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We have obtained an analytic expression for the total energy of 'He clusters composed of N atoms. It
is a variational solution of an energy density functional, where the extended Thomas-Fermi method has
been used for the kinetic-energy density. The energy is calculated as an expansion in decreasing powers
of the cluster radius, R ~N' '. Contributions of volume (R ), surface (R ), curvature (R), constant (R ),
(1/R), and (1/R ) are identified in the formula. Simple analytical formulas are also derived for relevant
quantities such as chemical potentials, fusion and fission potentials, surface thickness, unit radii, and rel-
ative compression. Our results are compared with other available theoretical calculations.

I. INTRODUCTION

The study of the stability and structure of rare-gas
clusters has received growing attention in the past few
years. ' At present, although the experimental values of
the binding energy, density, compressibility, and sur-
face tension of the two heliums are known, the experi-
mental information about helium drops is still rather
poor. ' ' On the theory side, previous studies '" of
He and He clusters have mainly dealt with the descrip-

tion of ground-state properties along two principal
routes. First we find microscopic-type calculations such
as those in Refs. 4 and 11, where a Monte Carlo method
is performed using the Aziz et al. " atomic potential as
input. Second, we find the density-functional method
equipped with phenomenological zero-range interac-
tions. ' ' ' ' ' This second strategy is more economical
and, usually, provides a clearer picture of the structure of
these systems.

The aim of this work is to obtain an analytical formula
for the total energy, and other physical observables, of a
cluster composed of N atoms of He, using a variational
ansatz for the structure of the cluster. This work can be
considered as a continuation of another dealing with He
clusters. ' As the He atom is a fermion, the many-body
equation with which one would have, in principle, to deal
with, are of the Hartree-Fock type. But this type of cal-
culation is difficult and does not permit to obtain analytic
expressions, therefore we will resort to the widely used
semiclassical approximation for the kinetic-energy densi-
ty and apply the extended Thomas-Fermi (ETF) method.

The use of this approximation is justified because the
genuine quantum-mechanical effects are not very pro-
nounced. We will use a functional of phenomenological
nature which has already been successfully used in the
description of atomic nuclei. With respect to the varia-
tional ansatz, we have used a function proposed by some
of us in the description of the physics of metallic clus-
ters

The paper is organized as follows. Section II presents
the energy functional to be used in the ETF method;
from this functional we will obtain the energy of the clus-
ters as a function of two variational parameters. The oth-
er parameters of the model are fixed so as to reproduce
the experimental data for He, and take into account
higher-order inhomogeneity corrections (ETF parame-
ters). In this second section we impose the condition that
the total energy of a cluster must be a minimum. This
leads to mathematical conditions which fix analytically
the variational parameters and the other coefficients of
the mass formula. Section III presents our results and a
comparison with other available theoretical calculations;
in particular, the value of the coefficients in the mass for-
mula, 6ssion, and fusion potentials, the chemical poten-
tial, skin depth, unit radii, relative compression, and
profile of densities are all discussed as a function of N.
Finally, in Sec. IV we give our conclusions.

II. DENSITY FUNCTIONAL AND CALCULATION
OF THE ENERGY OF THE CLUSTERS

In the present work, as in Ref. 21, we will use the fol-
lowing functional for the total energy of the clusters:
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where n (r) is the particle density and rn ' is the effective
mass of a He atom. Functionals of the type (2.1) have
been extensively used in the description of atomic nuclei
and can be derived from a phenomenological interaction
of the Skyrme type. The coefficients of the functional
are determined by fitting an appropriate set of experimen-
tally known quantities. For the effective mass we use

p —1

3bX c 3
8~ R' 2 4~
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where it is assumed that b (O,c)0 and p ) 1. This ex-
pression for the energy had a parallel counterpart in the
bosonic case; there the expression was simpler because
the kinetic-energy term was absent. For a fixed X, the
condition of extremum, dE/dR =0, leads to

1 =1 1—
m* m n,

(2.2)
0 3p —5+ 5b 3p —6 5 3 3p —8

2(12~ )' fi

with n, =0.0406 A, and m being the mass of the He
atom. Equation (2.2) accounts very accurately for the
variation of the specific heat with pressure and is neces-
sary for a proper description of He at T =0. On the
contrary, the use of m * is not necessary when dealing
with He; that is because there m *=m.

The first term in Eq. (2.1), El,;„, represents the cluster
kinetic energy and it was obtained by performing ETF
calculations based on the following kinetic-energy densi-
ty, V(r):

p 2

+4 6 3p —ll+ 5(p —1 )c 3+4r rp
2(12~')'" 4~

(2.5)

where we have adopted the convention R =re' and
r, =(3/4vrn, )'~ . The solution of Eq. (2.5) provides a
value for r, ro, which depends exclusively on the parame-
ters of the potential; moreover, we obtain a unit radius
not dependent on n, i.e., a saturating behavior. To as-
sure stability, we must analyze the second derivative
d E/dR ~„, , too,

(r)=a'n +13 +5V n,(V'n )

n
(2.3)
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with a= —', (3~ ), /3= —,', , and 6= —,'. This functional can
be obtained through a development of the cluster kinetic
energy as a power series of A, when dealing with a fer-
mionic assembly moving in a smoothly varying local po-
tential. In this respect we find a clear difference with
respect to what we used in Ref. 21. There, the ground
state of the system was formed by a Bose condensate and,
hence, V(r) could be written down exactly. The
coefftcient P= —,', accounts for high-order inhomogeneity
corrections involving the high-order density dependence
of the effective mass. ' The validity of Eq. (2.3) is
justified in this system because in a microscopic
quantum-mechanical analysis of it, neither shell effects
nor Friedel-oscillations have been observed to occur;
hence, a semiclassical description is quite close to the
quantum-mechanical one. '

The term with b represents the attractive component of
the interatomic potential —at long distance —while c
stands for the short-distance repulsive interaction. The
value of the coefficients b, c, and p is chosen so as to fit
the bulk properties of He. The fourth term of the func-
tional represents a repulsive effect at the surface, and d
will be fixed so as to fit the experimental value of the sur-
face tension, once the trial function for the density is
given.

A. Bulk parameters

In order to fix the bulk parameters, let us consider a
fermionic assembly of Xparticles, which form a sphere of
constant density and radius R. If the energy is given by
Eq. (2.1), then

3

X ( —,
' —p) —5( —', —p)

ro
6

+4( ll p)3 6ro

+ (1 —p/2) . .
3b

rp
(2.6)

If b =c =0, there are two possible solutions for Eq. (2.5),
ro =r, and ro =4' r, . The first one corresponds to a
minimum (with E =0) and the second one to a maximum.
If c =0, b values increasingly negative imply a decrease
of the ro value, corresponding to the minimum (so that
ro & r, ). On the other hand, if b =0, an increasing c im-

plies an increasing value for ro, corresponding to the
minimum (ro) r, ), but such state will have E )0 and
will eventually decay. Thus, we can see how the two, at-
tractive and repulsive, terms are necessary to provide a
unit radius ro ) r, such that a stable equilibrium
(minimum of the energy), without decay (E &0), can be
implemented.

Our next task will be to apply these ideas to the He
case and then to determine the bulk properties of our
model. Eq. (2.5) gives ro(no) which, inserted into Eq.
(2.4) will give the binding energy per particle

E E
r=ro + O

In a parallel way, we can also calculate the compressibili-
ty of the liquid He, Ko. From its definition, we have
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SCO
'=Z-'

r =r0

"o"o d (E/N)
Br2 r=r 0

(2.7) E (r, s, N) = g (f„)'„"(r,s)
, S

~—n/'3 =0 (2.1 la)

The last three equations will provide the basic properties
of our system when saturation is reached, i.e., bulk prop-
erties (N~ ~ ). Using' ' b = —683.0 K A,
c =1.405057X10 KA ' ", and p =4. 1, we can fit the
experimental values of the density (or unit radius),
no=1.6347X10 A (rp=2. 4443 A), binding energy
E /N

~ o
= —2.49 K, and compressibility Kp =5.056

K ' A for He.

a QO

E(r, s, N)= g (f„),"'(r,s)
a n=0 ,S

N
—n/3 0 (2.11b)

+ pre N
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where r and s indicate the values of r and s at the
minimum. Now, after performing a Taylor expansion in
Eqs. (2.11) around ro and so, of the form

B. Trial function for the density:
Semi-infinite medium

sm =so+ g' b N
i=1

(2.12b)

As a trial function to implement the variational calcu-
lation, we are going to use a function proposed by some
of us, and which has been used both in Ref. 21 and in
analytical calculation of metallic clusters. Its form is

(f, )'„"(r=r, ) =0,
(f, ),'"(r =rp, s =so) =0 .

(2.13a)

(2.13b)

then for the lowest n, by noting that fp does not depend
on s, we will have

n (r)=n .

1 —R (1+ /R) ~), sinh(r/s)

R h(R/ )
sinh(R/s) e

R/s r

7 KR

r)R;

(2.8)

Equation (2.13a) expresses something already known:
with the chosen values of b, c, and p, the volume energy
per atom for bulk matter is an extremum in rp (see Sec.
II A). Equation (2.13b) corresponds to the minimization
of the surface tension of the semi-infinite medium and al-
lows us to calculate s = s(on„d, P, 5) To f.ix d, we will

use the experimental value of the surface tension
0 o=0. 1 13 K A ~ We know that

n, R, s are the variational parameters which have to be
fixed.

From now on, we will assume that any helium drop
formed by X atoms has a spherical symmetry and, of
course, the density function n (r) verifies the normaliza-
tion condition

E(r,s,N) Nf p(r p )—o. = lim
4 2 g2/3~rm

By looking at Eq. (2.10) and doing a Taylor expansion
around ro and so, as defined, we have

f n(r)dr=N, (2.9)
f, (ro, so(n d P 5))

C7-
4mr o

(2.14)

hence, there are two independent parameters at our
disposal; suppose that they are R and s. It is easy to see
that, due to (2.8) and (2.9) R can be interpreted as the
equivalent sharp radius. It is useful to use the convention
R =rX', r being the equivalent-sharp unitary radius,
and as n =3/4~r; thus, our final variational parameters
are r and s.

Inserting Eq. (2.8) into (2.1) and using A' /m =16.044
0

K A, we can obtain the leptodermic development of the
four terms composing the cluster energy, i.e., Ek;„, E„
E„and Ed. As the expressions are rather long they are
omitted (available on request).

By adding all the contributions with the same order in
N, we can express the energy as

so=2.4171 A,
d =1.8831 X 10 K A

(2.15a)

(2.15b)

At this point, all the parameters entering the density
functional are fixed. The value of d given in (2.15b)
differs only slightly from that found by Stringari and
Treiner' ' (d =2.222 X 10 K A ). These authors use
an identical density functional and analyze it through the
Euler-Lagrange equations.

In this way, having Eqs. (2.13b) and (2.14) fitted to the ex-
perimental surface tension, we obtain expressions for
sp(n, ) and d(n„P, 5).

Using for n„p, and 5, the values fixed at the beginning
of this section, we obtain

E(r, s, N)=N g f„(r,s)N
n=0

(2.10)
C. Condition of extremum for the energy

where, as usual, fp represents the volume term, f &
the

surface term, fz that of curvature, etc.
The total energy must be an extremum, minimum, with

respect to variations in the parameters r and s, i.e.,

Now we are ready to proceed to the minimization.
The idea consists of obtaining s (r ) as a certain sp(rp)
plus corrections; this is shown in Eqs. (2.12), in such a
way that Eqs. (2.11) are fulfilled at all orders in N. The
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reader interested in details is referred to Ref. 21; here
only the last formula is written. The energy at the
minimum can be expressed, in a self-explanatory nota-
tion, as

0.75

0,50—

I I I I I I I

E =a, (ro)N+a, (ro, so)N ~ +a, (ro, so)N'~

+ao(ro, so)N + X a„(ro,so)
n= —1

(2.16)

LJ

UJ
I 0.25—

K

1
Lii

where the new coefficients have been tabulated in Table I.

III. RESULTS AND DISCUSSION 50 75 ioo
N

0
1000

In Fig. 1, we have plotted E/N as a function of N, in-
cluding the contribution of the successive terms given by
Eq. (2.16). To make the comprehension of the figure
easier, we have plotted the results with two different
scales both in abscissas (ordinary, for N (100, and the
other logarithmic, for N ) 100) as in ordinates (both ordi-
nary). From this figure we observe how the contribution
of ao together with that of a „and specially that of a 2,
allows the existence of bound states from a minimum N
value, namely X =38. A value of N lower than %
would correspond to a metastable state which we will
refer to later.

Previous calculations related to He are the one by
Pandharipande, Pieper, and Wiringa and the one by
Stringari and Treiner, ' which are also written in Table I,
to have a first-sight comparison. The calculation of Ref.
4 uses a Hamiltonian containing the HFDHE2 (Hartree-
Fock dispersion) interatomic potential of Aziz et al, 24

and the results are obtained through a variational Monte
Carlo (VMC) method. The values in Table I are fitted to
VMC energies for the interval 20 + X ~ 240.

Referring to a, and a, the different results show a re-
markable concordance, specially for a„while there exists
a marked discrepancy with respect to a, . At this point it
is worth emphasizing that while our calculation is com-
pletely analytical and that we are able to calculate as
many coefficients as we wish, in Ref. 4, the values are ob-
tained using a best fit with an accuracy of y, of the order
of one per degree of freedom, and coming only up to a, .
Normally, one would expect that the curvature correc-
tion to the energy of a convex surface would be positive,
and indeed these authors admit the lack of physical

FIG. 1. Energy per atom in a He cluster: Contribution of
the different terms of the mass formula (see the text). Curve a:
a„curve b: a, +a,N ', ; curve c: a, +a,N ' '+a, N
curve d: a, +a,N ' +a,N +aoN '; curve e:
a +aN ' +a N +aoN '+a &N +a 2N

meaning of the a, found in the fit. They are also aware of
the high inhuence that the degree of the assumed polyno-
mial has on the value of a, . In the case of having extend-
ed the calculation up to terms in X, the value of the ob-
tained a, would have been positive; this would have been
confirmed if one had extended the calculations further,
i.e., up to N ' or N . It is also likely that in these
cases the a, of these authors would have got near ours.
The discrepancies existing in the coefficients are, howev-
er, not very important for the cluster energy as one can
observe in Fig. 2. As a general tendency in the figure, our
values are higher than those of Ref. 4, for X )50.

With respect to Ref. 15, those authors are precisely the
density functional given in Eq. (2.1) and their results are
derived through a quantum-mechanical (QM) calculation.
The values presented in Table I for a„a„and a, are ob-
tained by these authors from the asymptotic properties of
Euler-Lagrange (EL) energies for the bulk and semi-
infinite liquids, whereas ao is obtained by fitting QM en-
ergies so as to reproduce the energy of light magic clus-
ters. a, and a, should be coincident with ours because
the two calculations give the bulk properties of the sys-
tem and also fit the surface tension of the semi-infinite

I I I I I I I

TABLE I. Energy coefficients (in K) of the mass formula for
He clusters.

Present work Reference 4 Reference 15

av

a,
a,
ao
a
a

—2.49
8.48
5.31

—16.08
—0.01

—31.32

—2.09'
9 90'

—9.90'

—2.49
8.42b

409
—19.80'

'Fit to VMC energies for 20 ~ N 240.
Asymptotic properties of EL energies for bulk and semi-infinite

liquid.
'Fit to QM energies. This is required to reproduce the energy of
light magic clusters.

1

LU

0
50 75 100

N

0
1000

FIG. 2. Energy per atom in a He cluster. The continuous
line represents the present work. The () represent the VMC
energies of Ref. 4. The dotted line represents the asymptotic
properties of the EL and QM energies (Ref. 151.
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medium. However, a small discrepancy is observed with
regard to a„which is probably traced to a misprint or to
the existence of a rounding error in any of the magni-
tudes involved in the computation of this coefficient.
Within the general agreement, with respect to a, and ao
we find a greater discrepancy. Again one should
remember that the ao of Ref. 15 was obtained through a
numerical adjustment and no more coefficients were cal-
culated. In Fig. 2 we have also drawn the E/N values
from Ref. 15. There, one observes how for small X, they
lie between those of Refs. 4 and 15, and for large X, our
values tend to coincide with those of Ref. 15 (asymptoti-
cally the coincidence is complete). It is, likewise, in-
teresting to find out what is the minimum value of X, N
necessary to have a stable He cluster. As already men-
tioned, in our calculation we find X =38, to be com-
pared with N =40 obtained in Ref. 4 and with X =30
of Ref. 15. This greater proximity to the result of Ref. 4
is not strange because in the range of small N, E/N in the
two cases is quite similar (see Fig. 2).

Now let us define the fusion potential, PFU, as the ener-

gy released when a cluster of N atoms captures 1 atom
more; i.e., in the transit 1V~N+1. Analogously, the
fission potential P„, is the energy to be added to an N,
atom cluster, to strip one atom [N~(N —1)+1].
Hence, PFU=E (N) E(N + 1) —and PF&=E (N —1)
—E (N), respectively. Using Eq. (2.16) and the
coefficients quoted in Table I, we will have

QFU[K]=2.49—5.66N 'i 1.77N —+0.94N

QFi[IC] =2.49 —5.66N ' —1.77N —0.95N

(3.1)

In Fig. 3 these values, together with the QM results of
Ref. 15, are plotted. Unfortunately, these potentials have
not been computed in Ref. 4. In Fig. 3 we observe that
the agreement for P„, is better than that for PFU. As N
gets higher values, the difference between P„U and PF„ in
our analysis, comes down quickly; in Ref. 15 this occurs
more slowly. When N ~ ~, P„U and PF& tend to the same
asymptotic value.

Another interesting observable is the chemical poten-
tial, which is defined at zero temperature as dE(N)/dN.
In our analysis, we find

I I I I I I

25 50 75 100
N

0
1000

FIG. 4. Chemical potential. Crosses represent EL values of
Ref. 15.

@[K]= —2.49+5.66N ' + 1.77N

+0.3X 10 (3.2)

t (N) =r,o(N) —r9o(N) . (3.3)

ro(N) is defined as

ro(N)=[ —'(r (N))]' (3.4)

with (r (N)) =(1/N) fn(r)r dr being the mean quadra-

tic radius. Using the trial function (2.8), it is easy to
prove that

and it is obvious that p=(P„U+P„,)/2. Due to the
smallness of the coefficient of the N term in Eq. (3.2),
this term in the sum can be neglected.

In Fig. 4, p is plotted vs N and compared with the re-
sults obtained in Ref. 15 by numerical integration of the
EL equation (these results are denoted by crosses); the
agreement is excellent. Observing Figs. 2 and 4 we note
that, for small N, p may be negative in spite of having
E/N positive; this corresponds to metastable states. The
minimum number of atoms to form a metastable cluster,
in our analysis, is X "=17; Strinari and Treiner predict
= 16, while Pandharipande, Pieper, and Wiringa, al-
though they have not explicitly calculated it, estimate
N "=20. Thus, the agreement is notable.

Two other interesting physical magnitudes are the sur-
face thickness, t (N), and the unitary radius ro(N). r (N) is
defined as the distance between the points where the den-
sity has 0.9 and 0.1 its central density,

I I 2

and

r =2s 111(5)+O(1/R ), (3.5)

t(N)[A]=7. 78 —3.21N ' +O(l/R ) . (3.6)

25 50 75 100
N

0
1000

FIG. 3. Fusion and fission potentials. ( X ) for fusion and
(+ ) for fission represent the QM values of Ref. 15.

In Table II, we give the values obtained by means of Eq.
(3.6) and compare them with those given by the repeated-
ly mentioned authors. The agreement is fairly good,
however the discrepancy, for small and intermediate %,
with the results of Ref. 15 are more sensitive. Asymptoti-
cally, Stringari and Treiner find t ( ~ ) =8.3 A, and Pan-
dharipande, Pieper, and Wiringa suggest a number close
to 8 A; our result is 7.8 A.

Inserting Eq. (2.8) into (3.4), we obtain
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TABLE II. Surface thickness (in A), t (N), for He clusters.
0.06—

20
40
70

112
168
240
330

Present work

6.6
6.8
7.0
7.1

7.2
7.3
7.3
7.8

Reference 4 Reference 15

8.6b

8.8b

8.8b

95
9.6b

95
94
8.3

0.04—

o 0.02—

0

-0.02—
0.3

'VMC values.
QM values.

-0.04—

-0.06—

s 2

ro(N) = r 1+10 N
rm

1/2

(3.7)

-0.08—

-0.10—

where again the values of r and s at the minimum are
used.

The result given by Eq. (3.7) is exact. Considering
now Eqs. (2.12) we obtain

ro(N) [A]=2.44 —0.23N

—0.12—

FIG. 5. Relative compression, 5n /no, as a function of N
for 'He clusters. The dashed line corresponds to the properties
of the EL equation of Ref. 15. The (~ ) corresponds to the
VMC calculations of Ref. 4.

+12.66N +O(1/& ) . (3.8)

n —1
no no

which, bearing in mind Eq. (2.8), can be expressed as

(3.9)

no

3 3 r
+1 e

Sm

(3.10)

In Table III, the values coming from Eq. (3.8) are given
together with the VMC values of Ref. 4 and the QM
values of Ref. 15. Our results coincide pretty well with
those of Ref. 4 and are slightly higher than those of Ref.
15; this discrepancy quickly disappears as X grows.

It is interesting to study the behavior of the density at
the origin (center of the droplet) as N grows. The habitu-
al strategy is by analyzing the relative compression
6n /no, which is defined as

=0.278K ' —0.8111'
no

—0.348' ' —7.85N

—( l.01N' + 1.60—2.60N '
)

—1.01N +O. 323 —1.87NXe (3.1 1)

In Fig. 5, Eq. (3.11) is plotted together with the result
found in Ref. 15 and others which are deduced from the
microscopic calculation of Ref. 4. As the reader can see,
our results are intermediate between these two.

Finally, in Fig. 6 we have plotted the density profile of
the cluster with N = 186 and its comparison with the re-
sults of the other authors. It can be observed there in the
zone where most of the atoms are lodged how our results
are intermediate between those of these authors, while in

We have found

TABLE III. Unit radii (in A), ro(N), for 'He clusters.

15 -t

Present work

20
40
70

112
168
240
330

4.1

3 ' 5
3 ' 1

2.9
2.8
2.7
2.7
2.4

'VMC values.
QM values.

Reference 4

3 3'
3 0'
29'
2.8'
2.7'

Reference 15

4.0b

31
2.9
2.8b

2.7
2.6b

2.6b

2.4

o+
LJ 10—
C-

C:

o 5—

0
0 10

Y' EA)

15 20

FIG. 6. Density profile of a He cluster with N =168 atoms.
The dashed line represents the QM calculations of Ref. 15
whereas (0) corresponds to the microscopic calculation of Ref.
4.
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the periphery of the cluster our results are more acute.
This last observation can be traced to the fact that we
have obtained a skin depth somewhat smaller.

IV. CONCLUSION

We have obtained an analytical expression for the total
energy of He clusters, from an explicit density ansatz
and a phenomenological density functional for the ener-
gy; the ETF method is used to obtain the kinetic-energy
density. The trial function for the density depends on
two parameters which are fixed by imposing the condi-
tion that the energy cluster must be a minimum; the oth-
er parameters of the model have been fixed by adjusting
the bulk and semi-infinite media and take into account
higher-order inhomogen city corrections (Kirzhnits

terms). The leptodermic development has allowed the
computation of the energy as a series in decreasing
powers of R (N'~ ). Specifically, the volume, surface,
curvature, constant, 1/R and 1/R terms have been
computed. We have also presented analytic expressions
for the fusion and fission potentials, chemical potential,
surface thickness, unitary radii and the relative compres-
sion. Our resulting mass formula is in good agreement
with the prediction obtained by other not so economical
theoretical methods.
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