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We calculate the degree of Aux pinning by defects in model high-temperature superconductors
(HTSC s). The HTSC is modeled as a three-dimensional network of resistively shunted Josephson junc-
tions in an external magnetic field, corresponding to a HTSC in the extreme type-II limit. Disorder is in-

troduced either by randomizing the coupling between grains (model-A disorder) or by removing grains
(model-B disorder). Three types of defects are considered: point disorder, random line disorder, and
periodic line disorder; but the emphasis is on random line disorder. Static and dynamic properties of the
models are determined by Monte Carlo simulations and by solution of the analogous coupled over-
damped Josephson equations in the presence of thermal noise. Random line defects considerably raise
the superconducting transition temperature T, (B), and increase the apparent critical current density

J,(B,T), in comparison to the defect-free crystal. They are more effective in these respects than a com-
parable volume density of point defects, in agreement with the experiments of Civale et al. Periodic line
defects commensurate with the Aux lattice are found to raise T,{B)even more than do random line de-
fects. Random line defects are most effective when their density approximately equals the Aux density.
Near T, (B), our static and dynamic results appear consistent with the anisotropic Bose-glass-scaling hy-

potheses of Nelson and Vinokur, but with possibly different critical indices.

I. INTRODUCTION

A major problem restricting the practical use of high-
temperature superconductors (HTSC's) is the difficulty of
producing a large critical current, especially in a magnet-
ic field. ' Much of this difficulty is thought to result from
dissipation due to Aux motion —a dissipation generally
known at low or high dissipation rates as "fIux creep"
or "Aux Aow, " respectively. When a current density J is
introduced into the HTSC, it produces a JXB force
(known as a Magnus force) on the Aux lines. This force
tends to set the lines in motion, producing resistive dissi-
pation, unless appropriate defects, known as pinning
centers, can prevent this motion, or at least raise the
current density at which it begins.

Recently, Civale et al. , in an elegant set of experi-
ments, have shown that columnar defects, introduced
parallel to the Aux lines by heavy ion irradiation, can
greatly increase the critical current at which Aux motion
dissipation begins, relative to the point defects which are
more commonly introduced as pinning centers, e.g. , by
proton irradiation. " The same columnar defects were
also found to increase the temperature of the so-called
"irreversibility line"' in the magnetic-field —temperature
(H T) plane, below whic-h Aux motion essentially ceases
in the limit of a weak applied current. The columnar
pins were produced by irradiating the HTSC with a beam
of heavy ions parallel to the c axis. It is not surprising
that columnar defects should be efFective pins: they pro-
vide a long pinning center which should provide a much
stronger pinning potential for a long Aux line than will an

equal concentration of point defects. However, a realistic
calculation which demonstrates this effect has been lack-
ing.

In this paper we present some simple model calcula-
tions which demonstrate both of the effects observed by
Civale et al. , and also suggest some alternative methods
for further increasing both the critical current and ir-
reversibility temperature of HTSC's. Our approach is to
describe the HTSC as a three-dimensional collection of
resistively shunted Josephson junctions (RSJ's), in which
temperature is simulated by a Langevin noise source of
the appropriate strength in each junction. ' Such a mod-
el is obviously far from a realistic HTSC. However, the
model does contain some of the essential physics needed
to describe transport in HTSC's: it embodies coupled
fluctuating phases within the context of a reasonable dy-
namics, and it allows for the introduction of an applied
magnetic field in a simple way. In this view, the
Josephson-coupled "grains" should probably be con-
sidered as representing small patches of phase-coherent
superconductor, of dimensions comparable to the coher-
ence length. ' Thus the model is not restricted to literally
granular materials, but could apply to single crystals with
more microscopic disorder, in the extreme type-II limit
(penetration depth A, much larger than coherence length
g). We have shown elsewhere that a similar model de-
scribes the difference between transverse and longitudinal
magnetoresistance of a HTSC, in qualitative agreement
with experiment. '

We turn now to the body of the paper. Section II de-
scribes the model for both the thermodynamic and trans-
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port properties of the HTSC with defects. Section III de-
scribes our numerical results for these properties. A brief
discussion follows in Sec. IV. Three appendices summa-
rize the static and dynamic scaling hypotheses used to an-
alyze our numerical results.

II. MODEL

A. Thermodynamics

We consider a simple cubic three-dimensional network
of N superconducting "grains" weakly coupled together
by Josephson junctions, and derived by an externally ap-
plied current. The ith "grain" is described by a super-
conducting order parameter ~g;~ exp(ie, ). We neglect
fiuctuations in the amplitude ~P; ~

and allow the phase 8;
to fluctuate. With these assumptions, the thermodynam-
ic properties of the network are given by the Hamiltonian

H = —g EJ ;cos(e;.—ej —A;. ),

where

fi
+J;ij Ic;ij

phase at the boundaries of the sample. Its principal ele-
ments are essentially spin-wave stiffness constants. Rath-
er than imposing a twisted boundary condition and calcu-
lating the resulting increase in free energy, it is more con-
venient to use periodic boundary conditions and calculate
p,J as

BF
BW,'aw, '

Here A' represents an added uniform vector potential (in
addition to that which produces the applied magnetic
field) which is included in the Hamiltonian in order to
produce a twist. The various second derivatives in Eq. (7)
are readily computed explicitly for an ordered or a disor-
dered sample, with the result for, e.g., y „:
Ny, = X Es, ; x;, ccs(8; —8, —A;, ))

g EJ ;x; sin(.e, —.8 —A,")
k~T

+ X Es, ,x, sic(8; —8, —A;, ))sk~T

is the coupling energy between grains i and j, I, , is the
corresponding critical current,

A, = f Adl,
O l

NO=bc/2e, and A is the vector potential, taken to be
that of the externally applied magnetic field (this is
equivalent to assuming a Josephson penetration depth
large compared to the intergranular separation). The
sum runs over distinct nearest-neighbor pairs.

Given H; equilibrium properties are obtained via an
average with respect to a canonical ensemble. Thus, for
example, the average of some operator 0 ( 8„.. . , e~ ) is
obtained from

(o)=fo(e„.. . , e )
' ' ' Q deyz,

(4)

where x,- =x.—x, is the x coordinate of the distance be-
tween nearest-neighbor grains i and j. Similar expres-
sions hold for the other components of y. ' '

B. Dynamics

There are many dynamical models whose equilibrium
thermodynamic properties are represented by the model
just described. We choose a dynamical model corre-
sponding to a simple cubic array of overdamped resistive-
ly shunted Josephson junctions, driven by an applied
current. The network is then characterized by the set of
coupled equations

I j.=I, sin(e, —8 —A,j)+ +II,J J R L, IJ

v;.:—v. —v = (8 —8 ),d
2e dt

where

Z= f +de, exp( H/k T)— XIij Is;ext s

J

f 'Adi. (12)
is the canonical partition function.

In the calculations to be described below, we have gen-
erally dealt with disordered samples. In that case, we cal-
culate averages both over a canonical ensemble (denoted
( ) ) and over different realizations of the disorder (denot-
ed [ ]). We have considered primarily the specific heat
per grain Cz and the so-called helicity modulus tensor
with components y; . Cz is generally computed from the
Auctuation expression

C~ = [(H ) —(H ) ]l(Nk~ T ) .

The helicity modulus (or equivalently, the superfiuid den-
sity) is the free energy cost of imposing a twist in the

Here I; is the current from grain i to grain j, which is
written as the sum of a Josephson current and an Ohmic
current through the shunt resistance R,-; V;- is the volt-
age difference between grains i and j; and I,-.„, is the
external current fed into grain i. In the calculations de-
scribed below, the current is always fed into one face of
the array (an equal amount I into each grain) and extract-
ed from the opposite face, with periodic transverse
boundary conditions. Equation (11) is Kirchhoff's law
describing current conservation at grain i. IL.," is a
Langevin noise current' between grains i and j, intro-
duced to simulate the effects of temperature, which
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satisfies the relation

2k T
(IL.; (t)It.ki(t ) ) — o(J. „io(.t t —),

Rv

(13)

(14)

where T is the absolute temperature and the brackets
denote an ensemble average. We solve these equations by
Euler iteration, as described previously. ' '

C. Geometrical models for line and point disorder

D. Magnetic field

We consider magnetic fields applied in the z direction,
i.e., parallel to the line defects. In previous calculations
of this sort, it has been standard to use the Landau gauge,
A=Bxy. This gauge severely restricts the possible mag-
netic fields that can be considered if one also requires
periodic boundary conditions in all three directions (as in
the Monte Carlo simulations) or in the transverse direc-
tions (as with the dynamic simulations). We have there-
fore used a different gauge previously used by Arovas and
Haldane in other contexts. '

To define this gauge, we consider an L XL square ar-
ray of lattice constant a, with the origin taken as the
lower left-hand corner of the array. Then we take
A,, =2vrfn for bonds pointing in the y direction and lo-
cated at x =na; 2; =0 for all bonds in the x direction ex-
cept for those in the extreme right-hand column of pla-
quettes, and A,"= 2rrfLm for horizontal —bonds in that
extreme right-hand column, at y=ma, X=La. (In this
expression f=4&/No, where N is the fiux per plaquette. )

With this choice of gauge, it is readily verified that the
factors A; sum to 2rrf (modulo 2') around each pla-

We have considered two types of models to describe
disorder, which we denote models A and B. In model A,
the bond energy EJ., between grains i and j is assumed
to vary randomly between 0 and twice its average value.
In model B, we introduce disorder simply by removing a
certain fraction of the grains, as well as their associated
Josephson junctions (but not shunt resistances).

For either model A or B, we can assume either "line
disorder" or "point disorder. " In model 3, point disor-
der can be introduced by assuming that the bond
strengths of different bonds are completely uncorrelated.
"Line disorder" consists of assuming that the bond
strengths are uncorrelated in the xy plane, but are per-
fectly correlated in the z direction —that is, the strength
of a given bond, whatever its orientation, depends on the
x and y coordinates describing its location, but not on the
z coordinate.

To introduce point disorder in model B, we remove the
grains at random. For line disorder, we remove lines of
grains parallel to the z axis. The removal of these grains
effectively converts the neighborhood of the grain from
superconducting to normal. In model B, we have also
considered "periodic line disorder, " in which line defects
are arranged periodically in the xy plane, as described
further below.

quette, as required. The requirement of periodicity in the
two transverse directions will now be satisfied as long as f
is a multiple of 1/L . This is much weaker than the con-
dition imposed by periodicity when the Landau gauge is
used, which is that f be a multiple of 1/L.

The reader may be concerned that the line integral of
the vector potential along noncontractible loops in both
directions around the torus varies with position in this
gauge. This, however, is physically correct: it is a conse-
quence of the noncommutativity of translations in the
presence of a magnetic field. Consider, for instance, the
usual continuum problem in the Landau gauge. The
lowest Landau level eigenfunctions are plane waves in the
y direction and Gaussians in the x direction whose peak
position is proportional to the y momentum

Pk(x, y)=e'"~exp[ —(x —kl ) /2I ],
where I is the magnetic length. Because y momentum is
coupled to x position, one is forced to use generalized
periodic boundary conditions. That is, one has periodic
boundary conditions in the y direction, but there is a
phase discontinuity at the x boundary whose magnitude
is proportional to y. This same need to generalize the
boundary conditions also occurs on the lattice in the
cases where fL is not an integer. However, on the
discrete lattice, we can convert to periodic boundary con-
ditions in both directions by replacing the boundary an-
gle twist with a vector potential in the horizontal bonds
in the extreme right-hand column. This is the procedure
we have adopted here; it is equivalent to the standard
procedure in the continuum. This subtlety is irrelevant
to our present results since it happens that we have car-
ried out our static calculations at values of the Aux such
that fL is an integer. For the dynamic calculations we
have imposed only the weaker condition fL =integer,
but have free boundary conditions on the sample faces
perpendicular to the direction of the current injection.
Yu, Lee, and Stroud' have shown that the use of this
gauge to calculate IV characteristics at fields such that
fL = 1 leads to excellent agreement with expected
behavior in a two-dimensional array of Josephson junc-
tions.

III. NUMERICAL RESUI TS

A. Model A

We begin by presenting our numerical results for mod-
el A. Figure 1 shows the specific heat Cz per grain and
the helicity moduli

y~~
and y~ parallel and perpendicular

to the magnetic field, for an ordered array of size
L XL XL grains with periodic boundary conditions, iso-
tropic coupling, magnetic field f=—', and several
different sizes (L = 8, 12, and 16). Ci shows clear signs
of diverging in the vicinity of k& T= l. 1EJ (the peak in

C~ is growing with increasing lattice size, suggesting a
continuous phase transition). We interpret this tempera-
ture as a melting transition with a discrete symmetry as-
sociated with the periodic lattice. Similar numerical re-
sults have been obtained for this model by Shih, Ebner,
and Stroud' and by Hetzel, Sudbo, and Huse. '
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FIG. 1. Specific heat per grain, C&, and parallel and perpen-
dicular components of the helicity moduli, ylI and yi, for an or-
dered L XL XL lattice of grains, with isotropic coupling
(EJ,=EJ ~i=EJ), magnetic field f= ~, and L =8, 12, and 16,
with periodic boundary conditions, plotted as a function of tern-
perature T.
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and Lyi vs temperature, for the array of Fig. 1.

We have attempted to get a clearer quantitative picture
of this phase transition by applying a static scaling
analysis, ' as described in detail in Appendix A. In
Fig. 2, we plot L y

II
and L y j for several values of L as a

function of temperature. As is clear from the figure, each
attains a universal value near the same temperature
k~ T, = 1.1EJ, suggesting that this is indeed the critical
temperature for this model. When combined with the
scaling analysis of Appendix A, these results suggest that
this phase transition is characterized by a single correla-
tion length g, i.e., z= 1, where z is the anisotropy ex-
ponent, defined by the relation (~i

~ gi, where (~i and gi
are the correlation lengths parallel and perpendicular to
the field.

Figure 3 shows the quantities of Fig. 1, but with line
disorder. Once again, we consider isotropic coupling

FIG. 3. Same as Fig. 1, but for an array with model-A line
disorder in the bond strengths. The calculations involve aver-

ages over 35, 21, and 19 realizations of the disorder for L =8,
12, and 16, respectively.

vi(2 —z)) 0 . (15)

strengths and use f=
—,', and several different (but cubic)

box sizes. The calculations shown are the result of aver-
ages over many realizations of the disorder, as indicated
in the legends of the figure. In contrast to Fig. 1, there is
very little size dependence of Cz, suggesting that C~ ei-
ther does not diverge or at most diverges very weakly.
Note also that the helicity modulus yi goes to zero at a
substantially higher temperature than in the ordered
case, indicating that the superconducting transition tem-
perature is increased by the line disorder.

Another point is that, like the ordered case, yll also
seems to vanish continuously with temperature. If we as-

sume a power law of the form yii
~

~

T T, ~

", then F—ig. 3
suggests 0&gl &1.0 [a consequence of the downward
concavity of y ~i(

T ) ] and k~ T, = 1.7EJ. The numerical
uncertainties in yi are much larger, so any estimate of
the analogous quantity gi is difficult. Indeed, at any
given temperature, the Monte Carlo convergence of yi is
much slower than for yll. This is presumably because our
model is both frustrated and disordered in the xy plane,
but is neither frustrated nor ordered in the z direction.
Hence the system rapidly responds to any twist in that
direction, but much more slowly in the xy plane. Also,
yi converges more slowly in the disordered case than in
the frustrated but ordered model of Fig. 1, suggesting
that the slow convergence is caused by the huge number
of metastable states of nearly equal energy which are ex-
pected in the disordered system.

From the static scaling analysis of Appendix A, we can
place tentative limits on the anisotropy exponent z
defined there. From Eq. (A7) of Appendix A,
gii =vi(2 —z), where vi is related to the transverse corre-
lation length gi by gt~ (T T, )iT, ~

'. If we assum—e
that yll goes continously to zero, rather than exhibiting
an abrupt jump, then our numerical results would suggest
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If v~ is finite, this inequality suggests that z & 2 for this
model. Secondly, since Cz is apparently nondivergent,
Eq. (A5) shows that

10'
I I I I I I I

f

(2+z )vi ~ 2 . (16) 10'

Adding these results, we get 4v~~2 or v~~0. 5. Hence
(2—z)=0.5/vt 1 or z 1. Combining all these argu-
ments, we suggest 1 ~z ~ 2. Of course, all these estimates
are based on the assumption, not conclusively proven by
our numerical results, that there really is a continuous
phase transition in the disordered system characterized
by static critical phenomena.

In order to go further, we would need to estimate gz.
According to Eq. (Ag) of Appendix A, g~=zvt. From
Fig. 3, we can say little about g~ other than to postulate,
on the basis of the numerical results, that y~ is concave
upward, which would give zv~) 1. Thus we are reluctant
to further narrow our estimate 1 &z & 2. Presumably, the
value of v~ for this model will agree with the results of
Chayes et al. , who have proposed, for a wide class of
continuous-spin models with disorder, that v~ ~ 1

rigorously.
We turn now to the dynamical properties of model A,

concentrating on isotropic coupling with and without line
disorder. Figure 4 shows the IV characteristics of a
6 X 6 X 9 array at magnetic field f=—', with no defects
and with current density JlB, plotted at several di6'erent
temperatures. Figures 5(a) and 5(b) shows the IV charac-
teristics for the analogous model with line disorder, a
6 X 6X 6 unit cell, and two current orientations: JlB and
J~~B. Like the Monte Carlo results, the IVcharacteristics
also suggest that T, is increased by line defects. To make
this clearer, we have plotted in Fig. 6 the resistivity
p=( V) l(LRI) at a current level I=O.OSI, : the intro-
duction of line defects reduces p at every temperature,
relative to the no-defect case.

The shape of the IV characteristics is also changed by
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FIG. 5. IV characteristics for the model of Fig. 3, L XL XL
array, with L =6: (a) JIB, and (1) J~~B, at several diFerent tem-
peratures, as indicated.
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FIG. 4. IVcharacteristics for the model of Fig. 1, L XL XL,
array, current density JLB, at several different temperatures,
averaged over three different (random) choices of initial condi-
tions, and L =6, L, =9. In this and subsequent figures, the lines
are simply interpolations between calculated points.

F&G. 6. R.esistivity p=( V)/(LRI) for an L XL XL array

with L =6, at a current level I=0 05I, per grain, fo.r f=
4

and

no defects, JlB (triangles); line defects, JlB (squares); and line

defects, J~~B (circles). Cases for line defects involve averages

over ten realizations of the disorder.
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10'
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I I I I I I II) I I I ! Ioo-oo

10

the introduction of line defects. With no line defects and
JIB (Fig. 4), there is a fairly clear critical current onset
for temperatures kil T ( I OE. z/king W. hen line defects are
present, the IV characteristics suggest no clear critical
current for JIB (the analytic form of the IV characteris-
tics is discussed further below). By contrast, for J~~B, a
critical current seems to develop for kil T ((1.3 —1.4)EJ.

We have attempted to scale the IV characteristics of
Fig. 5 according to the formalism outlined in Appendix—v~(1+ z') —vi(1+z)B. For JlB, we plot E~t ' against J~t
(where t =

~
T T, /—T, ) for various estimates of T„z, z',—v&(z+ z') . —2v&

and vi. For JIIB, we plot Elt ' against J~~t
Our best results are shown in Figs. 7(a) and 7(b); the
fitting parameters are shown in the captions, but should
not be taken too seriously in view of the numerical uncer-
tainties, small sample sizes, and limited current ranges.

For a given choice of T„ the best fits seem to correspond
to somewhat different values of the parameters in the
parallel and perpendicular directions —a result also
found by Wallin and Girvin in the case of short-range
interactions between vortex lines. Both above and below
the assumed T„ the IV characteristics in both the paral-
lel and perpendicular cases collapse adequately (though
not perfectly) onto hypothetical universal scaling func-
tions above and below T, . For both current directions,
but especially for J~~B, there is a conspicuous Ohmic tail
in the IV characteristics below T, . We believe this is a
finite-size effect, as further analyzed in Appendix C.
Indeed, we have checked that the tail becomes smaller
and smaller as the size of the array is increased. When
T & T„ the perpendicular and parallel scaling functions
are quite dissimilar. In both cases, we can obtain accept-
able fits with scaling functions of the form
E(x) ~ exp[ —(A/x)"], but the best fit for pi is in the
range 0.2 —0.4 while p~~=1. This is consistent with the
IV characteristics of Fig. 5, which show a much clearer
critical current developing in the parallel direction than
in the perpendicular direction.

N+

) I

j 10'
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10'
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FIG. 7. Scaling plots of the IV characteristics from Fig. 5 for
(a) JIB and (b) J~~B. In both cases, the IV characteristics both
above and below T,(B) collapse reasonably well onto universal
scaling functions over the limited current ranges considered.
For T(T„ there are low-current Ohmic tails in both cases
(especially for J~~B), which are probably due to finite-size effects.
The fitting parameters for curves (a) are z = 1.5, z' =2.0,
vJ = 1.5, k& T, = 1.7EJ, for curves (b), they are z = 1.5, z = 1.3,
v~ = 1.2, and k& T, = 1.7EJ.

B. Model-B disorder

To study model-B disorder, we consider an 8 X 8 X5
lattice with fiux per plaquette f= ,', parallel —to the z
(thin) direction. We have considered three types of defect
configurations: (i) "point defects, " introduced by remov-
ing at random 40 grains, and their associated Josephson
couplings (but not shunt resistances) from among the 320
grains of the lattice; (ii) "random line defects, " consisting
of eight line defects, each five grains long, parallel to the z
direction but randomly distributed in the xy plane; and
(iii) "periodic line defects, " in which the line defects are
arranged with the periodicity of the ground-state phase
configuration at f=

—,'. For reference, we also consider
(iv) the no-defect configuration.

In the absence of an applied current, the phases of
configuration (iv) will settle into a z-independent ground-
state configuration. This can be found numerically, e.g. ,
by starting the phases in a random arrangement and
iterating the Josephson equations at zero applied current
until a state of no voltage is obtained (care must be exer-
cised to avoid falling into a metastable minimum). To
calculate the IV characteristics, we typically begin with
this ground state, gradually increasing the applied
current for various defect configurations.

Figure 8 shows the resulting IV characteristics (for
JIB) at temperature T =0. Case (iv) has a critical
current =0.12I, per junction, comparable to the calcu-
lated depinning critical current for a single vortex in a
large square array. This suggests that the critical
current is not too much inAuenced, in this case, by
vortex-vortex interactions. The critical current is in-
creased slightly by point defects [case (i)], somewhat
more by random line defects [case (ii)], and considerably
more again by periodic line defects [case (iii)]. In case (ii),
the functional form of the IV characteristic is consider-
ably modified by the defects (being concave up rather
than concave down). We find that it is fairly well fitted
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FIG. 8. IV characteristics for model-B disorder and JIB, at
temperature T=O, and L XL XL, array, with L =8, L, =5,
magnetic flux f=

8
with 8 parallel to the z (thin) direction: no

defects (dotted curve); 40 randomly distributed point defects
(full curve, average of seven realizations); eight randomly dis-

tributed line defects parallel to the z direction (dashed curve,
average of ten realizations); and eight periodically distributed
line defects in the z direction (dot-dashed curve). I is the ap-
plied current per grain; ( V) is the time-averaged voltage across
the sample, averaged over the directions perpendicular to the
current; R is the shunt resistance, and I, is the critical current
of each junction. For reference, the critical current for the or-
dered lattice at f=0 is I/I, =1.0.

by ( V)/(LRI, )= 2 exp[ C(I, /I)—"j with @=0.3,
3 =3X10,and C=10.

Figure 9 shows the temperature-dependent resistivity
p(T)= V/I at a current of 0.1I, per junction, for cases
(i) —(iv) and JIB. For reference, the superconducting
transition temperature T, (B=0) of the Hamiltonian (1)
in zero magnetic field and zero current is known to occur
at k~ T, =2.21EJ. Hence Fig. 9 suggests that, whatever
the defects, T,(f= ,' ) (T, (f=0)—t—hat is, as expected,
T, is reduced in a magnetic field. However, relative to
the zero-defect case, T, ( —,

'
) is increased slightly by point

defects, more yet by random line defects, and still more
by periodically arranged line defects. The increase in
T, ( —,') produced by random line defects corresponds to
the increase in the "irreversibility temperature" observed
by Civale et al. when random line defects are introduced
parallel to the magnetic field. Note that, in Fig. 9, the
density of line defects "equals" the density of point de-
fects in the sense that an equal amount of superconduct-
ing material is removed in each case. The only difference
among the various defect curves in Fig. 9 is the degree to
which the disorder is correlated. Hence this plot pro-
vides a very direct illustration of the inhuence of correla-
tion in raising the "irreversibility temperature. "

Figure 10 shows the T=0 IV characteristics for a Aux
density f= ,' and several densities fz —ofrandomly dis-
tributed line defects. Figure 11 shows a similar plot for
p(T) at a current level of 0.1I,. These figures suggest
that (at least for f=

—,
'

) both the T=O critical current and

T, (B ) are largest when f=fz, a conclusion which may
qualitatively agree with experiment. To confirm these
conclusions, however, Monte Carlo calculations should
be carried out on the analogous Hamiltonian to deter-
mine the dependence of T, on defect line density prefer-
ably for much larger samples.

To summarize for model-B disorder, our results sug-
gest that columnar defects oriented parallel to the Aux

lines tend to increase the critical current, and to push up
the superconducting transition temperature T, (B), rela-
tive to the same number of random point defects at the
same field, in apparent agreement with experiment. We
find also that a periodic arrangement of line defects com-

0.2

CC

0.1

I
I

f = 1/8, Model-B Line Disorder

fd = 1/16

fd
——1/8

fd
——3/1 6

fd
——1/

0
0

~ ~
~ ~ k ~ ~

0.1 0.3 0.4 0.5

FIG. 10. Saine as Fig. 8, but for a flux f=—' and several den-

sities fz of columnar defects oriented parallel to the z axis.
Each curve represents an average over ten realizations of the
disorder. In this case, the lattice is 8 X 8 X 8.

FIG. 9. Resistivity p( T ) =—V /I, at an applied current
I=0.1I, per junction, plotted vs temperature T, at f=

—,
'. Sym-

bols as in Fig. 10. Inset: ground-state vortex line configuration
for f=

—,
' lattice. Filled squares denote loci of vortex lines (pla-

quettes of positive vorticity, i.e., current circulating counter-
clockwise); empty squares are plaquettes of negative vorticity.
For reference, T,(f=0)=2.21EJIka.
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mensurate with the defect-free Aux lattice is even more
effective in increasing both the critical current and
T, (B). Finally, we have preliminary evidence that the
pinning (and T, -enhancing) effects of random line defects
are optimized when the defect density is comparable to
the Aux density.

IV. DISCUSSION

Nelson and Vinokur have recently proposed a theory
of the superconducting transition in materials with corre-
lated disorder. When the density of line defects is greater
than the density of Aux lines, their theory leads to a phase
transition from a high-temperature Aux liquid into a
low-temperature "Bose-glass" phase. In their theory, the
three-dimensional superconductor maps onto a two-
dimensional system in which the Aux lines play the lines
of interacting Bose particles while the line defects become
static point defects. When the density of line defects
equals the density of Aux lines, Nelson and Vinokur pre-
dict instead a transition into a "Mott insulator" phase, in
which the Aux lines are localized on the line defects.

Although our numerical samples are simply too small
to test this picture (and although our models, which have
long-range interactions between the vortex lines, may be
in a different universality class from the Bose-glass mod-
el), we briefly interpret our results in the context of this
theory. The "Bose-glass" regime, in which the line defect
density fd )f, corresponds to our model A and one of
the cases considered in our model B. In this regime, for
T (T, (B ), Vinokur and Nelson predict a nonlinear
IV relation of the form V/J ~ exp[ —(Ek/
k&T)(Jo/J)' ] where J is the current density and Ek
and Jo are constants depending on the strength of the
pinning potential and other parameters. Our IV charac-
teristics for model A (with JLB) are at least consistent
with this behavior. For JIB, a simple activation form
( V/J ~ exp[ EkJ /(Jk&T)]) se—ems unlikely on the

FIG. 11. Same as Fig. 9, but for a flux f= —' and several den-

sities fd of columnar defects oriented parallel to the z axis.
Each curve represents an average over ten realizations of the
disorder.

basis of our results; however, we are not aware of an
analytical theory describing Bose-glass transport in this
regime. Obviously, more detailed numerical simulations,
involving much larger numbers of line defects and more
disorder realizations, are needed before any definite con-
clusions can be drawn about the applicability of the Bose
glass picture to this dynamical model.

Our results for model-A disorder may be consistent
with static and dynamic scaling hypotheses as applied to
this anisotropic phase transition, but our numerical re-
sults are not sufhcient to make reliable estimates of the
relevant critical indices. It appears that the anisotropy
exponent z may lie between 1 and 2, which is in the range
of findings for other lattice models with line disorder,
and may be smaller than that found in analogous calcula-
tions with short-range interactions between vortex lines,
for which z=2. Our dynamical results leave open the
possibility that there is only a single dynamical exponent
z' for transport both perpendicular and parallel to the
line defects, in contrast to the short-range model. This
conclusion may, however, be a function of the particular
dynamics assumed in our calculations. '

To summarize, we have studied Aux pinning by defects
in three-dimensional Josephson-junction networks with
various types of point and line defects. We find that line
defects considerably enhance both the critical current
and the upper critical field, relative to the same concen-
tration of point defects. We also find some indications
that the normal-to-superconducting transition in the case
of random line disorder is a continuous phase transition
marked by both static and dynamical critical phenomena.
These conclusions are, however, subject to large numeri-
cal uncertainties arising from the relatively small samples
studied. The results may be applicable to high-T, super-
conductors in which the intrinsic anisotropy is not too
great (such as YBazCu307 s) and if screening fields can
be neglected (extreme type-II limit). Larger scale calcula-
tions, including screening, and making use of more realis-
tic pinning models, will be necessary for quantitative
comparisons to experiment. These are planned for future
work.
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APPENDIX A: STATIC SCALING

We describe our numerical results for line defects
within the framework of a scaling analysis suitable for
both our static and dynamic results, based largely on pre-
vious discussions of Nelson and Vinokur. In this appen-
dix, we describe the static scaling hypotheses.
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V
CC t (A 1)

Consider a HTSC with line defects and a magnetic field
both oriented in the z direction. Suppose that there is a
phase transition at some temperature T, (B ), where B is
the magnitude of the applied magnetic field. Assume also
that this phase transition is characterized by two diverg-
ing correlation lengths, g) and g((, corresponding to corre-
lations in the xy plane and z direction, respectively. To
allow for the possibility that these diverge with different
critical exponents, we write

(Al 1)

L
2
II z

L 2 (A12)

where F(u, v) and G(u, v) are universal functions. Ex-
pressions (A9) and (A10) can be written in more con-
venient forms by making the change of variables
F(u, v)=uH(uv ', u), G(u, v)=(v /u)K(uv ', u) to
yield

ZV
cc t

t=lT T, (B—)l/T, (B) .

(A2)

(A3)

At T=T„ the second argument of both H and E van-
ishes. Hence, for a finite sample whose dimensions are
chosen such that L

II

~ L ~, it follows that

An isotropic phase transition is a special case of this
behavior with z = 1.

By analogy with the usual isotropic hyperscaling ex-
pression for the singular part f, of the free energy density
near T„we assume that f, behaves as

(A4)

(where P= 1/kz T). Hence the specific heat has a singu-
larity of the form

d f vi(2+z) —2
C ~ tx t

a ~
(A5)

To estimate the behavior of yy and yII, the principal
components of the helicity modulus tensor, we extend an
argument of Cha et al. to anisotropic phase transitions.
First imagine that the array is subjected to a phase gra-
dient V, o in the z direction. The change in free energy
per unit volume is

(A6)

where we have replaced V, by the inverse of the charac-
teristic length g((. With the use of Eqs. (A2) and (A4), this
gives

(2 —z)vi
y oc cc t (A7)

where the last proportionality describes the expected crit-
ical behavior near T, . A similar argument applied to y~
gives

ZV~

y ~ —~t). (AS)

(A9)

In a Monte Carlo calculation, it is necessary to calcu-
late these quantities in finite-size samples, usually a paral-
lelopiped of volume L~LII. The natural scaling form for
the helicity moduli in such samples is

L
II
ye =const,

L J yII/ L
II

(A13)

(A14)

These relations can, in principle, be used to determine the
transition temperature with high accuracy by examining
the behavior of the components of y in a series of boxes
of different volumes, such that the ratio L(~/Li is held
constant. The method is to plot LIIy~ and L~yII/LII for
different volumes; all should cross at T=T, . Unfor-
tunately, this method works only provided z is known.
Since z is apparently in the range 1.2 —1.5 for the present
model, but difficult to determine with greater accuracy,
we have not attempted this kind of anisotropic finite-size
scaling in the present paper.

APPENDIX B: DYNAMIC SCALING

For dynamical quantities, we may again follow and
somewhat extend the arguments of Nelson and Vi-
nokur. We consider first the electric field E~ and
current density Jz in the transverse direction. In this
case, we postulate a scaling relation of the form

E) =g) 'E+ ) (AJ(g((/(2ek~T))', (Bl)

a =1+z' . (B2)

Similarly, for transport parallel to the z axis, we expect
the scaling relation

where E+ ~ are scaling functions which apply, respective-
ly, above and below T, . To determine a, suppose the
HTSC is in the Ohmic regime at T & T, . In this regime,
E+ )(x) ~x, whence o) =—J) /Ei ~@~ ' '. However, we
also expect that o.

) should scale like y) /(v (that is, both of
these quantities should have the same power-law depen-
dence on g'), where co is a characteristic frequency). In
turn, we expect that co should vanish near this continuous
phase transition, with a characteristic temperature
dependence given by g)

' where z' is a new dynamical
critical exponent. Combining all these relations, and us-
ing Eq. (AS), we obtain

E((=ki 'E+, (((~((4')./(2eka T)» (B3)

(A10) and making arguments analogous to the perpendicular
case, we find
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b =z+z' . (B4)

Precisely at T = T, we expect both E~ and Ell to vary
as power laws in J~ and Jll, respectively. This behavior
implies that at T, the scaling functions E+ ~(x) and
E+

~~

(x ) should take the forms

E+ i(x) o-x',

E+ ~~(x) o-x" .

(B5)

(B6)

The exponents c and d can be determined by observing
that gi and

g~~
are infinite at T, . In order for Eqs. (Bl)

and (B3) still to be satisfied at T„ the left- and right-hand
sides must involve equal powers of t. This leads to the re-
sults

c = ( I+z')/( I+z ),
d =(z+z')/2 .

(B7)

(B&)

Thus, calculating or measuring the current-voltage
characteristics precisely at T= T, should yield power
laws whose slopes determine the exponents z and z'.

The above arguments assume that there is a single
dynamical critical exponent z'. If instead, there are two
such exponents z~ and z

ll
describing the divergent relaxa-

tion times in the perpendicular and parallel directions,
then Eqs. (B7) and (Bg) are replaced by the relations
c =( I+zI )/( I+z); d =(z+zIi )/2.

APPENDIX C: DYNAMICAL SCALING
IN FINITE-SIZE SYSTEMS

~~
(~~~ gi/(2ekg T ) ) (Cl)

where E is some universal function. Now write
E ~~(x)=xF ~~(x). It follows that the resistivity

Our finite-size IV characteristics often show an Ohmic
tail at low currents, even at temperatures well below the
putative superconducting transition. In this appendix,
we give an argument suggesting that this tail is a finite-
size effect which would disappear in sufficiently large sys-
tems.

We present the argument for the case JllB, where the
numerical results most clearly show the finite-size tail.
However, a similar argument should also hold for the
perpendicular case. In the parallel case, for T & T, in an
infinite system as shown in Appendix B, the electric field
and current density are related by

pll Ell II

can be written as

P~~ k~~
F—

l (~~~ kii/(2eka (C2)

For a cubic system of edge L, this relation must involve
another variable, the ratio gz/L:

p(( g'i ' 'F (~(fiJ((gi/(2ek T),g /L) . (C3)

The numerical data presented in Fig. 7(b) suggest that
F l(x, o) falls rapidly to zero with decreasing x. Indeed,
the data seem to fit roughly to the relation

F
Il

x'0)=Fo exp( —A/x II) (C4)

where Fo and A are constants and pll=1. We have no
theory for the finite-size version of this function, but a
plausible guess suggests itself. The dimensionless argu-
ment x =

AJ~~~gi /(2ek& T ) may be expressed as
x =(gi/g'J ) where g~= [2ekii T/(fiJ~~ )]' is a charac-
teristic length defined by the current density Jl (note that
length is measured in units of the intergranular separa-
tion). When this length becomes larger than the system
size, the current length should be replaced by L. In order
to include this behavior in the scaling form, we may pos-
tulate

F
II

~1~1~A/(2ekii T),gi/L )

—A=Foexp
', /(2ek~ T )+g,'/L '] "

(C5)

This function has several desirable properties. First, for
large L, it reduces to the infinite-size form of Eq. (C4).
Secondly, for very small Jll, pll b~co~~s i~d~p~~de~t of Jll
(i.e., becomes Ohmic) and is given by

p(~ g~(
' ' exp( —AL "/g ") . (C6)

Equation (C6) is the desired low-current Ohmic tail
seen in our calculations. As expected, it goes away at
large enough sizes, or low enough temperatures (g~~ be-
comes smaller and smaller as the temperature is de-
creased below T, ). Since z+z'=4 —5, the prefactor in
Eq. (C3) grows with decreasing temperature. However,
its growth should be more than offset by the decreasing
exponential, so that pll should decrease with decreasing
temperature for fixed large L. Thus the argument
presented in this appendix gives a plausible explanation
of the finite-size numerical results discussed in the text.
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