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Numerical algorithm for Ginzburg-Landau equations with multiplicative noise:
Application to domain growth
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We consider stochastic partial differential equations with rnultiplicative noise. We derive an algo-
rithm for the computer simulation of these equations. The algorithm is applied to study domain growth
of a model with a conserved order parameter. The numerical results corroborate previous analytical
predictions obtained by linear analysis.

I. INTRODUCTION

In a previous paper' we began a general theoretical
study of the role of multiplicative noise in the dynamic
evolution of spatially extended systems far from equilibri-
um. We proposed a Ginzburg-Landau equation with
multiplicative noise that could be used in the study of
domain growth at intermediate temperatures. In general,
the study of this type of equation would have relevance in
phase-separation dynamics, pattern formation, poly-
mers, etc.

In Ref. 1, we made analytical predictions regarding the
linear regime. However, nonlinear effects of such models
are dificult to study analytically. Here, in order to ob-
tain further insight into the main effects of the multiplica-
tive noise, we derive an algorithm to simulate this type of
noise and we present the numerical results for the model
obtained in Ref. 1. Although computer simulations of
field equations with additive noise are standard, by using,
for example, first-order Euler algorithms, there is no
systematic method to deal with multiplicative noise. The
algorithm for the one-variable simulation can easily be
generalized to multivariable systems with nonconserved
order parameters. However, the case of conserved order
parameters could not be easily implemented, since, in this
last case, the standard algorithm involves not only the
simulation of simple Gaussian processes but also the ap-
pearance of non-Gaussian processes that could not be
simulated in an exact way. Here, we resolve this general
problem by taking a different point of view. It is well
known that a prescription is needed to interpret the sto-
chastic integrals that appear in the formal integration of
the stochastic differential equations with multiplicative
noise. Some useful prescriptions for this integration has
been proposed, and the stochastic processes theory estab-
lishes the form of the Langevin equation once the
prescription is chosen, as well as the way of changing
from one prescription to another. ' Here, our approach
is to use, in the derivation of the algorithm, the prescrip-

tion of the stochastic integrals that was employed in the
formulation of the model. In this way, and in the corre-
sponding approximation, we will obtain a closed algo-
rithm in terms of only Gaussian processes. We will apply
these ideas to propose a very simple algorithm of simula-
tion of a multiplicative Langevin equation with a con-
served variable, which constitutes one of the main results
of this paper.

Section II is devoted to the detailed derivation of a
general algorithm. In Sec. III, we construct a simplified
version of this algorithm. In Sec. IV, we present an ap-
plication to the results of the previous sections to the
study of domain growth in a spinodal decomposition pro-
cess. In Sec. V, we give a summary of conclusions. The
explicit algorithm for a nonconserved field is presented in
the Appendix.

II. GENERAL ALGORITHM

We start by writing a stochastic partial differential
Langevin equation with multiplicative noise for a field
variable %(r, t) in the following generic form:

+G(%(r, t), V%'(r, t ) )g(r, t), (2.1)

where V and 6 are nonlinear functions and the noise
g(r, t) is a Gaussian uncorrelated process in space and
time of intensity P . Equation (2.1) can be expressed in
a discrete form by

4'„(t)=v„('0)+g„(%')g(t), (2.2)

where we have now used the notation %„(t)=%(r,t)
Equation (2.2) gives a set of coupled ordinary stochastic
differential equations for the variables 4 (t), defined in a
d-dimensional lattice of total volume V and cubic cells of
volume b, V = ( b,x ) . The noise g ( t) has the Gaussian
white-noise correlation:
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(g (t)g&(t') ) =2D6 P(t t'—), (2.3)

where the intensity of the discrete noise is now
D =P 'hx ". g„(4)is the multiplicative function that
couples the variable to the noise. This discretization re-
quires, as usual, that the relevant scales in the system are
larger than hx and smaller than V' ". Now, the problem
is to integrate a finite number of coupled multiplicative
Langevin equations, which we interpret in the Stratono-
vich sense.

The algorithm for one variable Langevin equations
with multiplicative noise can easily be generalized to the
multivariable case, Eq. (2.1), when g„ is either constant
(additive noise) or is diagonal, ' as in the case of a non-
conserved variable as, described in the Appendix. When

g„ is neither constant nor diagonal, as for the case of a
conserved variable, some problems appear which are re-
lated with the interpretation of stochastic integrals. An
example of this last case is presented in Sec. IV.

The numerical algorithm is obtained from the formal
integration of Eq. (2.2) during a time step 6:

%'„(t+&)—+„(t)=f [u„(p(t'))

+g„(P(t'))g (t')]dt' .

(2.4)

Previous approaches start by expanding the arguments
of the integral at a time t, " ' as it is done in the case of
higher-order algorithms for deterministic equations.
Here, we take a different approach and we use the inter-
pretation of the stochastic integral associated with Eq.
(2.2) from the very beginning. ' We start by expanding
the deterministic term in Eq. (2.4) as

BUpu„(t')=u„(t)+ " [4 (t') —4 (t)]+. . . .
a

(2.5)

For the stochastic term, we use the Stratonovich
prescription, which establishes that a stochastic integral,
like that appearing in Eq. (2.4), should be interpreted
as10, 15

Now, g„is expanded as

0 (t)+0 (t+5, )
gpa 2

=g„ 'P t

f dr'g„(+(t'))g (t') =g„(,'[+(t)+@(t+—b,)])

X f dt'g (t')+O(b, '") .

(2.6)

+„(t+ b, ) =% „(t)+u„(%(t) )b, +g„(%(t) )X (t)

1 Bg„(%(t))
2 B%. g pX (t)Xp(t)+O(b, ~ ),

(2.8)

where

X (t)= f g (t')dt' (2.9)

is a Gaussian random variable of order 6' with zero
mean and variance 2DA. It can easily be simulated as

X (t)=&2Db.rj (2.10)

where q are Gaussian random numbers of zero mean
and variance equal to 1.

It is worth commenting on the possibility of an algo-
rithm of higher order (b,", n ) 1). In our scheme this
would also imply a higher-order interpretation of the sto-
chastic integral in Eq. (2.6), which is not available. A
systematic expansion like the one used in Eq. (2.5) would
allow, in principle, a derivation of an algorithm order by
order, but each term would contain multiple time in-
tegrals of the noise, with increasing difficulty in their
simulation because they are not Gaussian. Apart from
some particular cases, these integrals cannot be computed
exactly and need additional approximations.

III. MINIMUM ALGORITHM FOR MULTIPLICATIVE
LANGEVIN EQUATIONS (MAMLE)

The algorithm (2.8) can present some technical
difhculties when one tries to write the corresponding
computer program. In this section, we present a
simplified scheme. To this end, we take into account that
the statistical properties associated with the Langevin Eq.
(2.2) are described by the probability density, P[%]. If
our aim is to substitute the algorithm given by Eq. (2.8)
by a simpler one, this procedure should maintain the
same dynamics for P [4].The well-known Fokker-Planck
equation obeyed by P [4] corresponding to the stochastic
differential Eqs. (2.2) and (2.3) would be written, in the
Stratonovich interpretation, ' as

+D 8 0
P pe gVC gag pe gjMA'VCX

p V P V

(3.1)

It is easy to check that this is the Fokker-Planck equation
associated with the algorithm Eq. (2.8) when the follow-
ing limits are considered. '

(4' (t+b, ) —% (t))
lim =u„(%(t))6~0

1 Bg„(%(t))+—
2 B% (t)

Xg t3Xtt(t)+O(h) . (2.7)

By substituting Eqs. (2.5) —(2.7) into Eq. (2.4), we get up
to first order in 6:

+D g (%'(t)),
a

([e„(t+ b, )
—q „(t)][%.(t + b, )

—I.(t)] )
lim
6~0

=Dg„g (0'(t)),

(3.2)

(3.3)
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II„t +6 —%„t
i=1 =0 n~3, (3.4)

+g„(+(t))&(t), (3.5)

where we have replaced the last term in Eq. (2.8) by its
mean value. Then, both algorithms, of first order in 6,
are stochastically equivalent in the sense that both are as-
sociated with the same Fokker-Planck Eq. (3.1). We call
Eq. (3.5) the minimum algorithm for multiplicative
Langevin equations (MAMLE) and it is one of the main
results of this paper.

IV. APPLICATION TO DOMAIN GROWTH

In this section, the algorithm (3.5) derived previously is
applied to a particular example. In Ref. 1, we introduced
fluctuations in a model of phase separation with a general
assumption of a concentration-dependent diffusion
coefficient, M(c). This assumption has been considered
to model deep quenching or to take into account the pres-
ence of an external field such as gravity. ' We have de-
rived the associated Ginzburg-Landau equations and we
have found that this assumption gives rise to multiplica-
tive thermal fluctuations. The resulting equation for the
conserved field variable c (r, t) is

—1

=VM V — V V M+V'mg'(r r),ar Sc 2 ac

(4.1)

where F [c] is a Ginzburg-Landau free-energy functional:

F[c]=—f dr — + +1 c c (Vc)
2 2 4 2

(4.2)

M(c)=m (c) is the variable-dependent diffusion

coefficient:

M(c) =1—ac (4.3)

The expression of M(c) has been proposed from phenom-
enological arguments. ' The constant a is related to the
temperature. The noise g(r, r) is a Gaussian uncorrelated
(white) process in time and space, of intensity P . Equa-
tion (4.1) is interpreted in the Stratonovich sense. For
a =0 we obtain the usual model B of phase-separation
dynamics with additive noise. " For a&0, apart from the
multiplicative term, we find a spurious term, the second
term on the right-hand side of Eq. (4.1), of stochastic ori-
gin. To understand the origin of this term, we only need
to realize that we are considering noise of thermal origin.
Then, although the noise is multiplicative, it could not
affect the equilibrium properties, and for example, the

where the brackets indicate average over the realization
of the noise. It is interesting to notice that the same
Fokker-Planck Eq. (3.1) is obtained if Eq. (2.8) is substi-
tuted by the more simple algorithm

%'„(t+5)=%„(t)+v„+D g b,
~gpa

&g.'( )@( ')&=2 „&,j5.@( —'),
Ax"

(4.5)

where Vz and V'z are the left and right discrete versions
of the gradient operators

1
(Vg ) p= (& +;p

—& p),hx
1

(Vt ) p= (5 p
—5;p) .

hx

(4.6)

Since there is no derivation from first principles of M
in terms of the discrete variables, in Ref. 1 we proposed a
family of mesoscopic models. In terms of m;( jc I ), the
models are given by

m;=gQ' ph (cp); QQ' p=1,
P

(4.7)

where h (cp) =(1—acp)'
The matrix elements Q' p are different from zero only

when the indices u and P correspond to the lattice points
a, a+i or the n lattice points in the vicinity of these two
points a and a+ i. From Eq. (4.7) we find that
m(c)=h(c) in the continuous limit. To simplify the
model, we take that Q' =Q' +; =—Qo. These models
have a mesoscopic length R that gives the size of the re-
gion that contains all the cell points involved in an inter-
change of matter at each time step. From Eq. (4.7), we
know that Qo is of order n ' and then, we define the pa-
rameter R by

R =SxQ (4.8)

Here, in order to consider a simple version for the
computer simulation, we have considered a model in
which only the dependence on one couple a, a+i is taken
into account. Then, we take the following expression of
m;(c):

m;([c[ )=—,'[h (c )+h(c +;)] . (4.9)

For this choice, Eq. (4.8) gives R =V2b, x.
Now, the MAMLE is obtained by substituting the par-

ticular expressions of Eqs. (4.4) and (4.9) into the general
Eq. (3.5). The explicit calculation of the third term in the
right-hand side of Eq. (3.5) is

fluctuation-dissipation theorem has to be fulfilled. Then,
the spurious term is such that together with the multipli-
cative term, it ensures the evolution of the system to the
correct equilibrium solution determined by the free ener-

gy Eq (42)
The simulation will take place in a two dimensional lat-

tice of L XL cells of volume b,x . Then Eqs. (4.1)—(4.3)
have to be expressed in terms of the discrete variables.
The discretization of Eq. (4.1) is specified by the following
discrete Langevin equation:

BF
c =(Vl ) pMp;(V~)p

Bc~
am~,

2
bx "(Vt ) p(V~ )p

' +(Vr ) pm p, gp(t) .
Bc

(4.4)
The noise correlation is given by
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(4.10)h'(c )= ——'(V' ) m, . (Vg ~v](VL) ~maiy +h (c +') +'=(V'L, )i r2~Bc

i
) h'(c

128

(4.11)
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tic of the deterministic evolution. This point needs to be
studied in more detail. Nevertheless, the qualitative pic-
ture of the domain growth remains valid for multiplica-
tive noise. The peak of S (k, t) moves to smaller values of
k and increases its height with time.

Figures 4(a) and 4(b) clarify the differences introduced
by the multiplicative noise. For a fixed time and two
values of a, we observe the effects of an increase in the in-
tensity P '. Figure 4(a) corresponds to additive noise
and it is plotted as a reference. First, the peaks are locat-
ed at the same position but the heights depend on P
Then, the patterns have the same characteristic length
but they have more diffuse interfaces by increasing P
as expected. In Fig. 4(b), for the same values of the pa-

(a)

rameters as in Fig. 4(a) but with a =0.8, we observe im-
portant diff'erences, especially for larger values of P '. In
particular, the position of the peaks depends strongly on
P '. They are located at smaller values of k and have
drastically reduced their height. This effect can also be
understood from our analysis of Eq. (4.13). The fact that
more modes are now stable makes the peak of S(k, t)
grow at smaller values of k.

The possibility of scaling properties on the late stage
and the characterization of this regime by means of the
structure function and the time behavior of the charac-
teristic domain size remain an open question.

V. CONCLUSIONS

We have derived a simulation algorithm for general
multivariable Langevin equations with multiplicative
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FIG. 2. Typical configurations obtained from Eq. (4.11) at
r=500, starting from an homogeneous situation, c =0, for
P ' =0.3 and (a) a =0 and (b) a =0.8.

FIG. 3. Evolution of the structure function obtained from
Eq. (4.11) for P '=0.2 and (a) a =0 and (b) a =0.8. The times
represented are ~= 500, 1000, . . . , 3000.
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tion of a Ginzburg-Landau equation with multiplicative
noise proposed in Ref. 1 to study spinodal decomposition
has confirmed the role of the multiplicative noise that
was predicted from the linear analysis of the model. ' In
particular, we observe a suppression of the growth of
modes with large k. This implies that the dynamics is not
only slower by reducing temperature but this effect could
not be considered. as a simple temporal rescaling.
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AFFENDIX: EXPLICIT GENERAL ALGORITHM
FOR THE NONCONSERVED CASE
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In this appendix, we consider the case of a Ginzburg-
Landau with multiplicative noise and a nonconserved
field variable:

dc(r, r) 5F P ' &MNc
MNc

g
+ +mNcg(r 7 )

B~ 5c 2 5c

(Al)

where MNc(c) =m Nc(c) is the corresponding
concentration-dependent diffusion coefficient. This is a
very simple case, and it does not seem necessary to use
the minimum algorithm (3.5) to obtain a compact code.
Then, we present a general algorithm analogous to Eq.
(2.&).

The functions U„and g„areobtained by writing the
Langevin Eq. (Al) in the lattice variables:

0"
0.0

I

0.1
I

0 ' 2
I

0.3
I

0.4
I

0 ' 5
I

0.6
BM„

U ( I c ) ) = —,
' (c —c +V' c) + ac„ (A2)

FIG. 4. Structure function obtained from Eq. (4.11) at
r=1500 for (a) a =0 and (b) a =0.8. Squares, P =0.1; trian-
gles, P '=0.2 and rhombus, P '=0.3.

g„(I c ] ) =m„5„,. (A3)

Let us suppose that the mobility m„depends only on the
concentration value of one site m„=m (c„).Then the ex-
plicit algorithm can be obtained straightforwardly from
Eqs. (Al) —(A3) and (2.8).

noise. Furthermore, we have also introduced a simplified
version of the algorithm which reproduces the statistical
properties of the original Langevin equation. We call it
the minimum algorithm for multiplicative Langevin
equations (MAMLE).

As an application, we have made use of the MAMLE
in the integration of stochastic equations of a concentra-
tion field in the context of domain growth. The simula-

c„(r+b,) =c„(r)
1 P+ —(c —c +V c) + M'(c ) b.P 2g d P

+ „M'(c„)X(r)+m(c„)X„(r),4hx"

where X„(r)can be obtained by using Eq. (2.10).
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