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Gas dynamics and film profiles in pulsed-laser deposition of materials
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Film-thickness profiles obtained in pulsed-laser deposition are calculated by using the well-known

solution of the gas-dynamic equations which describes the expansion of the plasma plume in vacuum.
The time for plasma formation is supposed to be short compared with the time of expansion. The film

profile depends on the initial dimensions of the plume and on the adiabatic exponent of the vapor.

I. INTRODUCTION

During the last two decades, laser-matter interactions
within the intensity range 10 W/cm I (10 W/cm
have become of increasing interest with respect to both
technological applications and the elucidation of the fun-
damental mechanisms involved. Among the technologi-
cal applications are laser machining, laser surface pro-
cessing, and laser chemical processing for microfabrica-
tion and thin-film formation. '

The main processes involved in laser-matter interac-
tions with intensities I (10 W/cm are the following:
absorption and reAection of the incident laser light by the
condensed phase, ablation of the condensed phase, ab-
sorption of the laser light within the expanding plume,
expansion of the vapor plasma, and in the case of pulsed-
laser deposition, the interaction of ablated species with
the substrate surface.

With the laser beam intensities and pulse widths under
consideration, the temperature of the target is consider-
ably lower than its thermodynamic critical temperature
T, . As a consequence, there is a sharp boundary between
the gaseous and the condensed phase. The thickness of
this boundary is of the order of a few interatomic dis-
tances. Ablation is often considered as a surface process
(sometimes without sufficient reasons). In this approxi-
mation, the vaporization kinetics is determined by the
surface temperature which, in turn, depends on the spa-
tial and temporal distribution of the laser-induced tem-
perature within the target. This temperature distribution
is determined by the laser parameters and the relaxation
of the excitation energy, including electron-phonon in-
teractions, phase transitions, and chemical changes. On
this basis, a mesoscopic description of the heating dy-
namics is quite complicated and will be discussed else-
where.

The expansion of the vapor-plasma plume into a vacu-
um has been studied in one dimension for the case of low
optical absorption. For ultraviolet (UV) laser ablation,
absorption of the laser light within the plasma plume

affects both the vapor How and the laser-induced temper-
ature distribution within the target. However, with the
parameters typically employed in pulsed laser deposition
(PLD), the characteristic time of the gas-dynamic expan-
sion is much longer than the duration of the laser pulse.
This permits a separate consideration of the formation
and the expansion of the plasma plume. With this condi-
tion, relatively simple analytical solutions of the vapor
expansion problem can be obtained, even for the three-
dimensional case. The understanding of the (three-
dimensional) expansion of the plasma plume is a prere-
quisite for the analysis of film thickness profiles in PLD.
Experiments have revealed that near the axis of the plas-
ma plurne the angular distribution of the Aux of species is
=cos"0 with n ))1. ' This strong forward direction is
caused by strong differences in pressure gradients in axial
and radial directions.

The problem of the angular distribution of the mass
How in plasma expansion was recently investigated.
These authors used the isothermal solution of the gas-
dynamical equations ' with Gaussian pressure and densi-
ty profiles which have been considered already in Refs. 10
and 11. Although these results explain correctly the fast
expansion of the plasma in the direction of the maximum
pressure gradients, the neglection of spatial temperature
gradients is inadequate for the description of pulsed-laser
ablation. Indeed, both experiments' and numerical cal-
culations' reveal considerable temperature gradients in-
side the plasma plume. These gradients are generated
during the laser-pulse action and they become more pro-
nounced in the subsequent free expansion of the plume.
In this situation, it is more realistic to consider an adia-
batic expansion of the plume. Clearly, in reality the initial
state of the plume is neither isothermal nor isentropic.
However, in the frame of hydrodynamics, an adiabatic
motion is more physical since there is no mechanism
which sustains a finite temperature at the outer edge of
the plume. This physical inadequacy of the isothermal
solution is well known and is discussed in detail in Ref.
14.
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II. THEORETICAL MODEL

The process under consideration
'

n can be described as
s. The laser beam with a pulse width of, typically,

of the lume is not considered any ur-detailed structure o e p
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de6ned as the integrals over the volume of the plurne

M= fp(x, y, z, t)dV,

E= fp(x, y, z, 0)dV .1

y —1

E =E,—MAH, ,

where E, =I,~I is the laser-light energy absorbed and
AH, is the enthalpy of vaporization.

The integrals (6) can be expressed in terms of the I
function'

The values I, (y) and I2(y) are defined as

1I, (y)=2m s (1—s )'~r 'ds,

I2(y)= s (1—s )r r 'ds .= 2~
1 0

(6)

1,(y) =~r r(-,') r + 3

y —1 2

r, (y)=~r y +1 r(-,') (y —1)r
y —1

y 5

y —1 2

X Y
U =X, U

Y
= Z

Uz
—Z

where X=dX/dt, etc. Substituting (2) and (3) into (1) and
taking into account (4), we obtain a set of ordinary
differential equations which, formally, can be written as
the equations of motion of a point in classical mechanics

Note that t¹density and pressure profiles (4) describe a
plume with a sharp external edge. This is the conse-
quence of entropy conservation, which leads to the well-
known relation T ~ p~ '. Thus, at the front, where the
density is equal to zero, the temperature and the velocity
of sound approach zero as well. This results in the for-
mation of a sharp front —in contrast to an isothermal ex-
pansion, where the velocity of sound at the outer edge of
the plume remains Gnite and generates density and pres-
sure tails. ' '"

According to (2) the velocity at the point r is propor-
tional to the radius vector of this point. Thus,

t X(t) Z(t)g(r)=, q(r) =
to Ro Ro

Zo

0

where t =pR /p&p. When taking into account the axial
symmetry of the plasma plume, X(t)= Y(t), we obtain
the set of equations

(9)

These follow from Euler's integrals of the second kind,
m —iB (m, n) = f x '(1 —x)" 'dx =I (m)I (n)/I (m +n) .

0

From standard calculations we get for p(y ) the following
equation:

P=(5y —3)
E
M

Finally, we introduce the dimensionless variables

where

aU " aU
ax ' aY'

aUZ=-
az '

with

dg .. dg
dr

U= p( y ) Xp YpZp

y —1 XYZ

2y Ii y E
y —1 I~(y) M

It should be noted that, in the general case when rota-
tions are taken into account, the set of equations for the
matrix F;k has a form similar to (8), ' "

aU
aF,,

The initial conditions are

g(0)=1, g(0)=o, g(0)=g(0)=0 .

Thus, the evolution of the plume in variables g and g is
determined by two parameters, o. and y.

Note that the characteristic time scale for expansion is
tp =Rp/VP=(Rp/zp)r& ))r&. This time is much longer
than the laser-pulse duration ~I.

In general, Eqs. (9) can be solved numerically only. It
is convenient to use the first integral (in terms of classical
mechanics the integral of energy) for a check of the accu-
racy of calculations. A standard procedure leads to the
following relation:

with

U=p(detF;k )'

g + 2' + U(g, g)=s=—const,

where U is the "potential energy"

(10)

where p =const. Henceforth, we consider a plasma
plurne which is at rest at t =0, i.e., we put
X(0)= Y(0)=Z(0) =0. Usually, this is a good approxi-
mation since the kinetic energy of the vapor How near the
target surface is considerably smaller than the thermal
energy of the vapor. In this approximation the initial
energy of the plasma plume is

U (g, rI) =—=U 1 o.

If we disregard the initial gas velocity within the plume,
we obtain for the "total energy"

s = U[g(0), g(0) j = 1

y —1
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For the special case y= —,', there exists an additional in-

tegral of (9). This integral has been derived in Ref. 11
and it can be written as

2g + vP =2sr +a +2 .

The solution of (10) and (11)can be written as

Y=5/3

7/5

rV'3
arctan

2+ cr
2/3 1/2

sin Oocos00

sin m cosco

9I7

where

g=(3r + +2)'

2

2+0
0

cosOp =
2+ o'

sinOO=

g = ( 3r + cr +2 )
' cos8,

' 1/2

10

FIG. 2. k as a function of g for cr =0. 1 and various values of

This (exact) solution can be used to check the accuracy of
numerical calculations and to investigate the asymptotic
behavior of the solutions of (9).

Equations (9) have been solved numerically for a wide
range of parameters o and y. In particular, we have been
interested in the behavior of the solutions for long times

It can be shown readily that g'(r) and rI(r) are both
linear functions of ~ when ~~~. This means that the
expansion of the vapor plume becomes inertial, as the
pressure gradients tend to zero. The limiting shape of the
expanding plume has been calculated for each pair (y, cr ).
It is interesting to note that for y & —,

' the ratio
k (r) =ri(r)lg(r), which describes the shape of the
plume, reaches its maximum at r= 10—100 (for the region
of practical interest 1. l ay&1.4) and then decreases
slowly; it reaches its limiting value at ~= 10 . This can be
seen in Fig. 2 which shows that the dependence of k on g
for different values of y [g(r) is a monotonic function of
time r]. For y~ —,'the ratio rl(r)/g(r) is a monotonic

function of ~. Table I summarizes some information on
the dynamics of the deformation of the plume for large
values of ~; here, the values of k are given for ~= 100 and
~~ ~ for a set of parameters o. and y. We find that even
for r= 10 the asymptotic relation between g(r) and g(r)
can be employed for calculating deposition profiles. An
example for the dependences of g(r), r)(r), and k(r) is
shown in Fig. 3 for y= —', .

From the numerical calculations we find that with in-
creasing y, the time required to reach the asymptotic re-
gime of k becomes shorter. The asymptotic and max-
imum values of k are listed in Table II for different values
of parameters y and o.

We now calculate the thickness profile, h(0), of depos-
ited films. From (4) and (7) we find for the (mass) fiux
normal to the substrate surface z =z, (see Fig. 1)

Mz, Z(t) 1—j (r,z„t)=p(r, z„t)U, (z„t ) = . I, (y)X'(t)Z'(t)
0 with t (t, (r) .

r 2

X'(t)
z2

S

Z (t)

&/(y —I)

with t ~ t, (r)
(12)

Here, t, (r) is the time when the edge of the expanding
plume reaches the substrate surface z =z, at a given r.
This time can be derived from 0.01 0.03 0.1 0.3

TABLE I. Comparison of values of k(w) at ~=100 and
7 —00,

r 2 2

+ =1.
X'(t, ) Z'(t, )

After integration of the mass fiux j (r,z„t) over the time t
from t, to ~ and dividing the result by the density of the
deposited material p„we obtain for the thickness profile

3.70;
3.61
5.21;
5.20

10.9;
11.3

2.87;
2.85
3.79;
3.77
6.37;
6.52

k(100);
k(~)

2.16;
2.12
2.56;
2.55
3.49;
3.53

1.55;
1.53
1.69;
1.69
1.97;
1.98
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FIG. 4. Stationary profile of the deposited film for various
values of k.
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Mz,
h(0) =

p. 1 i()')

Zd an 0 1
1 z.

f +2Z2 ~2 Z p

- - ir(y —i)

Mkh(0)= (1+k tan 0)
27Tp z

(14)

where tanO= r/z.
In the general case, the integration in (13) can be per-

formed numerically by using the relation between X(t)
and Z(t) as obtained from the (numerical) solution of (9).
A simple analytical expression for h (0) can be obtained,
if z, ))Ro which is satisfied in many experimental situa-
tions. From this inequality it follows that t ))tp and we
can use the asymptotic relation between X(t) and Z(t)
for calculating the integral (13). As already mentioned,
the numerical solution of (9) shows that for z, /Ro ) 100
the ratio Z (t) /X (t) is equal to its asymptotic value
k =g( ~ ) /g( ~ ) =const within an accuracy of better
than 4%%uo. Substituting Z(t)=kX(t) into (13) we obtain
the thickness profile of the form

The function Ii (0) given by (14) divers, in general, from
the usual approximation h (0) ~ cos"0. However, with
small angles, 0((arctan(1/k), these two profiles have
the same series expansion if n =3k . In particular, the
case of a spherical expansion of the plume (14) has the
form

h(0)=
~

cos 0.M
27Tp z

Note that this result agrees with the dependence h (0)
which holds for a steady-state point source. It can be
shown directly from the law of mass conservation that

h(0)= cos 0 .
MI;

27Tp z

Here, M is the mass production rate.
The dependence h(0) which follows from Eq. (14) is

presented in Fig. 4. We emphasize that the profile h(0)
can easily be calculated for the general case where the ra-
tio z, /R is of the order of 1 —10. For this purpose only a
simple numerical integration has to be carried out in (13).
For a qualitative estimation, the simple equation (14) can
be employed.

III. CONCLUSION

We have calculated the profile of a film produced by
pulsed-laser deposition (PLD) from a solid target. The
analysis is based on the solution of gas-dynamical equa-

TABLE II. The maximum, k „,and asymptotic, k( ~ ), values of k =k(~) for different values of
parameters y and o.. For y ~ —,'only k, =k( ~ ) values are given.

0.001 0.003 0.01 0.03 0.1 0.3

1.2

1.4

3

2.0
3.0

4.890 24;
3.693 92
6.408 70;
5.604 84
9.901 155;
9.664 782

35.841 1

166.127
636.633

4.150 55;
3.185 58
5.182 21;
4.571 03
7.394 15;
7.234 91

20.686 7
66.330 8

212.275

3.396 91;
2.675 9
4.030 79;
3.607 19
5.293 29;
5.200 32

11.318 7
25.206 8

63.835 7

2.417 93;
1.609 54
2.747 77;
2.240 49
3.11973;
2.847 90
3.817 57;
3.769 59
6.515 26

10.925 3
21.550 1

1.907 98;
1.396 04
2.074 18;
1.787 17
2.252 87;
2.11692
2.566 65;
2.550 05
3.532 01
4.650 97
6.873 29

1.444 64;
1.208 20
1.51129;
1.392 60
1.580 42;
1.531 70
1.695 61;
1.692 05
1.983 34
2.239 61
2.656 77
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tions assuming an adiabatic expansion of the plasma
plume into vacuum. A simple analytical equation is ob-
tained for the range of parameters typically employed in
PLD. This equation shows that, with small angle 0, the
film thickness is proportional to cos"0 with n =3k . For
typical experimental conditions n is within the range of
several units to several tens (Table II) which is in qualita-
tive agreement with the experimental results.

The solution can also be used for an estimation of the

kinetic energy (temperature) of the species near the sub-
strate surface. This is an important quantity for the in-
terpretation of epitaxial film growth experiments.
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