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Model of quadrupolar glass of mixed alkali cyanide crystals
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A model of the transition from the orientationally disordered to the quadrupolar-glass (QG)
phase of mixed alkali halide cyanide crystals is proposed. Starting from the semimicroscopic Hamil-
tonian constructed by Vollmayr, Kree, and Zippelius the efI'ective Hamiltonian containing random
long-ranged orientational interactions between CN ions and their orientational coupling to the
random local strain field has been obtained. The CN ion is treated as a quadrupolar molecule and
no restriction has been made to a finite number of spatial orientations of it. With the Sherrington-
Kirkpatrick approach the formula for the free energy has been derived. In the framework of the
replica-symmetric theory the Landau expansion of the free energy up to third order in the QG
Edwards-Anderson parameter has been performed in the absence of the random local strain field.
This predicts a continuous QG transition. However, it is smeared out due to the influence of the
random local strains, which in fact have a nonzero value. The elastic compliance has been calculated
and it has been shown, that T2~ orientational modes govern the softening of the elastic constant
C44 on approaching the QG transition point, whereas E2s modes are responsible for the much less
pronounced temperature dependence of Cqq and Ciq. This is in agreement with experimental data.

I. INTRODUCTION

Mixed alkali cyanide crystals such as, e.g. ,
K(CN) Brq, Na(CN) Clq ~, etc. , have attracted con-
siderable interest recently especially in view of a possi-
ble orientational (or quadrupolar) glass state in a certain
concentration range of x (cf. review article by Binder and
Reger ). These systems generally show a cubic struc-
ture, where the sites of anions are randomly occupied
by halide ions and dumbbell-shaped CN ions. At high
CN ion concentrations x ) x the system undergoes a
structural ferroelastic phase transition. ' At lower con-
centration of CN no long-range order has been observed
and the global symmetry of the system remains cubic to
lowest temperatures. ' However, in this case below some
temperature Tg(z) one observes a cooperative freezing
of the CN ions into random directions and the sys-
tem forms a quadrupolar-glass (QG) phase reminescent
in some aspects of the spin-glass state in disordered mag-
netic materials. Because of the coupling between rota-
tional and translational degrees of freedom the random
freezing of CN ions gives rise to local static lattice de-
formations, but on average the cubic symmetry remains
unchanged. Thus, the QG phase of the systems under
consideration also has features of a structural glass.

Various experimental investigations provide evidence
for the existence of orientational glass. Phenomena such
as the temperature dependence of the central line of the
quasielastic neutron scattering and of the widths of
the distributions of the elastic Beld gradient tensors at
the sites of the Na nuclei detected by NMR (Ref. 9) are
attributed to the appearance of a QG state with frozen-
in random CN orientations and lattice strains. An im-
portant feature of the QG transition is the considerable
softening and successive hardening of the shear modu-

lus C44. This effect has been observed by using different
experimental methods.

An analogy between the glassy state of
(KBr) (KCN)q and spin glasses was stressed by Michel
and Rowe. In Ref. 14 they proposed a microscopic
model of QG in which the interaction between randomly
distributed CN ions originates from linear coupling of
translational and rotational degrees of freedom. In this
model no restriction has been made to a finite number
of orientational positions of CN ions. In Ref. 15 to
the previous model have been included random strain
fields as a consequence of the substitutional disorder.
The coupling of the random strain Belds to translational
and rotational dynamic modes can lead to a nonergodic
instability.

An alternative model has been formulated by Voll-
mayr, Kree, and Zippelius. ' They start from coarse-
graining averaged interactions, which leads to treat-
ing the system as an elastic medium, in which defects
(CN ions) in the given orientational state cause the lo-
cal stress. In addition, there are the local anisotropy
and long-ranged interaction between defects. A cru-
cial assumption of this model is that due to the strong
anisotropy potential CN molecular ions have a lim-
ited number of orientational states according to cubic
symmetry. This allows one to reduce the problem to
the p-state Potts model with a random long-ranged in-
teraction and "Potts spins" coupled to the local strains
Beld.

The aim of the present paper is to propose a model.
We start from the interactions at a semimicroscopic level
derived in Ref. 18, but no restriction is made to a finite
number of orientational positions of CN ions. It will be
shown that due to bilinear coupling between local strains
and orientations of defects it is possible to integrate out
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over the displacement field. As a consequence the ef-
fective Hamiltonian containing only rotational degrees of
freedom of the defects will be obtained. This Hamilto-
nian can be treated by the methods used in the theory
of spin glasses. Because we are mainly interested in the
QG phase a possible mechanism leading to a ferroelastic
transition will not be considered.

The paper is organized as follows. In Sec. II starting
from the semimicroscopic Hamiltonian we calculate the
efrective orientational Hamiltonian. In Sec. III using the
method similar to the Sherrington-Kirkpatrick approach
in the theory of spin glasses we perform an averaging over
the quenched disorder obtaining the QG Hamiltonian. In
this section we also define the Edwards-Anderson QG pa-

rameter and calculate the orientational free energy within
the replica-symmetric theory. Subsequently we show that
our model implies a sharp continuous QG transition in
the absence of a random local strain field. Section IV is
devoted to an analysis of the effect of random freezing of
CN ions on elastic constants. Finally in Sec. V some
conclusions are drawn.

II. EFFECTIVE
ORIENTATIONAL HAMILTONIAN

The coarse-graining procedure leads to the semimicro-
scopic Hamiltonian

H: ) e„(x)C e~(x) + o„(d(x) x)e„(x) + v(d(x) x) ) J» y(d(x)) d(y))~
x xgy

where e„(x) is the (coarse-grained) local strain tensor,
d(x) stands for a unit vector characterizing an orienta-
tion of the defect (linear CN ion) located at the site
x of a coarse-grained lattice, cr~(d(x), x) is the local
stress arising from a defect in the orientational state
d(x), C „are the bare elastic constants on the meso-
scopic coarse-grained scale, v(d(x), x) denotes the local
anisotropy, and J z(d(x), d(y)) is the coupling between
defects. A summation convention with the respect to the
indices p, v = 1.. .6 is implied, where p, v = (ij), (i j )
andi, j,i', j' denote Cartesian indices (x, y, z). The rela-
tions between p, (v) and (ij) [(i'j')] are p, = 1 ++ (xx),
p = 2 ~ (y, y), p = 3 ~ (zz), p, = 4 ++ (yz),
p = 5 ++ (xz), and p = 6 ++ (xy). The reasons
for using a semimicroscopic model are discussed in de-
tail in Ref. 18. It has been assumed there that H(1)
is the simplest effective Hamiltonian, which in accor-
dance with the theory of critical phenomena can de-
scribe ordering or the random freezing of orientable de-
fects and is compatible with a microscopic interaction.
The quenched random positions of the defects, which
replace the halogen atoms, lead to random variables
o~(d(x), x), v(d(x), x), and J z(d(x), d(y)). The cou-
pling J i, (d(x), d(y)) contains contributions from direct
electrical multipole interactions and indirect interactions
via lattice distortions exisiting on the microscopic scale.
Because J z(d(x), d(y)) decreases rather slowly with a
power-law decay for large distances it cannot be consid-
ered as short ranged.

In Eq. (1) the x, y summation runs over the points
of the coarse-grained lattice with cubic point-group
symmetry. Alternatively it can be writ ten as an
integral,

Now, we subtract the efFect of the substituted CN
ions in a spherical approximation. This leads to the
replacement

o.„(d(x),x) —o„(x) + o„(d(x),x),

where

1o.„(x) = dA„o„(d(x), x)4'
and 0 = (0, p ) specifies the orientation of the defect
to the cubic crystal axis.

The replacement (3) is compensated by an appropriate
shift

e„(x) + e„(x) + (C )„„'o (x),

where
~~ (C )„~~ is the bare compliance matrix (inverse

of (( C„„(().In the following we will neglect the quenched
random fluctuation of o~(x) putting

o„(x) m [o„(x)] = o b...
where [. .

] „denotes an average over quenched disor-
der. We assume that the quantities averaged over the
quenched disorder still have a cubic symmetry. After
the transformations (3)—(6) the Hamiltonian (1) (with
an accuracy to some innesential constant term) has the
same form, with new o„(x)'s and e~(x)'s given, respec-
tively, by Eqs. (3) and (5) with o„(x) -+ olplb;~ , while.
v(d(x), x) is replaced by

v(d(x), x) —ol la.„(d(x),x) ) (C )„„.

) 3 D3
0 ~ ~

Qo CL g 0 ~ ~

)

x
Quenched averages of thermal observables are obtained

from the free energy F de6ned as

where (p (a « (p (( () is the mesoscopic coarse-graining
length. Here a and ( denote, respectively, the constant
of microscopic lattice and correlation length. with

I" = —P '[1nZ]
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Z= d u(x)Tr exp( —PH),
1 Bu~ (x) Bu; (x)

(10)

where Z is the partition function and Tr denotes the
integration over orientations of the defects. In Eq. (8)
we have decomposed the strain tensor

where p = (ij) and u(x) denotes the coarse-grainined
displacement field. It is assumed that u(x) obeys a nat-
ural boundary condition

u(x) i 0 for ~x~ -+ oo. (11)

ep(x,) = e~ + ep(x)

into a homogenous part e„and inhomogenous part

(9) After substitution to Eq. (1) the decomposition (9) and
replacing the w summation by the appropriate integral
[cf. Eq. (2)] we obtain H(1) in the form

where

H = ) ~„C„„—e„+o.„(d(x),x)e„+) —u;(x)F, (g)u. (x) —u, (x)
' ' + v(d(x) «)0 . 1 Bo;,(d(x), x)

X X 2

——).J-,~(d(x) d(y))
Xgy

(12)

Here and in the following a summation convention with the respect to the Cartesian indices i, j, k, l is assumed. In
the derivation of Eq. (12) the following relations were helpful:

Bu, (x) Ou, (x)d 3C +
Bx ' Bx&

(—3

2
u, (x)dS, + u, (x)dS, = 0 (14)

and

) e„(x)C„„e„(x)-+ (, d'«C, ', „,
&i &kX

B2
Co „,u, (x)

' dS, —(o
s ds«CO „,u, (x) ui(x) m ) u;(x)E;, (V')u, (x). (15)

X

Owing to the boundary condition (11) the integrals $ dS; over the surface of the system vanish. Now it is easy to
perform in the partition function (8) the Gaussian integrations over the e„s and displacement field u(x). As a result
the free energy (7) can be written in the form

I' = —P
—' lnT exp( —PH.„,„,)

where II „- „t contains only the orientational degrees of freedom of the defects and reads

where

H „,„,= ——) U(x, y; d(x), d(y)) —) v(d(x), x),
xgy

(17)

U(x, y;d(x), d(y)) = —(C )„'—v„(x —y) o.„(d(x),x)o. (d(y), y) + J„~(d(x),d(y)),
1

(18)

with K denoting the number of sites of the coarse-grained.
lattice and

02G;g (x —y)
vp~ (x —y)

Bx&Bgi
(19)

In Eq. (19), p = (ij), v = (kl) and G, A, (x —y) denotes
the lattice Green function defined as the inverse of the
difFerential operator I";~ (V') [Eq. (13)].

III. EFFECTIVE
QUADRUPOLAR GLASS HAMILTONIAN,

ORDER PARAMETER, AND FREE ENERGY

The CN ions have a small dipolar momentum, but the
dipolar orientational freezing efFects are less pronounced
than quadrupolar ones. Therefore, we will neglect the
dipolar momentum of the CN ion treating it as a linear
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&i = &2,o, (20)

1
(Y..+ Y. .) (21)

Note that, in Ref. 14, Y2 is defined with a factor I/~6
instead of I/~2 as in Eq. (21). However, this difference
is inessential.

For A = 3, 4, 5 the Y~'s have T2~ symmetry and the
form

—z
Y3 P 2, 2 Y2, —2) I (22)

molecule without an asymetry between C and N.
In order to obtain multipole interactions we expand

the orientational coupling (18) and random anisotropy
potential v(d(x), x) into the terms of spherical harmonics
Yi q(O„) retaining only the terms with t = 2 because
they are related to the components of the quadrupolar
momentum of the CN ion. However, in systems with the
cubic symmetry often the symmetry-adapted spherical
harmonics Yg(O ), where (A = 1.. . 5), are used instead
of the functions Y2 i(O„). For A = 1, 2 they have Eg
symmetry and are defined as

Thus, H „,„t (17) reads

H.„.„, = —) ) t, (x)Y, (O„)
x A=1

5

) ) u"" (x y)Yg(O )Yj, (Oy) (26)
xgy A, A'=1

where hp(x) and u"" (x, y) denote, respectively, the ran-
dom strain Gelds and orientational coupling. The inessen-
tial terms, which do not depend on the orientations of
the CN ions, have been omited. In H „,„t [Eq. (26)]
there is no interaction of the quadrupolar momenta of
the defects with the constant (nonrandom) anisotropy
potential because in the cubic structure it couples to the
higher multipoles.

Michel and Rowe ' guided by the experiments, con-
sider only three orientational modes (22)—(24) of T2g
symmetry. In our model we will not eliminate the E~
orientational modes (20) and (21). However, Eg and T2g
modes do not enter the theory on the same footing. As
will be seen in Sec. IV the T2g modes are responsible for
softening of the elastic constant C44.

In order to calculate the free energy (7) we use the
well-known replica procedure

z
Y4 —— (Y2 i + Y2 i), (23)

with

1I" = —P lim —ln Z„,
n-+o ~ (27)

(24) Trexp —P) H „,„t (28)

The functions Yg (20)—(24) satisfy the relation

dOY), (O)Yg (O) = b),g . (25)

where H „. nt is the ath replica of the orientational
Hamiltonian (26). Using the cumulant expansion to the
right-hand side of Eq. (28) one obtains

Z =. Tr exp —P ) H.'„
w2 n

~ H' ' H' ' — H' ' H'
~ '\ orient orient e~ orient e~ orient e~) +~ ~ ~ ~ ~

n, cx'

= Tr exp( —PHAG),

where

H~ = ) H.',-,.'.„, i H' ' H' ' — H' ' H' '
orient orient ~~ orient ~~ orient~ ~ ~ ~

c,cx'

(30)

AA'In general, the couplings u"" (x., y) averaged over
quenched disorder can be diferent from zero and in a
certain range of values of [u"" (x, y)] the ferroelastic
phase arises. Because we are interested in the pure
QG state we neglect the means of orientational cou-
plings putting u~ " (x, y)] = 0. Furthermore, due
to the global cubic symmetry [h~(x) = 0. Therefore

[H „.,„t] vanishes and Hq~ takes the form

n

H~ = —— ) [H.',-,.'.„,H.',-,.'„,] . (81)
n, ~'=1

We assume that u"" (x, y) 's and h~(x) 's are independent
random variables with the following variances:

u"" (x, y)u~~ (x', y')]
J'= —(~-,- 4,~ ~~~~~ ~ + ~-,~ 4- ~~,~ ~~ ~) (»)
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where

hg(x)hp (x.') = A b„„8),p .

The parameters 4 and J are constants of a
coarse-grained model and are treated as adjustable pa-
rameters (cf. Ref. 18). From the physical point of view
such a form of variances (32) and (33) is a result of the
approximation in which one ignores the correlations be-
tween random average orientations of CN ions and their
spatial distribution. An analogous approximation has
been used in the theory of the QG phase of solid hydro-
gen and has been discussed in Refs. 20 and 21.

With the help of Eqs. (32) and (33) we obtain HqG in
the form

2 n

) ) q (x)q (y)
xgy a,a'=1

(x) = (1 —b .) ) Y~(B„)Yq(A„).

Owing to the relation

5

) Y(n„-)' =
—, ,

A=1

the terms diagonal in replica indices give a contribution
to the inessential constant in Eq. (34).

After a Gauss transformation similar to that used
in the Sherrington-Kirkpatrick method one obtains
Z [Eq. (29)] in the form

Z„= d(q) exp( —K'8 [q]),

2 n

) ) q (x) + const,
a,a'=1

(34)
where d(q) = Q, dq, with

'R[q] = 1 w 2) q, —ln exp 2 ) (q +t4 )q t +nc osnt,

4T 1 2T a at —1

(38)

where

1
~ ~ e

O
4m

dO. . . (39)

The QG Edwards-Anderson parameter qEA for our sys-
tem is defined as follows (cf. also Ref. 22 for the defini-
tion of qE~ for a QG phase of solid hydrogen):

qE~ = ).[(»(~-))r]- (43)

q t denotes the QG order parameter field, q t is q t (x)
at an arbitrary site x, and T and A are, respectively, the
temperature and L scaled by the parameter J.

In the thermodynamic limit when N ~ oo all integra-
tions in (37) can be done by the saddle-point method.
The free energy (27) per one site of the coarse-grained
lattice takes the form

where (. )7 denotes the thermal average. It is easy to
show that qE~ [Eq. (43)] is equal to

1
lim Vaa')~~o n(n —1)

E . 1—= P ' lim —'R[q],
N n —+on

Tr exp, ) (q + 4 )q
a a'=1

n

) (q +A )qTr exp 1
2T

aia =1

where q satisfies the equation

q =(q ),

where

(4O)

(41)

(42)

with q t satisfying Eq. (41).
It is seen that the efFective QG Hamiltonian (34) and

qE~ (43) have spherical symmetry. This is a direct conse-
AA'quence of the assumption that the variances of u"" (x, y)

and hp(x) have the form given by Eqs (32) and (33), re-
spectively. Obviously, more appropriate would be the
cubic symmetry of H@~ and qE~. This could be realized
by demanding that q t (x) entering HqG be invariants of
the cubic-point symmetry group. However, even in that
case the general form of H@c (34) will be unchanged.
Therefore, the use of the isotropic HgG and GAEA instead
of the cubic ones seems to be not too essential a problem.

In the replica-symmetric theor" —:.e put q = gEA
obtaining the free energy (40) in the form

1 2 —- 1 1 —2
qEA + T lien —ln exp s (qEA + Z ) ) q ) + const.

4T nm0 ~ 2T' a,a'=1
(44)

We wish first to investigate the QG transition in the absence of the fields hp(x). Expecting that this transition is
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continuous we expand I"/(KJ) [Eq. (44)) with 6 = 0 up to third order with the respect to qEA. This yields

E I f Tg ) 2 u)o s 4
I qEA —s qEA (qEA) ITkT T

where Tg = ~5/(4') is the QG transition temperature scaled by J and

(45)

1 1-.= ): —,(»,», ).(»,».).(».», ).——„(»,»,».)'. =
A„,A.

' 15
8967t 3 & 0.

Because iop ) 0 the QG transition is continuous with the following asymptotic behavior of qFA for T i Tg

4T
qEA = '(Tg —T),

3tU p
(47)

which is typical of a glassy transition. In the presence of the random strain fields with a variance 4 the sharp phase
transition is smeared out and qEA g 0 for a finite temperature.

IV. ELASTIC CONSTANTS

Now we will discuss the modification of the elastic properties due to the random freezing of the quadrupoles.
Proceeding similarly as in Ref. 18 we obtain the relation between elastic constants and orientation correlations in the
form

~~- = (&')„.'+ y):(&')„„'(&')..' (o, (d(x) x)~- (d(y) y))~,
x,y

(48)

where ( . )& denotes a cumulant thermal average. Now we expand o'~(d(x), x) into the terms of symmetry-adapted
spherical harmonics (20)—(24):

o„(d(x),x) = ) o.„"(x)»(O„)+ (49)

After this Eq. (48) takes the form

5

~p = (& ):+y). ). (& )„„(&) ~ (x)~. (y)(»(~I )» (~y))T .„.
~,y A, A'=1

(50)

We neglect the quenched random fluctuations of o"(x)'s, replacing them as follows:

This yields

o.„"(x)m o.„(x) = o-„. (5I)

5

~ .= (& )„.+ —). ). (& )„„(&).. . . [0 (~-)» (~ ))
x,y A, A'=1

(52)

In the theory of spin glasses it is known that the
replica-symmetric solution of the Sherrington-
Kirkpatrick model is related to the fact that the ther-
mal average (. . .)z is not the standard Boltzmann-Gibbs
average, but is performed within a pure state. In this
case the so-called clustering property holds, which means
that the spatial correlations between spins at difFerent
sites vanish in the thermodynamic limit. ' A similar
clustering property should be fulfilled for our long-ranged
model. Therefore, for N —+ oo we have (54)

[(~ (~.)~ (~,));,= ~..(t(»(~-)» (~-)) ],
—[(»(~~-)) (» (~-))~1-).

(58)
Because our QG model averaged over the quenc. hed dis-
order has a spherical symmetry we write

5

[»(~.)» (&.)~] .= -4A ) [(&,'(&.))~].

4'
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and

[(»(~ ))T(» (~ ))T], = "4), . (55)

Finally, with the help of (53), (54), and (55) we transform
Eq. (52) to the form

Ci2. Because the temperature dependence of C44 is much
more pronounced than that of other ones, it can be
concluded that T2g modes should play a dominant role in
the orientational coupling. This is in an agreement with
the viewpoint presented in Refs. 14 and 15.

V. DISCUSSION OF THE RESULTS

0 = A(1, 1, —2, 0, 0, 0),
a = ~3A( —1, 1, 0, 0, 0, 0),
o = B(0,0, 0, 0, 0, 1),
o = B(0,0, 0, 1, 0, 0),
0. = B(0,0, 0, 0, 1, 0).

(57)

The matrix S~ is the inverse of the matrix of renor-
malized elastic constants C„. According to the global
cubic symmetry of the system there are three indepen-
dent C„, namely, C~~, Ci2, and C44. With the help of
Eqs. (56) and (57) we iind

C44

1 + Tco (1 5 qEA)
(58)

0 0C» = —(C»+ 2C12)
3

2 (Cll C12)
1 + 2o~T(co co ) (1 —

s qEA)
(59)

and

0 0C» = -(C11+2C12)
3

1 (C11 —C1')
1+ 2O~T(Co, —C' ) ( S qEA)

(60)

where C44, Cyi and C&2 are the bare elastic constants.
From Eqs. (58)—(60) it is seen that the T2g orientational
modes govern the softening of C44 on approaching the

QG transition point, whereas the orientational modes of
Eg symmetry are responsible for a change of Ci~ and

x ) o„"~."
I

1 ——qEA
I

(56)
&~=i" j &

The coefBcients o„have cubic symmetry and can be
written as (cf. Ref. 14)

The starting point of our model is the semimicroscopic
Hamiltonian given in Ref. 18. It has been shown that
the homogeneous elastic constants e„and displacement
fields can be eliminated by a Gaussian integration over
them in the partition function (8). Hence the orienta-
tional freezing of CN ions can be considered without
their explicit presence, using an e8'ective orientational
Hamiltonian (17). Similarly as in Ref. 14 we have treated
a dumbbell-shaped CN ion as a quadrupole, the com-
ponents of which are related to the symmetry-adapted
spherical harmonics. No limitations about the spatial
orientation of CN ions have been made. In Ref. 18 it
has been assumed that due to the strong crystal field the
CN ions can only occupy a limited numbers of orien-
tations. According to Ref. 18 three different anisotropy
potentials that have been considered with absolute min-
ima in the following directions.

(A) The three fourfold axes which are parallel to the
cubic axes.

(B) The four threefold axes which are parallel to the
body diagonals of the cube.

(C) The six twofold axes parallel to the face diagonal
of the cube.

A difference between the consequences of our approach
and that proposed in Ref. 18 is most apparent in the cal-
culation of the renormalized elastic constant for a glassy
state. It has been shown in Ref. 18 that the random freez-
ing of quadrupoles affects C12 for the symmetry (B), C11
and C44 for the symmetry (A), and C11, C12, and C44
for the symmetry (C). In our model the three elastic
constants are affected in any case. However, only the
softening of C44 is more important because it is much
more pronounced than changes of Cqi and Cq2. Obvi-
ously, the model presented in Ref. 18 has a wider scope
of application, because it takes into account the glassy
phase as well as the ferroelastic phase with long-range
orientational order, while in the present paper we are in-
terested only in the QG phase. Nevertheless we hope that
some modifications of our approach can be made in order
to also describe the ferroelastic transition. Currently cal-
culations of the temperature dependence of the Edwards-
Anderson QG parameter qFA and C44 without and in the
presence of the local strain fields are in progress.
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