic vibra-
tional eigenstates. Then the density matrix will have
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nonzero off-diagonal matrix elements between the
different vibrational eigenstates contained in the localized
superposition state, and trpS will no longer be zero. This
provides an interpretation of what Eqs. (15) and (16) are
accomplishing.

VI. SIZE EFFECTS

Two subtle issues need discussion. One is the question
of limits ( V~ ~,g~O) which occur in the formulas for
K. This issue plays a role in numerical calculations and is
discussed in this section with care, if not with rigor. The
other is the apparent discontinuity between the phonon-
gas picture involving "diagonal currents" carried by ap-
proximate Bloch-wave eigenstates, and the present pic-
ture involving "off-diagonal currents" carried by exact
nonpropagating states. The discussion in this section
provides at least a partial connection between these pic-
tures.

It is convenient to split Eq. (20) into two parts,

K=K +K (23)

(24)

(25)

1

1+lC07
(26)

The infinitesimal g has been written as 1/~ in recognition
of the fact that collisions (left out of the model) will
broaden the response. This is the thermal analog of the
Drude response of a metal. At co=0 Eq. (26) becomes
just Eq. (5).

In case (b), an infinite but imperfect solid, the exact
eigenstates are nonpropagating, i.e., S;;=0. Only strict
periodicity (Bloch's theorem) permits S;,.%0. Thus v"=0
and v(co) =ii . When the exact eigenstates are delocalized
(as is true for most states in glasses, we believe) then ii

gives a nonzero dc conductivity. It is important to let

The full complex co-dependent equations are given, rather
than just the real part which is shown in Eq. (20). A lim-
iting process, first V~ ~, then g~0, is implied. Then
for the real parts of i~' and a', one gets 5 functions in
place of energy denominators. The formulas should be
interpreted as having a subscript like p=x, i.e., S;.=S;.
and a=a.„„. Off-diagonal formulas (ii ) can be easily
guessed.

There are three cases to contrast: (a) a perfect infinite
crystal; (b) our hypothetical object of interest, an infinite
imperfect solid or glass; (c) our actual object of study, a
computationally useful model for (b) consisting of an N
atom disordered cluster with periodic (or other) boundary
conditions applied. In case (a), state labels i and j in Eqs.
(24) and (25) are (Q, n) and (Q, n') and S; vanishes unless
the wave vector is conserved. The part x' [Eq. (13)] is the
interband conductivity, and K' is the intraband conduc-
tivity. In this case Eq. (25) can be written

V—+ ~ before g~0. If the reverse is done, then K' con-
sists only of isolated delta functions, and iri(0)=0. We
now argue that Eq. (24) also applies in case (c), except for
a correction which goes to zero as V~ao. The correc-
tion is numerically significant for 10 atom clusters and
can be understood from case (a).

In case (c) we have a cluster of N atoms, which is re-
peated periodically to fill all space. N is of order 10, i.e.,
small enough to permit exact diagonalization of the har-
monic Hamiltonian, but big enough to capture the phys-
ics of a disordered solid or glass. The reason for periodic
repetition is to avoid surfaces and the resulting contam-
ination of K.

There are two basic ways to calculate ii. Either (A} use
periodic boundary conditions [e(r+L,i)=e(r, i) for each
polarization vector e] and evaluate Eq. (24) [Eq. (25) gives
zero] keeping g larger than the mean level spacing, or (B)
treat the system as an infinite crystal with an ¹ tom unit
cell, use Bloch's theorem [e(r +L,i)=e'~ e(r, i)], and
evaluate both Eqs. (24) and (25) by summing over all Q's
in the small Brillouin zone which corresponds to the
large unit cell. Neither procedure goes to the true V—+ ~
limit of case (b) as smoothly as one would like. Pro-
cedure (8) retains in principal the property of perfect
crystallinity (although with a large, disorderly unit cell)
so that ii(co) will contain a term i~" ~ 5(co) and a term K'

which will get small as co—+0. The amount of spectral
weight in K" goes to zero as X~~, probably as 1/N.
The argument is that there are of order N narrow bands
which repel each other, making band widths and veloci-
ties on average of order 1/N. Procedure (A) is coarser
because only the Q =0 (periodically repeated) eigenstates
are used. For these states (and also zone boundary states
with antiperiodic boundary conditions) S;;=0 so the
-O(1/N) contribution from ii"(co) is missing. We see
this effect very clearly in our numerical studies in the sub-
sequent paper; the ii(co) results have a small, Lorentzian-
shaped dip centered at co=0 which reflects the missing K '
part. We speed the convergence of our calculations by
adding an appropriately adjusted Lorentzian such that
the extrapolation of a(co) to co=0 is smooth and mono-
tonic. Another way of seeing this is from the following
one-dimensional example. If we double the periodic cell
size (by introducing further disorder) we gain twice as
many energy bands and therefore increase the contribu-
tions to Eq. (24) (illustrated in Fig. 1) while simultaneous-
ly decreasing the contribution to Eq. (25) because S&~0
at the new zone boundaries. However, the new contribu-
tion to Eq. (24) is approximately the same as contribu-
tions to Eq. (25) in the smaller cell originating from the
zone boundary. (This is because S&&.~S& in the limit
Q'~Q as demonstrated by Hardy. '}

For actual calculations using a periodic cluster [case
(c)], we have successfully used procedure (A) (keeping g
greater than the level spacing) and found it appropriate
to add a Lorentzian piece to make up for the missing K '
contribution that would have emerged in procedure (B).
Thus, for actual implementation, Eq. (24) is used with a
delta function broadened into a Lorentzian, of width g,
chosen to exceed the mean level spacing, and an extrapo-
lation from co & g down to co =0.
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1 n 3

g X g (Ri.—Rm. )
I, m x,a'=1 a,P= 1

X 4 &(O, m —l)u &, (A2)
m~

3
O
C
Q)

O
Q)

7T/2a

q

where l and m =1, . . . , N label the cell; 4&" (O, m —l) is
the force constant tensor between atoms l~ and m~'.
Thus we consider atoms with all values of I at this stage,
not only those within the single cell that represents the
disorderly array of atoms in the amorphous system; this
is helpful for implementing periodic boundary conditions.
Next we make a normal mode transformation similar to
that of a crystal. Unlike the case of a crystal, however,
we consider only a single wave vector K, which is chosen
to be zero or else a special point on the supercell's first
Brillouin-zone boundary. Therefore, the polarization
vector, e(v;K, j), can be taken to be real and the factor

i K.rl
e is +1. Vibrational coordinates (p;, q;) are now
transformed to normal mode coordinates
(P(K,j),Q(K, j)):

Fig. 1. One-dimensional illUstration of how crystal symmetry
breaking (in this case, dimerization) converts intraband process-
es into interband processes.
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APPENDIX A:
HEAT CURRENT OPERATOR

1 i K.RIu„= g e (1~;K,j)Q(K, j)e
Qm.

i K.RI
pr =Qm„pe (~;K,j )P(K,j)e

J

Substituting these expressions into Eq. (A2) gives

1 g P(K,j)Q( K,j')e (a—;K,j)
j,j' ap m, x., I~'

Xe&(~', K,j')D& (O, m)

X(R +R, .)e

(A3)

(A4)

(A5)

In order to calculate, it is necessary to have formulas
for the matrix elements S;- of the heat current operator.
In implementing the general theory, Hardy ' considered
only a Bravais lattice. Here we extend Hardy's result to
the case of a supercell with more than one type of atom,
such as a periodic model for amorphous Si/Ge alloys.

The leading term of Eq. (13) is quadratic and higher-
order (anharmonic) terms are smaller by powers of u/a
( =0.03 at room temperature) where a is an interatomic
spacing, so we neglect them. Ranninger has written
down expressions for the anharmonic terms in the heat
current operator to all orders, but no one to our
knowledge has evaluated these contributions to the
thermal conductivity. Only the second term in the heat-
current-density operator Eq. (13) is second order in the
vibrational coordinates:

1 p1a BE

S= g S,"a; a~,
l,J

v~;, (~~;+~~, »2V

(A6)

(A7)

where the Hermitian force constants D& (O, m) are
mass-scaled versions of the non-Hermitian force con-
stants C, namely

4&'(O, m)/(m m, )'~

The expression for a crystal is the same except the wave
vector K is not fixed but summed over the Brillouin zone.
In Eqs. (A3) —(A5) K is chosen to be at either the center
or corner of the Brillouin zone. The former choice yields
periodic and the latter choice antiperiodic boundary con-
ditions, i.e., u (xI ) = —u (x&+L), where L is either A, B,
or C, the supercell lattice vectors. Equation (A5) can also
be written in terms of phonon creation and annihilation
operators:

v~, = g g e (~;K,i)Dp (O, m)

We now consider S for a periodic system of N cells, with
n atoms per cell, labeled by ~= 1, . . . , n:

X(R +R )e

Xep(~', K,j) . (A8)
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Quadratic terms like a;a. or a;a. are neglected in our
treatment as they contribute nothing in the co~0 limit.
The crystalline analog of Eq. (A8) has diagonal (i =j)
terms which are just the phonon group velocity vj,j-. In

our noncrystalline implementation, this is still true except
that K is always a zone center or boundary point where
the corresponding group velocity is zero. Thus the diago-
nal elements vanish as required in our case.

APPENDIX B: DERIVATION OF EQ. (20)

We present here details of the derivation of Eq. (20). The starting point is the Kubo expression, Eq. (18), which can
be written in the Lehman representation:

pQ

(co)= —dX dte"~+'""g &n~e~HS e ~ ~m)&m~e' ' "S e ' ' " n&,V p ~ . e
o o z a p

m, n

pE„
Rex &(co)= g e (n ~S ~m )(m S&~n )5(E„%co—),

m, n n, m

(Bl)

(B2)

where E„=F.„—E . Using the harmonic approximation of Eqs. (17) and (18) we calculate Re~ (denoted as ~; S
denoted as S)

m6V e " eon™—1x(co)= g g g (n ~akar~m )(m ~a, a; ~n )SklS ;5(E„—. A'co) .
n m nm ij kl

(B3)

The exact state
~
m ) is the unique state which couples to

a~a;~n ), denoted as ~n;J ). We use the standard expres-
sions

I

(24):

&n, ) —(n;&
v (co)= g ~S;.

~
5(co; —co) . (B10)

(m ~a,. a;~n ) =Q(n +1)n, 5.

(n aka~ ln ) =Q(n, +1)n;5, 5„;,
(B4)

(B5)

(B6)

Xn; ~S;. 5(co; —co) . (B7)

In terms of the normal mode frequencies, E„becomes
fi(co; —co ). There are two parts to K, K (co) containing the
pieces with num, and therefore i Wj (k =i, 1 =j), 2'(co)
with n =m and therefore i =j (k = l). In particular, I~' is

—pE„phoo,
n i%j ij

In the text we have designated the Bose factor (n; ) by n;
for simplicity.

In the case of Red (co) we shall replace the delta func-
tion in expression (A3) by Re[i /(co+i /~) ] to obtain

d'(co) = Re
VT g(n, n, )S,, S,,

1

CO+l /7 l,J
(B1 1)

0'(co) = Re 7

VT 1 —i cow

The factor (n;n~ )can be .written as (n; )(n )plus a.
correction ( n; ) —( n; ) when i =j. Therefore, we get

Now since i', we can write
—pEn

2

J= g (n;)S;; +g((n; ) —(n, ))S;; . .

(B12)

n, (n +1).=(.n, (n +1))
n

=(n; &(&n &+1) (B8)

Since the average energy current must be zero in equilib-
rium the first term in J must be zero. The term which
remains reduces to Eq. (24) after using the identity

and there is an identity

(e "—1)((n.)+1)(n;)=(n~) —(n;) . (B9)

The expression (B7) then becomes our central result, Eq.

(n,') —(n, )'= (n, )((n, ) +1)
B&n, &

a(x, )
(B13)

~R. E. Peierls, Ann. Phys. (Leipzig) 3, 1055 (1929).
C. Kittel, Phys. Rev. 75, 972 (1948); F. Birch and H. Clark,

Am. J. Sci. 238, 529 (1940).
A. F. Ioffe and A. R. Regel, Frog. Semicond. 4, 237 (1960).

4P. W. Anderson, Phys. Rev. 109, 1492 (1958).

5A. Jagannathan, R. Orbach, and Q. Entin-Wohlman, Phys.
Rev. B 39, 13 465 (1992);J. Michalski, ibid. 45, 7054 (1992).

J. L. Feldman, M. D. Kluge, P. B. Allen, and F. Wooten, fol-
lowing paper (denoted by FKAW), Phys. Rev. B 48, 12589
(1993).



12 588 PHILIP B. ALLEN AND JOSEPH L. FELDMAN 48

7J. J. DeYoreo, W. Knaak, M. Meissner, and R. O. Pohl, Phys.
Rev. B 34, 8828 (1986).

8D. G. Cahill, H. E. Fisher, S. K. Watson, R. O. Pohl, and G.
A. Slack, Phys. Rev. B 40, 3254 {1989).

P. B. Allen and J. L. Feldman, Phys. Rev. Lett. 62, 645 (1989);
64, 2466(E) (1990).
J. K. Flicker and P. L. Leath, Phys. Rev. B 7, 2296 (1973).
A. Auerbach and P. B.Allen, Phys. Rev. B 29, 2884 (1984).
S. Pettersson, J. Phys. C 20, 1047 (1987).
L. J. Sham, Phys. Rev. 156, 494 (1967); C. Horie and J. A.
Krumhansl, ibid. 136, A1397 (1964); R. J. Hardy, J. Math.
Phys. 6, 1749 (1965).

~~R. E. Peierls, Quantum Theory of Solids lClarendon, Oxford,
1956), p. 46.

~5G. A. Slack, in Solid State Physics, edited by H. Ehrenreich, F.

Seitz, and D. Turnbull (Academic, New York, 1979), Vol. 34,
p. 1.
N. F. Mott, Philos. Mag. 22, 7 (1970).
R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

'~R. Kubo, M. Yokota, and S. Nakajima, J. Phys. Soc. Jpn. 12,
1203 (1957).

9R. Zwanzig, Ann. Rev. Phys. Chem. 16, 67 (1965).
2 H. Mori, I. Oppenheim, and J. Ross, in Studies in Statistica)

Mechanics, edited by J. de Boer and G. E. Uhlenbeck (North
Holland, Amsterdam, 1962), Vol. 1, p. 213.
R. J. Hardy, Phys. Rev. 132, 168 (1963).
E. Ackermans and R. Maynard, J. Phys. Lett. 46, L1045
(1985); Phys. Rev. 8 32, 7850 (1985).
D. A. Greenwood, Proc. Phys. Soc. (London) 71, 585 {1960).
J. Ranninger, Phys. Rev. 140, A2031 (1965).


