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We study the electronic and Fourier-spectral properties of one-dimensional generalized Fibonacci lat-
tices generated by the stacking rule SI+ &

=5&"SI
&

with positive integers n and m, where S& is the Ith gen-
erational binary sequence. After showing that, in the limit of the large potential strength, the energy
spectrum of a lattice with certain specific n and m can be determined by the associated characteristic
value ~(n, m), we investigate the relation between the electronic band structure and the Fourier spec-
trum. When the lattice possesses the Pisot-Vijayaraghavan (PV) property (i.e., when n+1&m), the
Fourier spectrum is closely related to the electronic band structure; the location and the relative strength
of the Fourier spectral peak is in agreement with the location and the relative width of the energy spec-
tral gap. On the other hand, when the lattice possesses no PV property (i.e., when n+1 ~m), the
Fourier spectrum is not directly related to the electronic band structure; the strength of the Fourier
spectral peak is irrelevant to the width of the energy spectral gap, while the location of the peak corre-
sponds to that of the gap. We also study the dependence of the electronic and Fourier-spectral proper-
ties on the initial conditions of the stacking rule through detailed study of the copper mean lattice
(n = 1,m =2) with initial conditions S, = I A } and Sz =

I ABt'}. It is found that the fractal structure of
the energy spectrum is independent of the integer p, while some local electronic properties depend on p.
It is also found that the global structure of the Fourier spectrum depends on p; it looks more blurred,
and thus the aperiodic nature of the lattice becomes clearer with the increase ofp.

r. IXTRODUCTIOX

During the past decade, much interest has been at-
tracted to the study of substitutional structures, '

which was inspired by the discovery of quasicrystals and
the development of layer-growth techniques such as
molecular-beam epitaxy. The majority of works have fo-
cused on quasiperiodic lattices, and a number of interest-
ing properties have been established. Among other
things, it is well established that the energy spectrum of
the Fibonacci lattice„a one-dimensional version of quasi-
crystals, forms a Cantor set with zero Lebesgue measure
and that the corresponding electronic states are critical
ones showing either self-similar or chaotic wave func-
tions. Despite the absence of periodicity in the sequence,
the Fibonacci lattice shows a long-range order such that
the Fourier spectrum of the lattice contains Bragg peaks.

Together with quasiperiodic lattices, other kinds of
substitutional lattices have been extensively studied.
The well-known example is the Thue-Morse lattice'
whose sequence is generated by the binary substitution
rule t A ~AB,B~BA } starting with the letter A. The
Thue-Morse lattice exhibits intricate Fourier-spectral and
electronic properties. The Fourier-spectral measure of
the lattice is known to be a singular continuous one (i.e.,
neither a discrete one nor an absolutely continuous func-
tion of the spectrum), " ' which indicates that the order
of periodicity can be considered to be in between the or-
ders of quasiperiodic and disordered lattices; quasiperiod-
ic lattices have a discrete atomic measure with Bragg
peaks, while disordered lattices have an absolutely con-
tinuous one. Contrary to the results of the Fourier spec-
trum, studies of the electronic properties suggest that the

Thue-Morse lattice is in between the electronic properties
of the periodic and quasiperiodic lattices. ' ' To put it
concretely, the electronic states of the Thue-Morse lattice
consist of extended and critical states; the former is a
feature of the periodic lattice, while the latter is a charac-
teristic of the quasiperiodic lattice. Besides, there is no
state exponentially localized, which is a distinctive
feature from the disordered lattice. Therefore, consider-
ing the question of where the Thue-Morse lattice can be
located, there seems to be an inconsistency between the
results of the electronic and Fourier spectra of the lattice.

The inconsistency mentioned above is not peculiar to
the Thue-Morse lattice, but occurs in other kinds of sub-
stitutional lattices such as the generalized Fibonacci (GF)
lattices. The GF sequences are defined by the binary
substitutional rule

A —+A "8, 8~ A,
where n and I are positive integers and A" represents a
string of n A' s. Another definition can be provided by the
stacking rule

S(+i—SI SI

where S& is the 1th generational sequence. After the
works of Gumbs and Ali, a number of studies have been
devoted to the electronic properties of the GF lattices.
When classifying the lattice into two classes according to
the criterion of Gumbs and Ali, a lattice belonging to the
(n ) 1, m =1) class is known to have a volume-
preserving trace map ' ' " and a Cantor-like energy
spectrum with critical electronic states, while a lattice in
the (n =1, m ) 1) class is known to have a volume-
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II. ELECTRONIC BAND STRUCTURE

In the following we consider a tight-binding model
defined by

r. +i,.P.+i+r. i,.4. i+ V.P. =EN. (3)

where the hopping parameter t„+,„(—:T) is set to be
constant and the site energy V„ takes on two values Vz
and V~ arranged in the GF sequences.

In case of the ordinary Fibonacci lattice, Niu and
Nori introduced an approximated RG scheme to a

nonpreserving trace map and Bloch-like part as well as
the singular part of the energy spectrum such that ex-
tended electronic states are allowed. ' ' Fourier spec-
tra of the lattices are also known to have different proper-
ties depending on where the lattices belong. The Fourier
spectrum of a lattice belonging to the (n ) 1, m = 1) class
contains Bragg peaks; it is called quasiperiodic like the or-
dinary Fibonacci lattice (n =m = 1). Meanwhile, the
Fourier spectrum of a lattice belonging to the (n =1,I ) 1) class shows different behavior from that of the or-
dinary Fibonacci lattice, and the lattice is called aperiod-
ic. An aperiodic lattice, a nonperiodic lattice with long-
range order whose Fourier transform has no Bragg peak,
is generally considered to lie in between quasiperiodic
and disordered lattices. Thus, in a lattice belonging to
the (n =1, m ) 1) class, a similar situation to that of the
Thue-Morse lattice occurs.

However, there seems to be no methodology with
which to reconcile the seeming inconsistency between the
results of electronic and Fourier spectra, which is one of
the motives of our study. In Sec. II we perform a sys-
tematic study of the electronic band structures of the GF
lattices by means of the idea of an approximated
renormalization-group (RG) technique which is valid in
the limit of large potential strength. We show that the
integrated density of states (IDOS) can be determined by
a characteristic value r(n, m), which can be thought as a
generalization of the gap labeling rule for the ordinary
Fibonacci lattice. In Sec. III we study the Fourier-
spectral properties of the GF lattices. After showing that
the structure of the Fourier spectrum strongly depends
on the arithmetic property of the GF number, we investi-
gate the connection between the IDOS and the Fourier-
spectral peaks, which makes it easier to understand why
the results of the Fourier spectra for some lattices differ
from those of the electronic properties.

Another motive of the study lies in the initial condi-
tions of Eq. (2). The conventional choice of the initial
conditions is to set So= [Bj and S, = I A j such that one
has Sz =

[ A "B j. In fact, in Secs. II and III this choice
is adopted. However, one can easily check that the statis-
tics of elements A and B strongly depends on the initial
conditions. Thus the question of what happens if one
chooses different initial conditions arises immediately. In
Sec. IV we examine the effects of different initial condi-
tions on the electronic and Fourier-spectral properties
through a detailed study of a specific example of the GF
lattices, the so-called copper mean (n =1, m =2) lattice.
A brief summary is presented in Sec. V.

A. Generalized Fibonacci numbers

The GF number FI in the Ith generational sequence is
given by the recursion relation

F(+ ) =nFI+mFI (4)

with initial values [F,=1,F2=n +m j. The characteris-
tic value r(n, m), namely, the ratio of FI to FI &

in the
limit of l —+~, is given by the positive solution of the
quadratic equation

nr m=0— — (5)

or explicitly by (rn, m)=[n++n +4m ]/2. Here the
values of r(n, m) for (n, m)=(1, 1), (2,1), (3,1), (1,2), (1,3),
and (2,2) are conventionally called golden mean, silver
mean, bronze mean, copper mean, nickel mean, and
mixed mean, respectively. The GF number can also be
written as

(6)

where r+ (r ) is the positive (negative) solution of Eq. (5)
and r+ (r' ) is the 1th power of r+ (r ). Note that Eqs.
(5) and (6) are very important in the study of the
Fourier-spectral properties; the arithmetic property of
z+, and thus FI, turns out to be a crucial factor in deter-
mining whether or not the Fourier spectra have anything
to do with the energy spectral structures of the GF lat-
tices.

In the case of the ordinary Fibonacci lattice, it sufFices
to consider the Fibonacci number F& with n =m=1
alone, which implies that the electronic band structure of
the lattice is totally characterized by the number defined
in Eq. (4). However, in the GF lattices, additional num-
bers should be considered in order to describe the physi-

transfer (or off-diagonal) tight-binding model and ex-
plained the trifurcating behavior of the energy spectrum.
Liu and Sritrakool adopted the same scheme to the on-
site (or diagonal) tight-binding model and illustrated the
four-subband global structure as well as the trifurcating
behavior of sub-subbands in the following hierarchies.
The idea of the scheme is as follows. In the limit of the
large potential strength [i.e., ~

T/( Vz —V~) ((1], there
exist three kinds of constructing elements [B,A, AA j
whose energies are denoted by [E~,E„,E' , ' j,—and these

construct four subbands (B, A A, A, and A A + sub-
bands in ascending order of the energy), resulting in a
four-subband global structure. Since the dominant effect
in the lowest order of approximation is the resonant cou-
pling of the states with the same energy, each of the four
subbands can be treated independently of the others. The
decomposition produces four chains, all of which can be
regarded as transfer models with modified strengths of
the hopping parameters. Thus the trifurcating behavior
of the sub-subbands can be explained following the lines
of the Niu-Nori argument. Since the approximated RG
scheme gives a simple and clear picture of the Fibonacci
lattice, we adopt the scheme and try to determine the
band structures systematically.
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cal properties appropriately. Let us denote them as G&

and H&, which are defined by the same recursion relation
as that of E& but with difFerent initial values, i.e., [G, = 1,
Gz=n ] and (H, =1, H2=n —1], respectively. Because
of the same recursion relation, the three kinds of numbers
have the same characteristic value r(n, m) and the rela-
tions between them are given by

Ft=GI+mG

GJ =H)+Gi

(7a)

(7b)

Note that, when n =1, the numbers G& and H& can be
written as G& =F&, and H& =mF, 3 and the correspond-
ing lattices can be characterized by the number F& alone,
as in the ordinary Fibonacci lattice.

B. IDOS and gap labeling rule

N~(=F~)=mN' +nN' „+(n+m)N' „+ (8b)

The number of global subbands is easily obtained; it is
2(n +1) for a lattice with (n ~ 1, m = 1), while 2m + 1 or
2(m +1) for a lattice with (n =1, m ~ 1) depending on
whether m is even or odd.

Each of the global subbands contains one of
[G& „H& t, G& 2] eigenvalues such that the density of
states on any subband, in the limit of l ~~, takes one of
the values

[ I /(r+ m ), (r—I ) /[r(r+ m ) ], I/[r(r+ m ) ]],
where ~=~+. Besides, since each sub-subband at any
hierarchy has one of [G& „,H& „,G& „,[ eigenvalues,
the density of states on any sub-subband takes one of the
values

[ I /[r" '( r m) ],(r—I ) /[—r"(r+ m ) ], 1/r"[(r+ m ) ] ] .

From these, it is expected that the IDOS at energy E,
N(E), is of the form (a'r+b')/[r" (r+m)] with integers
a', b', and r'. Thus, by using the equalities

A lattice with certain specific n and m consists of three
kinds of constructing elements denoted by
tB, A", A" ]. The numbers of constructing elements
and the total number of the elements in the lth genera-
tional sequence are given by

N~~=6( ), N„'„=H(, , N„'„+ =G( ~, (8a)

with certain specific n and m can be uniquely character-
ized. In case of the ordinary Fibonacci 1attice, it is well
known that the integer a in Eq. (10) increases progressive-
ly when one goes to a higher hierarchy and that the larg-
est gap corresponds to the smallest integer. We do not
succeed in elucidating the relation between the integer
and width of gaps explicitly, but one can conjecture from
Eq. (9b) that the integer corresponding to the gap which
appears in a higher hierarchy may become larger. It is
worth noting that the location of the largest gap N is
characterized by (a, b; r) =( —1,n +m;0), i.e.,

—z+n +m
n+m —1

which is just the fraction of the number of the element B
to the total number of elements. In connection with this,
see Ref. 32, where the vibrational properties of the GF
lattices are studied and an expression similar to Eq. (11)
is given for the integrated density of vibrational states.

Figures 1 —3 show the numerically calculated IDOS for
three typical examples of the GF lattices, the silver mean
(n =2, m =1), the copper mean (n =1, m =2), and the
nickel mean (n =1, m =3) lattices, respectively. Even
though the calculations are performed both for small lat-
tice sizes (l =9, 11, and 9, respectively) and for potential
strengths not strong enough ( T/~ V„—V~ ~

=
—,', —,', and —,',

respectively), the data are in agreement with Eq. (10).
Denoting the IDOS as N(E)=(ar+b)/2 in the silver
mean lattice, the values of (a, b) for the five main gaps are
labeled by (

—1, 3), (2, —4), (
—2, 6), (1,—1), and ( —3,9),

respectively. In the copper mean lattice, ~=2 enables
one to write the IDOS as N(E)=k/2" with integers k
and r, and the values of (k, r) for the four main gaps are
given by (1,2), (1,1), (5,3), and (7,3), respectively In th. e
nickel mean lattice, the IDOS is given by
N(E)=(ar+b)/3", and the values of (a, b;r) for the
seven main gaps are given by ( —1,4;2), (

—2, 8;2),
(
—1,4;1), ( —5,29;3), ( —1,22;3), (26, 123;4), and

( —4, 34; 3 ), respectively.

( '$ C))

1 n+m —r
r+m m (n +m —1)

( —1)"
m

the IDOS can be written as

ar+b
m "(n +m —1)

(9a)

(9b)

(10) 0.0 -—
2.5

where a, b, and r are integers satisfying 0&N(E) & l.
Equation (10) is the generalization of the gap labeling rule
found in the ordinary Fibonacci lattice. By using Eq.
(10), locations of the gaps at any hierarchy of a lattice

FIG. 1. IDOS vs E for the silver mean lattice. The system
size is %=1393 (l =9). We take V= V& = —V&=1.5 and
T = 1. The IDOS is characterized by (a, b) where
2V (E)=(a~+ b)/2.
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1.0 .—

0.0 '-—

FIG. 2. IDOS vs E for the copper mean lattice. The system
size is X =1365 (l =11). We take V= V„=—

V& =2 and
T =1. The IDOS is characterized by (k, r) where X(E)=k/2".
The inset represents the fourth main subband which is a mixed
subband of monatomic ( A) and triatomic ( A ) elements. Corn-
pare it with the inset of Fig. 8. -.

III. FOURIER-SPECTRAL. PROPERTIES

A basic step to investigate a substitutional lattice is to
study the Fourier spectrum of the lattice. After the
pioneering work of Bombieri and Taylor, characteristic
values associated with a given substitution rule are
known to play a crucial role in determining the proper-
ties of the Fourier spectrum. Bombieri and Taylor stud-
ied the connections between quasiperiodic lattices and
algebraic number theory and showed that a given lattice
contains Bragg peaks whenever the characteristic values
possess the Pisot-Vijayaraghavan (PV) property that only
one of the characteristic values in absolute is larger than
unity. As for the GF lattices, the characteristic values
are given by the solutions (r+) of Eq. (5), and it can be
easily checked that the characteristic values possess the

A. Fourier transform

When two types of diffraction centers associated with
the GF sequences exist, the scattering property of the lat-
tice is described by a function

g (x)= g ek5(x —k),
k=1

(12)

where c,k takes on two possible values c~ and c.~. Dis-
tances between neighboring centers are set to be unity.
The Fourier transform. of the function can be defined by'

PV property only if n + 1)m, while do not possess the
property when n +1 & m, Meanwhile, the condition of
n +1=m is a marginal case of the PV property. Even
though the definition of the Fourier transform that we
take [see Eq. (13)] is different from that of Bombieri and
Taylor, the property of the Fourier spectrum is strongly
dependent on whether or not the characteristic values
possess the PV property, and it can be expected that a
lattice is quasiperiodic when n+1&m and aperiodic
when n +1 ~ m.

In periodic or quasiperiodic lattices, Fourier-spectral
peaks are closely related to the energy spectral gaps. To
be precise, the location and strength of Bragg peaks cor-
respond to the location and width of energy spectral
gaps. Is this generically valid for any kind of the GF lat-
tices? Our results given below suggest that, when
n + 1 & m, this is valid. On the other hand, when
n +1 ~ m, the relative widths of the energy spectral gaps
have nothing to do with the strength of the Fourier-
spectral peaks, although the locations of the gaps are re-
lated to those of the peaks. The reason for this lies in the
fact that the electronic band structures of the GF lattices
are insensitive to whether or not the associated charac-
teristic values possess the PV property, while the nature
of the Fourier spectra strongly depends on the PV prop-
erty of the characteristic values. Let us consider the glo-
bal structural property of the Fourier spectrum and study
the relation of the Fourier spectra and the electronic
band structures of the GF lattices.

1.0,——
(
—4, a4;W), j

(26, 126;4)J
( —1,22;6)

J

l
(
—6,26;6)

, 4;1)

FI

G (co) g 6 e2m1cok

k=1
(13)

Si(co) =
I
G1(co)

I

1

I
(14)

and the partial structure factor, or Fourier intensity,
S&(co) is given by

(
—2, H

f( —1,4 ~)

0.0 (

—4 0
E

4

FIG. 3. IDOS vs E for the nickel mean lattice. The system
size is %=1159(l =9). We take V= V& = —V&=2 and T=1.
The IDOS is characterized by (a, b;r) where X{E)
=(ay+ b)/3".

When the Fourier amplitude G&(co) is assumed to scale
as lG&(co)l-F(( ', the scaling exponent y(co) shows
different behaviors depending on the nature of the spec-
tral peak, ' y(co) =1 for Bragg peaks and y(co) =1/2 for
a diffuse scattering appearing in disordered structures.
Meanwhile, y(co) can take diverse values for a singular
scattering appearing in, for example, the Thue-Morse lat-
tice and the behavior of G&(co) becomes complicated.

An efficient way for evaluating Eq. (13) is provided by
the recursion relation of the Fourier amplitudes. Using
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the self-similarity of the GF lattices, one can easily
deduce the recursion relation as

a~+6
m "(n +I —1)

(21)

Gl+t(~) ' Gt(n~)

G (co) —' G( t(co)

where M& (n~ ) is a 2 X 2 matrix given by
2~jI~F& ~~ &

2m~(nFI +jFI, )

oe oe
Mt(co) =

0 (16)

Much information on the behavior of Gl(co) can be ex-
tracted from the behavior of the arguments of M&(co),
since the I dependence of M&(co) is carried by its argu-
ments. Defining cuI —=coI'& and co&

' —=neo&+ jcoI j, it can
be easily checked that there exist Bragg peaks if the two
conditions

col mod 1 —+0,
co&~' mod 1 0

(17a)

(17b)

hold simultaneously, for some frequencies co, in the limit
of I ~~. Since Eq. (17a) is a sufficient condition in order
to hold Eq. (17b), it suffices to consider Eq. (17a) in test-
ing whether or not the Bragg peak exists. Note that the
mod 1 comes from the fact that the argument cuI enters
Mt(co) through complex exponentials. Note also that Eq.
(17a) amounts to stating that the recursion relation of n~&,

i.e.,

900
(a) ~

st rg&d 3rd 4 th
I

5th

where a, b, and r are integers satisfying 0&co(1. Note
that the region of the frequency to be considered is given
by 0(co(1 because G&(co) have periodicity of 1, i.e. ,

G&(co+1)=GI(co). We also omit co=0, which is a trivial
point at which the Fourier amplitude exhibits a Bragg
peak regardless of the property of the lattice when
s„+Eit&0. Equation (21) is exactly the same form as
what we obtained in the electronic band structure:
co =N (E).

We confirm the above result by numerical calculation
and test the relation between the widths of energy gaps
and the strengths of the Fourier-spectral peaks. Figures
4(a) and 4(b) show the absolute values of the Fourier am-
plitudes for the silver mean and mixed mean (n =m =2)
lattices, respectively. In the silver mean lattice, spectral
peaks locate at co=(ar+b)I2. Indices (a, b) and the cor-
responding strengths of the spectral peaks in the figure
are in agreement with the locations and widths of the
gaps obtained in Sec. II (locations of main gaps are indi-
cated in the upper abscissa of the figure). In the mixed
mean lattice, Bragg peaks occur at co = ( a r+ b ) /( 3 X 2").
Considering the relative strength of spectral peaks, fre-

m)+) =nuI+mco) ) mod 1, (18)

has an asymptotic fixed point located at the origin
(co*=0). Equation (18) is a nonlinear iterative map and
generally exhibits three qualitatively different behaviors:
asymptotic fixed-point, limit-cyclic, and chaotic
behaviors. " Since the behavior of the map strongly de-
pends on whether or not the characteristic values possess
the PV property, let us study the properties of the
Fourier spectrum dividing the lattices into three classes.

B. Class l(n+1&m)
i i, . i, , », , ., lit l». , „ll, , lit ..» II i » I &. ..i. .ll iver lit, I t»». .i l»l, , li. , „.I . .il, , „.» . . i, .»0

In this case the characteristic values possess the PV
property (i.e., r+ ) 1 )r ) —1). Writing F& as
F&= 2&+B&, where 3& (BI) is the first (second) term in
Eq. (6), we have 2& -F& in the limit —of I ~~. Since B&

goes to zero as I —+ ~, Al approaches to an integer I'I or,
equivalently,

(b) t. h ~, t, h t.h
~) tO

A~ mod 1=F~ mod 1~0 as I~ ~ . (19)

Equation (19) is equivalent to stating that Eq. (18) has
co*=0. For frequencies m belonging to the basin of at-
traction of ni* =0, M&(co) becomes

n m 0 l

"lti. ~JLa li.lil Jt,,lttlilllll

1 0 (20)

and thus we have Gl(co)-FI', i.e. , we have Bragg peaks
with y(co)=1. Noting that Eq. (17a) is equivalent to
writing co as cu=s/A& with an integer s, it can be easily
shown by using Eqs. (9a) and (9b) that the frequencies be-
longing to the basin of attraction of co' =0 are given by

FIG. 4. JGt(co)J vs co for (a) silver mean and (b) mixed mean
lattices. We take c„=—cz = 1. The locations and the
strengths of the spectral peaks are in a good agreement with
those of the IDOS. The upper abscissas represent (a, b)'s of the
main gaps.
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quencies related to the first, fifth, and sixth main gaps
show dominant peaks. Here comes two interesting
features of the mixed mean lattice to be mentioned. The
first is that the Fourier spectrum exhibits a somewhat
blurred structure similar to that of the copper mean lat-
tice (see Fig. 5), even though the lattice is a quasiperiodic
one. The blurred structure seems to appear for lattices
with m&1 regardless of whether the lattice is quasi-
periodic or aperiodic. The second is that the Bragg peaks
occur at rational values of co (i.e., a =0, b =3k) as well as
irrational values (a%0) even though the characteristic
value is irrational (i.e., r= 1+&3), which is in contrast to
the ordinary Fibonacci and silver mean lattices.

)st

„,iliII„Il,i„~.II .iII. u, .l il IL,i.
0

c) lid ~rd

,.i. Illa' IIII„~liI.Illa' &II, I, .

C. Class II(n+1=m)

In this case the characteristic values are ~+ =n + 1 and
= —1; it is a marginal case of the PV property. Be-

cause of the rational values of ~+, both AI and BI are ra-
tional: A&=2(n +1) /(n +2) and BI=n( —1) /(n +2).
As in class I, we have FI-—AI in the limit of I —+~.
However, BI mod 1 does not go to zero, but has either a
two-cyclic value (when n%2) or a fixed point value at
nonzero (when n =2), and so does A& mod 1. Thus co& in
Eq. (18) has no fixed point at the origin, resulting in the
absence of Bragg peak. Note that BI mod 1 goes to zero
with the increase of n such that the Fourier-spectral
peaks behave like the Bragg peak. This is quite natural
since the limit of n —+ ~ means the lattice is in effect a
crystal composed of an element A.

As a concrete example, let us consider the copper mean
lattice, where

~ 12l+1 ( 1)l+1] (1) 21
3

In this case the recursion relation becomes

mI+ &
=cuI +2coI

&
mod 1,

Q7'" =2''"mod1
(23a)

(23b)

Equation (23b) has a fixed point at the origin for frequen-
cies cu=m/2', where m and r are integers satisfying
0 (co ( 1. However, at these values of co, Eq. (23a) has no
fixed point, but has two-cyclic values +co lsee Eq. (34)].
This indicates that there is no frequency making both ~&

and co'I" go to zero simultaneously, which in turn implies
the absence of a Bragg peak. The scaling exponent y(co)
can be easily determined. for frequencies giving rise to any
limit-cyclic behavior of the recursion relations. For ex-
ample, for co =m /2", M&(co) becomes two-cyclic with

And y(co) can be determined by the largest eigenvalue of
the second iterate of M~(co), M) )(co)=MI+(co)M~ (co).
See Sec. IV B for the detailed calculation.

Figure 5 shows the absolute values of the Fourier am-
plitudes for the copper mean lattice. The global structure
differs from that of the silver mean lattice; it shows clus-
tering behaviors, and inside the clusters there exist

FIT&. 5. IG&(coll vs co for the copper mean lattice. We take
E& = —E&=1. The global structure shows different behaviors
from that of the silver mean lattice.

blurred structures of densely packed peaks. Dominant
peaks locate at wave numbers satisfying co=3k/2" with
integers k and r. Thus, of the frequencies related to the
main gaps by co =N (E), the only frequency related to the
third main gap shows a dominant peak, while all the oth-
er frequencies show negligibly small peaks; the dominant
spectral peaks are not directly related to the widths of the
main gaps. This is a distinctive feature from the case of
the silver mean lattice. Note that, despite the discrepan-
cy between the strengths of the spectral peaks and the
widths of the energy spectral gaps, one can obtain the lo-
cations and scaling behaviors of the dominant spectral
peaks. This is treated in detail in Sec. IV for the copper
mean lattice.

D. Class III ( n + 1 (m )

In this case the characteristic values possess no PV
property (i.e., r+ ) 1 and r (—1). Moreover, BI mod 1

does not converge to a fixed point or to a limit cycle value
unlike the previous two classes and so does A& mod1.
This implies the absence of a Bragg peak. Furthermore,
because of the chaotic behavior in Eq. (18), it is difficult
to define a frequency at which the spectral peak has a
well-defined scaling exponent y(co).

Figure 6 shows the absolute values of the Fourier arn-
plitudes for the nickel mean lattice. As in the copper
mean lattice, the global structure looks blurred. More-
over, all the frequencies related to the main energy spec-
tral gaps have negligibly small peaks. Comparing with
the case of the copper mean lattice, one can see that the
strength of the dominant peaks reduces considerably,
which suggests that the nickel mean lattice is more disor-
dered than the copper mean lattice. Note that, even
though the location of the dominant peaks does not coin-
cide with that of the main gaps, the generic expression
for the location of the spectral peaks is given by
co=(ar+b)/3", which is of the same form as Eq. (10)
with n =1 and m =3. Thus it can be said that the
Fourier-spectral peaks locate at frequencies co=N(E) as
in the previous two classes, while the strength of the peak
is irrelevant to the width of the energy spectral gap.
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FICx. 6. lGt(co)l vs c0 for the nickel mean lattice. We take
c& = —c& =1. The global structure shows similar behavior to
that of the copper mean lattice.

Note also that the scaling indices, in a weak sense, of the
Fourier-spectral peaks of a lattice belonging to class III
may take diverse values less than unity, which implies
that the spectral peaks are a multifractal object. In fact,
the authors in Ref. 29 have performed a multifractal
analysis on the Fourier spectra of the copper mean and
nickel mean lattices to find the multifractality in them;
Fourier-spectral measures of lattices with n +1~m are
considered to be singular continuous ones.

IV. COPPER MEAN LATTICE
WITH VARIOUS INITIAL CONDITIONS

In this section we consider the copper mean lattice in
detail, with varying the initial conditions of Eq. (2). Be-
fore going on, a few remarks should be mentioned. The
first is that, since the lattice is an example of aperiodic
lattices, the study will shed some insight into the proper-
ties of deterministic aperiodic lattices. The second is that
the lattice is tractable analytically because the charac-
teristic value is a rational value (v=2), which is a com-
mon feature of the lattices with n +1=m. The third and
the most important remark lies in the relation between
the two lattices, the period-doubling' ' ' and the ordi-
nary copper mean lattices.

The period-doubling lattice is defined by the substitu-
tion rule I A ~ AB, B~ A A J starting with the letter A.
The lattice with a potential given by the period-doubling
sequence is known to be quasiperiodic, ' and the energy
spectrum is known to be a singular continuous one sup-
ported on a Cantor set of zero Lebesgue measure for all
nonzero values of the potential strength. ' Meanwhile,
the lattice with a potential given by the ordinary copper
mean sequence, generated by the rule I A ~ ABB,
B~ A I, contains no Bragg peak as shown in the previ-
ous section, and the energy spectrum contains smooth
parts with extended electronic states as well as singular
continuous parts with critical electronic states.
However, it can be easily checked that the two lattices
are generated by a stacking rule SI+,=SISI &

with
different initial conditions. In fact, the ordinary copper
mean sequence becomes identical with the period-

doubling sequences when the cluster BB is replaced by B.
Then why do the two lattices have difficult properties,
and what is the reason for the differences? Can the prop-
erties of the lattices be described in a unique way? This
stimulates us to study the copper mean lattice with
different initial conditions. To this end, of the various
possibilities in the choice of the initial conditions, we
choose the initial conditions with Si =

I A I and
Sz= I AB~I, where p is a positive integer. In this cir-
cumstance the period-doubling sequence corresponds to
p =1 and the ordinary copper mean sequence to p =2.
Note that any lattice with p ~ 3 has no substitution rule
associated with the sequence; it can only be defined by
the stacking rule with a specific p. The existence of the
substitution rule implies the existence of full inAation-
deQation symmetry, and thus the cases of p =1 and 2
have the symmetry, while the cases of p ~3 do not. As
can be seen in the following, the global structures of the
energy spectrum and the Fourier spectrum maintain re-
gardless of p, which reveals that the stacking rule may be
more fundamental than the substitution rule in classify-
ing deterministic aperiodic lattices.

A. IDOS

The constructing elements of the lattice, in the limit of
the large potential strength, are given by IB~, A, A
The numbers of constructing elements and the total num-
ber of elements in the lth generational sequence are given
by

X+p FI 2 & Xg 2FI 4, X~ 3 FI 3
l 1 I

N, =pN~t +N„'+3N„', =F,+(p —2)F,

(25a)

(25b)

The number of the global subbands is (p +3);p subbands
come from the element B~, and three subbands come
from the "monatomic" element 3 and the "triatomic"
elements 3 . Note that, in the lowest order of the ap-
proximation, the energy of the monatomic element and
one of the three energies of the triatomic element are de-
generate, and thus the number of global subbands is not
(p+4) but (p+3). From this fact one can write the
branching rule of the global subbands as

NI~Ft 2+ . . +Ft 2+Ft 3+Ft 2+F/ 3 . (26)

Here Ft' 2 (=Ft 3+2Ft 4) represents the number of ei-
genvalues of the degenerate subband. In obtaining the
branching rules in the following hierarchies, one can treat
each subband independently to others as in the case of
the ordinary Fibonacci lattice. The decomposition pro-
duces two kinds of lattices. Both the p subbands coming
from the element B~ and the two subbands coming from
the element 2 are described by an F-type lattice where
two kinds of modified hopping parameters I T„',T~ I are
arranged in the ordinary copper mean sequence while the
degenerate subband is described by an F'-type lattice
where two kinds of modified site energies I V„', V~ I are
arranged in the ordinary copper mean sequence. Thus
one can deduce that the branching rules at any hierarchy
are given by
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F ~F; 2+F,' 1+F;

Fj —2+Fj —2+Fj —3+Fj—2 +Fj —3

(27a) 1 p —1 k
CO

=—
3 p+2 2

(33)

H, ,~ -or

Fi —3 +Fi —2 +Fi —3+Fi —2 +Fi —2-
(27b) As I increases, co'I" mod1 goes to zero while col mod1

takes two-cyclic values co& and $2, where

N(E)= k
2"(p +2)

(28)

with integers k and r. This is a gap labeling rule for the
copper mean lattice. Thus, by setting co=N(E), one can
expect that the Fourier-spectral peaks may occur at fre-
quencies given by

These results reveal that the branching rules of sub-
subbands are independent of the initial condition; the
copper mean lattices have a fractal structure regardless of
the integer p.

As in Sec. II, we determine the IDOS N(E) and thus
characterize the location of energy spectral gaps. Since
we have the relations Fl 2/Nt = 1/(p +2) and

Ft 3/NI = 1/[2(p +2)] in the limit of / —+ oo, the density
of states on any global subband has one of the two values

I 1/(p +2), 1/[2(p +2)]I. Furthermore, because each
subband at any hierarchy has one of I F& „,FI „ I] ei-

genvalues, the IDOS at any hierarchy can be written as

coI =—+(—1)"+'co', co2= —
(
—1)"+'co' . (34)

k

Thus MI(co) becomes two-cyclic, and the eigenvalues X+
of the second iterate of MI(co) become

k+ =
—,'(3+2 cosco+ 1+2cosco~ ), (35)

where co is one of the values co, and co2 which satisfies
0 & co & —,'. The scaling exponent y(co) then becomes

ln X, l

y(co) =
2 ln~

ln(2+2 cosco)/(2 ln2), 0 & co & —,
'

(36)

1. p =I case

Note that the scaling exponent y(co) for a frequency co

which makes MI(co) any limit cyclic can also be deter-
mined in a similar way. Now let us consider three ex-
amples (p = 1,2, 3) of the lattices explicitly.

2"(p +2)
(29)

In this case both coI and co&" satisfy similar recursion
relations, i.e.,

B. Fourier spectrum

The recursion relation of the Fourier amplitudes is
given by Eq. (15), where

27Tl CO I 2TT/ CO1
~ (&)

e +e
M, (~)= (30)

and

Note that the integer p is included in the denominator of
Eq. (29), which plays an important role in illustrating
why the Fourier spectra of the period doubling and the
ordinary copper mean lattices exhibit di6'erent behaviors.

col+& =2'& mod 1,
mod1 .

(37a)

(37b)

When k = 3s in Eq. (29), Eqs. (37a) and (37b) have a fixed
point at the origin simultaneously, and the corresponding
peaks have a scaling exponent y(co)=l. Meanwhile,
when k =3s+1 in Eq. (29), Eqs. (37a) and (37b) have a
fixed point at co =

—,', and thus y(co) =0.
Figure 7 shows the absolute values of the Fourier am-

plitudes. As can be seen clearly in the figure, the global
structure looks cleaner than that of Fig. 5; the spectrum
consists of Bragg peaks at co=s/2", where s is an odd in-

coI =Nrco= —,
' [(p +2)2t ' —(p —1)(—1)i I]co,

coI"=(NI+Nt, )co=(p+2)2 co .

(31a)

(31b)

850
2nd

I

3rd

For frequencies in Eq. (29), coI" mod 1 goes to zero while
coI mod 1 does not. Thus y(co) is less than unity and there
is no Bragg peak. The only exceptional case is when

p = 1. In this case the second term of Eq. (3 la) vanishes,
and both co'I" mod1 and col rnod1 go to zero sirnultane-
ously for frequencies in Eq. (29). Thus Bragg peaks occur
at these frequencies.

For frequencies co satisfying Eq. (29), cot and coi" be-
come

p, I, I., I, , I, I, I, , I, I, I, , I, I. I, . I,.I I, , I, I, I, , I.I.I, , I, I, I, I, I, I, , I, I, I, , I, I. I, , I, I, I, I, I, I, , I, I, I,. I, I, I. , I, I, I

0 1

t+( —I)tk
cgI — co, co~

where

(32) FIG. 7. ~G&(co)~ vs co of the period-doubling lattice (p =1).
We take c& = —

E& =1. The global structure shows sharp Bragg
peaks. Compare it with Fig. 5.
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teger satisfying 0&co & 1. Thus the lattice can be said to
be quasiperiodic. However, the relation between the
IDOS and Fourier spectrum is unlike the standard quasi-
periodic lattices. From Eqs. (25b) and (26), one can ob-
tain that the three mean energy spectral gaps are charac-
terized by N (E)= —,', —,', and —', . Figure 8 confirms this re-
sult. Considering the following hierarchies, one can find
the gaps are characterized by N(E) whose denominator
is 3 times a power of 2. But the frequency co having the
Bragg peak has a denominator not 3 times a power of 2,
but a power of 2. Especially, of the frequencies related to
the main gaps, only the frequency corresponding to the
second main gap has a Bragg peak, while the other two
have peaks negligibly small. Thus the period-doubling
lattice shows similar behavior to that aperiodic lattices
exhibit, even though the lattice contains Bragg peaks.
This strongly reveals that the period-doubling lattice is
an exceptional case of aperiodic lattices.

quencies giving rise to two-cyclic behaviors of Ml(co),
those satisfying the condition k =3s exhibit dominant
peaks as in the p =1 case. This behavior can be easily un-
derstood by considering the periodic approximant of the
infinite lattice. In the lth periodic approximation, the al-
lowed values of co become s/FI, where s is an integer.
Since I't can be written as I't —-2'+'/3 for large I, one can
write co =3s /2'+ ', which goes to two-cyclic values
co=s/2'+' after appropriate iterations. Note that, as
shown in the previous section, locations of the Fourier-
spectral peaks correspond to those of the energy spectral
gaps even though the strengths of the dominant peaks do
not.

3. p =3 case

In this case the frequencies in Eq. (29) make coI" mod 1

go to zero while making cot mod 1 go to two-cyclic values
+6 with

2. p =2 case

In this case the two recursion relations are given by

s/(5X2" ), k =3s,
co= [N„+,+(s+I)( —I)"+']/(5X2" ),

k =3s+1 .
(40)

cot+, =cot+2~t
&
mod 1,

co'" =2~'"mod I .t+I t

(38a)

(38b)

.s/2"+ if k =3s, s =1,3, 5, . . . ,

(I'„+,+s)/2" if k =3s +1, s =0,2, 4, . . . ,

(39)

where the upper (lower) sign corresponds to an even (odd)
integer of r. Thus MI(co) becomes two-cyclic. Of the fre-

1.0

0.0
0
E

FICx. 8. IDOS vs E for the period-doubling lattice. The sys-
tems size is N=1024 (l =11). We take V= V„=—V&=2 and
T = 1. The IDOS is characterized by ( k, r) where
N (E)=k /(3. 2"). The inset represents the third main subband
which is a mixed subband of monatomic ( A ) and triatomic ( A )

elements. The shape of the IDOS looks like that of crystal, i.e.,
looks smoothlike.

The frequencies in Eq. (29) are in the basin of attraction
at zero in Eqs. (38b) and show two-cyclic behavior
(co, —co) in Eq. (38a) with

(F„+,+s)/2"+ if k = 3s —1, s =2,4, 6, . . . ,

Of the frequencies giving rise to two-cyclic behavior of
Mi(co), those satisfying k =3s give dominant spectral
peaks as in the previous two cases. Since the five main
energy spectral gaps are located at N(E)= —,', —,', —,',
and —,'„ the frequencies co related to the third and fifth

main gaps have dominant peaks, while the others have
not. As in the previous two cases, locations of the
Fourier-spectral peaks correspond to those of the energy
spectral gaps, while the strengths of the dominant spec-
tral peaks do not.

From the above study, we obtain that dominant spec-
tral peaks occur when the condition k =3s in Eq. (29)
holds. When k&3s, the corresponding spectral peaks
generically have small, but not zero, values of y(co).
Thus the global structure exhibits a blurred behavior.
The only exception is in the case of p =1, where y(co)
equals exactly zero for k&3s. This is the reason why
dominant spectral peaks in the period-doubling lattice
look isolated.

The global structure of the Fourier spectrum depends
on the initial condition p. We find that the structure be-
comes more blurred and thus more disordered with the
increase of p. This can be understood by considering the
following two facts. The first is that the minimum value
of y(co) of dominant peaks decreases with the increase of
p, e.g., y( —,') =0.8858 for p =2, y( —,', ) =0.6942 for p =3,
and so forth. The second is that some spectral peaks
occurring at k&3s can have scaling exponents which are
comparable with those of spectral peaks occurring at
k =3s.

The two-point correlation function of the sequence,
which is related to the Fourier intensity measure of the
sequence, clearly reveals the blurred structure. Figure 9
shows the partial correlation functions C&(r) for (a)

p = 1, (b) p =2, and (c) p =3, where

Cx(r) —
N X &~&k+r . (41)

k=1
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ll( )

independent quantity (i.e., b, &+ i =b,
& ) and depends on the

initial conditions of the stacking rule. Since M& =M~
and Mz =M/M„, where

E —V —1B
(46)

one can write the invariant b, as 6=—,'tr(M, M2). Now,
for a unimodular matrix M, one can write a power of M
as

0.5 0.0 M~= C~(m )M —C,(m)I . (47)

Here I is the unit matrix and C (m) is a polynomial of
m =tr(M) (the Chebychev polynomial of the second
kind), which satisfies the recursion relation

0.0
100 200 C~ +)( m)=mC~(m) —C~,(m), (4g)

FIG. 9. Partial correlation functions of the copper mean se-
quence with (a) p =1, (b) p =2, and (c) p =3. We take e& =1
and cg =0.

As can be clearly seen, the correlation becomes weaker
with the increase ofp.

C. Electronic states

In+1
=M(n) (42)

where M(n) and M'"' are defined by

(E —V„)/T —1

(43a)

M'"'=M(n)M(n —1) . . M(2)M(1) . (43b)

From now on, we take the hopping parameter T to be
unity. By using Eq. (2), the recursion relation of the

(Ni )
transfer matrix M& ( —=M ) can be written as

2M(+ ) =M( )M), (44)

and thus the trace map of the copper mean lattice is
given by

The trace map method has been used as a powerful
tool in examining electronic properties of substitutional
lattices. The method makes it easy to calculate the ener-

gy spectrum and to study the behaviors of electronic
states at any generational sequence of a given lattice.
Thus, using the method, we examine electronic states of
the copper mean lattice with varying initial conditions.
To this end, one can write Eq. (3) as

with Co(m)=0 and C, (m)=1. Using Eq. (47), the in-
variant becomes

5=C~(mi) ) ——,'m~ C,(mi) ), (49)

where m ~ (i))
= tr(M„(i)) ) =E —V~ (i)).

An energy E corresponding to a point x& that does not
escape to infinity in the iteration of Eq. (45) belongs to
the energy spectrum. In general, the wave function of a
state corresponding to a periodic orbit in trace space ex-
hibits self-similarity, while the wave function correspond-
ing to an aperiodic orbit exhibits chaotic behavior. Since
such critical states have been illustrated many times in
the literature, ' ' ' ' we focus our attention on the
possible existence of extended states and on the related
property, i.e., the state transition whose definition is, ac-
cording to Zhong et al. , the transition from the local
density of states with a smooth behavior in some energy
regions to another one without any smooth part. The
possible existence of the state transition provides a reason
why the study of the extended state is important.

Because of the stacking rule of the sequence, the
copper mean lattice in the infinite limit of the system size
can be thought as a mixture of two kinds of unit cells S;
and S;+&. Let us call the unit cell S; an impurity embed-
ded in a crystal composed of unit cells with cell size S;+,.
Assume that an electron travels the impurity without any
resistance for a certain energy E. In terms of the transfer
matrix, this amounts to M; ~I. Then the electron can
also travel the whole lattice without any resistance if the
energy E is in the energy spectrum E' of the crystal, and
thus the corresponding electronic state is extended
through the whole size of the lattice. We call this state
the resonant state, since the characteristic of the state
comes from the resonance condition between the impuri-
ty and crystal. Now let us consider specific examples
(p =1,2, 3) and study the possible existence of the reso-
nant state together with the state transition.

x(+,=x((4x(, —2) —6, 6= —,'tr(M(, M(), (45) 1. p =1 case

where x&
=——,'tr(M&). Note that the quantity 5 is an I

I

The sequence is given by

A —+ AB~ ABAA~ ABAA ABAB~ ABAA ABABABAA ABAA

~ ABAA ABABABAA ABAA ABAA ABABABAA ABAB ~
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and the invariant by

6=1 . (50)

One can see from Eq. (45) that if an energy E satisfies the
condition xI =0, then the relations

xi+i = —1 and xI+ =1 (51)

hold for a11 m ~2. Noting that the condition xI=0 is
equivalent to MI = —I since MI is unimodular, it suffices
to consider whether or not an energy satisfying the condi-
tion xI =0 belongs to the allowed energy E' of the crys-
tal.

First of a11, it can be easily shown that the energy
E= V (=V„=—V~) satisfies x, =0. Thus the lattice
can be regarded as a binary crystal, called the AB crystal,
with impurities AA (underlined letters in the above se-
quence). But the allowed energy of the AB crystal is
E'=+( V —4cos q)'~, where q(=2vrco) is an incident
wave vector, and thus the state with the energy E = V is
just the edge state of the upper subband of the AB crys-
tal; it is a resonant state. It can be also found that the en-
ergy E =+( V +2)'~ satisfies xz =0, and the corre-
sponding state is the resonant state satisfying the reso-
nance condition between the impurity ABAB and the

I

crystal with a unit cell ABA A. Similarly, a state with an
energy satisfying x3 =0 is a resonant state between the
impurity ABA A ABAA and the crystal with a unit cell
ABA A ABAB.

It should be noted that 6 is independent of the poten-
tial parameter V such that the resonant states always ex-
ist independent of V. Thus there is no state transition,
and the smooth parts of the energy spectrum always exist
regardless of V. This is clearly shown in Fig. 8. The
IDOS in the figure is obtained for V=2. The resonant
states with energies E =2 and v'6 belong to the third
main subband in the figure, which is magnified in the in-
set of the figure. The smooth parts, i.e., Bloch-like parts
of the energy spectrum near E =2 and +6, are clearly
seen. Compare it with the inset of Fig. 2, which corre-
sponds to the p =2 case. The IDOS in Fig. 2 is obtained
for the same parameter as in Fig. 8, but as shown in the
following, there is no resonant state for the potential pa-
rameter and the shape of the inset looks different from
that of Fig. 8.

2. p =2 case

The sequence is given by

A ~ABB~ ABBAA ~ ABBAA ABBABB~ ABBAA ABBABBABBAA ABBAA ~

and the invariant by

b, =—,'(2ma mA ) (52)

Unlike the p = 1 case, 6 depends on both V and E and is
equal to unity only if E and V satisfy the condition
2m' —mg =2.

For E = —V, we have 6= V and M& = —I, from which
the cluster BB can be regarded as an impurity embedded
in a crystal with a unit cell A, called the A crystal. The
allowed energies of the A crystal are given byE'= V+2cosq. Thus it can be easily deduced that the
energy E = —Vbelongs to E' only for V ~ 1, and the cor-
responding state is extended. For V ) 1, xI is not bound-
ed and the state is no longer extended in a common sense.
Thus the state transition occurs at V=1, which is a
different feature from that of the p = 1 case.

For E = V, we have 6=2 V and M~ = —I; the cluster
A A (underlined letter in the above sequence) is regarded
as an impurity embedded in a crystal with a unit cell
ABB, called the ABB crystal. In this case, xI is bounded

I

I

and the corresponding state is extended only for V~ —,';
the state transition occurs at V= —,'. Figure 2 shows the
IDOS obtained for V =2, and for this value of the poten-
tial parameter there is no extended state unlike the p =1
case. The inset of the figure represents the fourth main
subband. Comparing it with that of Fig. 8, one can find
how the existence of the resonant states affect the feature
of the IDOS.

One can also find resonant states even for EN+V.
From the condition 2m~ —m ~ =2, it is possible to write
x z

=mz —mz —m& + 1. Thus, for an energy E with
x&=0, the lattice can be thought as a mixture of the im-
purity ABB and a crystal with a unit cell ABBA A, and
the corresponding state is a resonant state. We find nu-
merically that the parameters are given by
V=O. 376 512. . . and E =0.870466. . . .

3. p =3 case

The sequence is given by

A —+ ABBB~ABBBAA ~ ABBBAA ABBBABBB—+ ABBBAA ABBBABBBABBBAA ABBBAA ~

and the invariant by

6=—,'m~(2m~ —m„)—1 .

For E = V, we have 5=4V —1 and M~ = —I; the lattice
is a mixture of the impurity AA and the crystal with a
unit cell ABBB, called the ABBB crystal. The corre-

I

sponding state is extended only for V~ 1/v'2, and the
state transition occurs at V = 1/V 2.

The results obtained above indicate that the state tran-
sition generally occurs when the invariant 6 depends on
the potential parameter V. In the case of p =1, resonant
states exist for all strength of V and no state transition
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occurs. But when p%1, b, depends on V such that the
state transition occurs at certain value of V. It should be
noted that the importance of the possible existence of res-
onant states lies in that the energy spectrum shows a
qualitatively different feature depending on whether or
not there exist resonant states.

Before ending this section, it should be mentioned that
the resonance condition is one of mechanisms for the ex-
istence of extended states in aperiodic lattices. The same
kind of resonance condition occurring in the copper
mean lattice can be observed in various lattices such as
the modified Fibonacci, ' prime-number, Thue-
Morse, ' and random dimer lattices. In fact, it turns
out that the resonant states in the random dimer lattice
play a crucial role in the dynamics of the wave packet. It
is well known that, when a lattice consists of random po-
tentials, all the electronic states are localized exponential-
ly such that the wave packet does not propagate the lat-
tice. However, in the random dimer lattice, electronic
states around a resonant state have localization lengths
large enough which can overcome the whole lattice size
such that the propagation of the wave packet, i.e.,
diffusion of the wave packet, can be possible. A similar
situation may occur in the prime-number lattice since
electronic states are similar to those of the random dimer
lattice. In the ordinary Fibonacci lattice, the diffusion in-
dex decreases continuously with the increase of V. A
similar situation may occur in the copper mean lattice be-
cause most of the allowed states are considered to be crit-
ical. However, the resonant states and the state transi-
tion may play a role in characterizing the diffusion
behavior which may be different from the behavior of a
system which has no resonant state.

V. SUMMARY

In this paper we studied the electronic and Fourier-
spectral properties of the one-dimensional GF lattices.

Using the idea of an approximated RG scheme, we ob-
tained the generalized gap labeling rule of the GF lat-
tices. Locations of gaps are wholly characterized by the
characteristic value. The existence of the gap labeling
rule, regardless of whether a given lattice is quasiperiodic
or aperiodic, seems to be due to the existence of self-
similarities in the sequence structure.

Through the recursion relations of Fourier amplitudes,
Fourier-spectral properties of the GF lattices were stud-
ied. The global structure of the Fourier spectrum shows
different behaviors depending on whether or not the
characteristic values possess the PV property. In a lattice
with n + 1 )m, not only the location but also the
strength of the Fourier-spectral peak is in agreement with
the energy spectral gap; the dominant spectral peak cor-
responds to the dominant gap. In a lattice with
n + 1 (m, however, only the location of the spectral peak
coincides with that of the energy spectral gap, while the
strength of the spectral peak is irrelevant to the hierarchy
of the band structure. In connection with these facts, it
should be mentioned that Luck' predicted that a strong
enough singularity in the Fourier intensity of a lattice
generates a spectral gap. Our result in the lattice with
n +1)m coincides well with this prediction. However,
when n +1 ~ m, the prediction does not hold. But there
is no inconsistency between the two results, since the lim-
its of the strength of V are different from each other;
Luck considered the limit of V~O, while we considered
the limit of V~ ~.

The influences of initial conditions in constructing a
desired lattice on the electronic and Fourier-spectral
properties were studied through the detailed investigation
of the copper mean lattice. It was found that the fractal
structure of the energy spectrum is independent of the in-
itial conditions, while local electronic properties depend
on the initial conditions. There exist resonant states
which contribute to the smooth, or Bloch-like, part of the
energy spectrum. The state transition generally occurs
when the invariant 6 depends on the potential parameter
V. The initial conditions also have an influence on the
global structure of the Fourier spectrum. The global
structure becomes more blurred with the increase of p.
An exceptional example is the case of p =1, where Bragg
peaks exist. However, even in this case, the relation be-
tween the IDOS and Fourier spectrum looks like that of
aperiodic lattices (p A 1 ).
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