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Analytical approach to the inversion-asymmetry splitting of the valence band
in zinc-blende-type semiconductors
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We have extended the model that we developed earlier for the analytical extraction of the eigenvalues
of the k.p matrix [Phys. Rev. B 42, 7513 (1990)] to account for large matrices. We then applied this to
the 8 X 8 matrix of the zinc-blende-type semiconductors. We manage to extract analytical expansion for
the energies of the valence bands as well as the conduction band as a function of the wave vector k in a
general direction up to third order. Simple expressions for the first-, second-, and third-order terms were
obtained in terms of k, k~, and k, together with the band parameters.

I. INTRODUCTION

There is a growing interest in the energy wave-vector
expansion of the band structure of semiconductors close
to the band edge. ' In spite of the fact that the contri-
bution of the asymmetry splitting terms in this expansion
is very small, they are responsible for so many interesting
experimental phenomena. Second-harmonic generation,
optical rectification, spin-relaxation time which can be
measured by means of the Hanle effect, " and other
forms of polarized luminescence' ' are among these
phenomena. The cubic term in this expansion also affects
the strength of the electric-field-induced spin resonance
and, based on this fact, this term has been determined in
InSb. ' ' The spin splitting of the bands of GaAs along
(110) has also been observed in the spin-polarized pho-
toemission experiments of Riechert et al. ' Moreover,
splittings linear in the wave vector k are often induced by
application of uniaxial stress. ' Such splitting can also be
observed by means of the Hanle effect. "An explicit form
of the k term of the conduction band has been calculat-
ed by Braun and Rossler and by Christensen and Cardo-
na. ' This term was also calculated at the (110) k direc-
tion in the comprehensive work presented by Cardona,
Christensen, and Fasol. However, no attempt has been
made to calculate these terms for the valence band in the
general direction of the wave vector k.

In a recent paper, ' we have introduced an analytical
technique for extracting the energy wave-vector expan-
sion from the k.p (Ref. 19) matrix. It was then successful-
ly applied to get all the roots of the 7 X 7 matrix
representing the band structure of Ge (Ref. 20) at k in the
z direction. In order to apply this technique, an explicit
form of the secular equation of the matrix is needed.
However, this secular equation is not always easy to ob-
tain in an explicit form. For instance, in the case of the
four-band model for zinc-blende-type semiconductors the
secular equation of the resulting 8 X 8 k p matrix, taking
the vector k in a general direction, contains around
forty-thousand terms (8!) which are almost impossible to
express in an explict form.

The aim of this work is to extend the model to be ap-
plied on large matrices without the need for the full expli-
cit form of the secular equation. In this case, we can ex-

tract only the terms which are needed for certain calcula-
tions directly from the matrix itself. We will then obtain
the energy wave-vector expansion for all the bands up to
third order. In our derivation we will adopt the four-
band model given by Trebin, Rossler, and Ranvaud. '

The 8 X 8 k.p matrix represents the lowest twofold degen-
erate conduction band I 6, the uppermost fourfold degen-
erate valence band I 8, and the twofold degenerate split-
off band I 7. In the case of the I 6 conduction band the
perturbation method can be used to get its energy wave-
vector expansion, since the secular equation will end up
to be that of a 2 X 2 matrix which can easily be solved.
However, for the case of the I'8 valence band the pertur-
bation theory will lead to a 4X4 matrix for which the
secular equation cannot be solved analytically. Only our
technique in this case is capable of producing this expan-
sion up to the desired order.

Our work is organized as follows. The model with the
extension that accounts for the large matrices is present-
ed in Sec. II. The application is given in Sec. III and a
discussion of the results is given in Sec. IV. Section V is
the conclusion.

X= g a„z",
n=1

(2)

where the coefficients a„can be obtained from the set of
equations

m min(s, k)
pjm] + y y p[m —s]Fs

I I 0
s=l n =1

with

(3)

d P„(z)
m f dzm z=0

II. THK MODEL

According to Ref. 18 the z surface root (the root that
goes to zero with vanishing z) of the polynomial equation

k

g P„(z)X"=0 (1)
n=0

can be given by
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and E„'Ia, I is a function of the set {a;j defined as the
sum of all the possible permutations of the product of n

members of the set I a; J such that the sum of their sub-

script is equal to s. The first few equations of the set (3)
are shown in Ref. 18. These equations can be solved one
by one to get a; up to the desired order. From these equa-
tions we can see that we only need the values of P™
from the secular equation in order to get a; up to the
desired order. In the following we will see how these
values can be obtained directly from the matrix itself.

It is well known that the secular equation of the matrix
[c,"(x)]can be expressed by Eq. (1) with P„(z) having the
form

Pj']+PP]a', +P,(0)=0 .

Now, using Eq. (7}we get

P (0)=A A P2]= —2C A A

Pj"]=C (1—3S)A, ,

where

S —(k2k2+k2k2+k2k2)yk4

Substituting in Eq. (11)we get

a, —2C a, +C (1—3S)=0,

(12)

(13)

P„(z)= (
—1)" "Sk „(z),

where

(5) which gives for a,

a =+C(1+&3S )"~ ' (14)

So(z) = 1, S l (z) = tr[c;~ (z)],
Sk (z) =det[c~ (z)],

(6)

and S (z} (m =2, 3, . . . , k —1) is the sum of all the m-

square principal minors of [c; (z) ]. Now we have

P(m] ( 1 }k
—nSfm]

where

This form is identical with that obtained by
Dresselhaus. Now, to simplify the derivation of the
higher-order terms, we will set C=0. Hence, the next
nontrivial equation will be

PIl +PI ]a2+Pf ]a +PI3]a2+P4(0)a2=0, (15)

where

S)m]
d Sl(z)

dz

III. APPLICATION OF THE MODEL

PP] =2A A s, , PI = A A (2so+s )

PI]=2A A s s, , PI =A, A s
(16}

To apply the model to the 8 X 8 matrix given by Table
IV of Ref. 21 we will take z =k and assume that at k =0
the I 6 conduction band is situated at the energy value
A „the I s valence band at A 2 (separated from A, by the
band gap Eo), and the I 7 split-off valence band at A3
(separated from A2 by the spin-orbit splitting b, ). The
origin of the energy scale will be taken arbitrarily accord-
ing to the band we want to obtain. In the following the
band parameters P, B, C, and 3' are defined in Ref. 21.
The parameters y1, y2, and y3 are related to the Lut-
tinger parameters y, L, y2L, and y3L by the following re-
lations:

with

~o =y 1 ~ +2yo(2y1 t) ~1=2(y 1+2yo}

2

yo= 6'A s'=4[y2+3(y3 —y2)S]
1

(17)

(az+s, a2+so) =0 .

=4[y2+3(y3 y2)S]

By using Eqs. (16) and (17) we see that Eq. (15) can be
factorized to become

p2 p2 p2

6E y3L y3 6E0 0 0

A. Energies of the I valence band

Now, to get the energies of the I 8 valence band we will

choose the following:

This yields for a2

(y, +2y )+—(y + +y r)'i

using the notation

~L 4[y2L+3(y3L y2L }S]

Equation (19) can be reduced to

(19)

(20)

31=E0, A2 =0, (9) a2 y1L —L (21)

In this case, we have

Pl(0)=0, P2(0)=0, P3(0)=0,

Pj']=0, PI']=0.
Hence, the first nontrivial equation of the set (3) is

(10)

with a positive singe for the heavy-hole and a negative
singe for the light-hole valence bands. Equation (21)
gives for a2 an identical expression with the well-known
Luttinger one.

The equation from the set (3) which gives the expres-
sion for a 3 is
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PI») +P Is)a +p j'«'+ p)')a 3+p[')a'+ p(')a'+3pp)a a'+ p, (0)a,'+6P, (0)a'a' =0

which yields

(22)

a =+ 2PB (S —9T)'
a3

(S —3T)
yzL(2y2L +s )+6(&31 Zz—L) Zzl S+(2Y3L +$L) S 9T

1/2

(23)

where

T =(k2k2k, ')yk'. (24)

C. The energy of the I 6 conduction band

The case of the 1 6 conduction band has been studied
previously but will be considered here for completeness.
In this case, we will set

B. The energy of the I 7 split-o8' valence band A, =O, A2= —Eo, A3= —(Eo+b) . (36)

A1 =E0+5 A2=6 A3 =0

which by using Eq. (7) gives

P, (0)=0, PI,')=O.

The first nontrivial equation will then be

Pj ) +P, (0)a2+P2(0)a, =0

with

(25)

(26)

(27)

To get the energy of the I 7 split-off valence band we
will choose

P2(0) = A 3A 2,
g2 p2

PI = —2A A +A'—
2m 3

(37)

(38)

g2 P2Pj)=A A +A'—
2m 3

2 1

A A

2

(39)

All the arguments we have for the I 7 split-off valence
band are applicable to the case of the I 6 conduction
band. Hence, Eqs. (28), (31), and (32) will be replaced by

P~(0)= A, A2 .

Equation (27) gives

(28)
Now using Eqs. (37)—(39) we get from Eqs. (27), (30), (34),
and (36) for the 1 6 conduction band

a1=0 . (29) a1=0, (40)

Setting a, =0 (we will also set C =0), the next equation
will be

p2

2m 3
2+ 1

E. + E.+~ (41)

P j') +P I')a, +P,(0)a,'=0,
where

p2PI2'=2A'A' y +1 2 1

1

(30)

(31)

a =+—'PB 1

E0
(S —9T)E0+6 (42)

2
'2

P[')=A'A' ) + P
1 2 1

1

(32)

P2

3(E +b) (33)

This is identical with the well-known form of a2 for the
I 7 split-off valence band.

The equation for a3 is

PI,') +PI')a +PP)a'+P (0)a' =0
which yields

a3 =+—' (S —9T)'' (Eo+b, )

(34)

(35)

Using Eqs. (28), (31), (32), and (25), Eq. (30) will yield for
a2 the expression

IV. DISCUSSION OF THE RESULTS

As we saw, the extended model has been successful in
leading to the derivation of the energy wave-vector ex-
pansion for the case of the four-band model represented
by the 8 X 8 k.p matrix. It gives for the I 8 valence band
linear and quadratic terms which are identical with the
published ones. For third-order terms the only attempt
to calculate these terms was made by Cardona, Christen-
sen, and Fasol by applying third-order perturbation
theory on the 14X 14 k.p matrix and taking the wave
vector k in the (110) direction. Their result agrees with
that of Eq. (23) up to first order in (y3 —y2). However,
our result (limited to the four-band model) is more accu-
rate since the extraction of these third-order terms from
the matrix is complete with no perturbative approxima-
tions. For the case of the I 7 valence band the first- and
second-order terms agree with the well-known published
data. The third-order term was also calculated by Cardo-
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na, Christensen, and Fasol in the (110) ir direction.
Limited to the four-band model, their result is in agree-
ment with ours.

The conduction band has been extensively studied by

perturbation theory. ' Our result agrees completely
with the published data for all the calculated terms. For
example, Braun and Rossler obtained for the third-order
term,

2PP'Q
Q3 =+

3
1

'
Eo(E, +b, ) Eo Eo

1 1

(Eo Eo )—(Eo Eo+—5') Eo+& Eo

(43)

where P', Q, Eo, and b, ' are the parameters of the r', 5

conduction band. They are related to the parameter B by

B=P'Q, +1 1

Eo Eo+5 Eo Eo
(44)

The first term in Eq. (43) agrees with our a 3 term
represented by Eq. (42) while the second term can only be
obtained by using the seven-band model. This further as-
sures the reliability of our result for the valence band.

V. CONCLUSION

We have extended the applicability of our previous
model to derive the energy wave-vector expansion for any

k p matrix of any size. We then applied this extended
model to the 8X8 k.p matrix representing the band
structure of zinc-blende-type semiconductors. We gave
complete nonperturbative general expressions for the
third-order terms of the valence band. These terms can
now be used to study many interesting nonlinear phe-
nomena in a comprehensive way.
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