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Time-dependent transport in two-dimensional quantum-wire structures
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We present a time-dependent calculation of electron transport in two-dimensional quantum-wire-
based devices: the electron waveguide coupler, the quantum modulated transistor, and a quantum
wire with a narrow double constriction. We follow the propagation of electron wave packets through
the systems and determine the temporal behavior of the device operation by calculating various time
scales.

Recently there has been considerable interest in the
properties of ballistic electron transport in confined semi-
conductor geometries. This is due partly to the po-
tential applications to ultrafast electronic devices. In-
deed, devices with their operation principle entirely
based on quantum interference have been proposed and
fabricated. ' On the theory side, a thorough understand-
ing of quantum transport including the ballistic regime is
an urgent task. So far, much theoretical effort has been
focused on analyzing the transmission pattern of elec-
trons propagating through various ultrasmall one- and
two-dimensional quantum systems where electron waves
maintain phase coherence. A particularly interesting sys-
tern is the T-shaped quantum wire investigated by Sols
et al. as they argued that such a structure can operate
as a transistor. Another interesting structure is the elec-
tron waveguide coupler (EWC) proposed by del Alamo
and Eugster and Tsukada, Wieck, and Ploog. This is
an electronic analog of the optical directional coupler and
it switches electrons from one quantum wire to another.
In these quantum devices, switching is provided not by
tuning a current, but rather by tuning the phase of the
electron waves.

Although quantum interference effects provide new
ideas for device application, many technical aspects have
yet to be understood both theoretically and experimen-
tally. One of them is concerned with the operation time
of a device, such as the switching time of electrons in
the directional coupler mentioned above. While various
estimates can be made, a time-dependent calculation of
quantum transport is clearly needed to make a quanti-
tative theoretical prediction. While switching time of a
one-dimensional structure has been studied thoroughly,
less attention has been paid to two-dimensional quantum
wires. It is the purpose of this paper to provide an ex-
tensive study of several two-dimensional quantum-wire
structures. In particular we numerically solve the time-
dependent two-dimensional Schrodinger equation in the
ballistic regime and investigate the temporal response of
the quantum-wire structures to an input of electron wave
packet. We have studied three structures: EWC, a wire
with narrow double constriction, and the quantum mod-
ulated transistor. Relevant time scales for the transport

are computed numerically. For example, we found that
the switching time (dwell time) r~ for electron transfer
from one wire to the other in EWC depends on the en-

ergy of incident electron Eo. 7g varies from 0.12 to 0.27
ps for Eo ——217 meV and Eo ——58 meV, respectively.
Hence the structure studied here can achieve a rather
high switching frequency.

The electron waveguide coupler, modeled as a four-
terminal device, is shown in Fig. 1(a). The two quan-
tum wires, parallel to the x axis, are coupled through
a potential barrier. Assuming that the electron coher-
ence length is longer than the size of the device, we treat
the transport of electrons ballistically within each wire,
but include scattering of the electrons due to the pres-
ence of the junction, i.e., the regions V, VI, and VII. Such
scattering, due to geometric junctions in two dimensions,
affects transmission much more significantly than in one
dimension. The quantum wires are modeled in a fashion
similar to those of Sols et al. We assume, for simplicity
of the calculation, that the boundaries are hard walls,
i.e., the potential energy V = oo. Inside the wires, i.e. ,
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FIG. 1. (a) Schematic view of the four-terminal electron
waveguide coupler where regions VI, VII, and V form the
interaction region. (b) Schematic view of a quantum wire
with a narrow double constriction.
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regions I, II, III, IV, V, and VI, the potential is zero.
In the coupling region VII a potential V = Vp is added
which may be controlled by a voltage. Both quantum
wires have the same width a and are separated by a dis-
tance L. The coupling region, region VII, has a width
b.

The static properties of this structure have been stud-
ied in detail in Refs. 9 and 10. It is shown that for certain
electron energies, the transmission coefIicient from lead
III to lead I reaches unity, i.e. , total electron switching is
achieved. Our plan here is to follow in time an electron
wave packet as it propagates from lead III. Depending on
the average energy of the wave packet, it may decide to

I

turn the corner and switch to the other quantum wire.
The time it takes to switch can then be measured.

The time evolution of the electron wave function is gov-
erned by the time-dependent Schrodinger equation writ-
ten as

0$(x, y, t) h (02$(x, y, t) 82$(x, y, t) ~
zh +

Ot 2m* ~ Ox2 By j
+V(x, y)g(x, y, t).

We choose the initial condition to be a Gaussian wave
packet in the first subband located inside lead III:

g(x, y, t =0) = [iko*] [—(x—*0) /2cr ]
(pro. )'~ (2a)'~ ( a (2)

Here hko gives the initial average momentum [the initial
average energy is Eo ——h (ko+ ~ /a )/2m*, xo gives
the location of the peak at t = 0, 0 determines the
spatial spread of the wave packet and gives an energy

width 8E = 2h Eo/m*(1/cr), and m* = 0.067mo is

the isotropic effective mass for gallium arsenide. Equa-
tion (1) is solved using a typical Crank-Nicholson-type
algorithm on a 2000 x 60 grid with a typical spa-
tial mesh size of 5 A and a time step less than 0.23 fs.
As confirmed previously in a static calculation, given
the structure parameters there is an electron momentum
which gives total electron transfer from lead III to lead
I. For example, for a = L = 100 A, b = 440 A, and
Vp = 4.54 meV, a plane wave with kpa = 0.8 will totally
transfer to lead I.

The time evolution of the Gaussian wave packet is plot-
ted in Fig. 2 for every 1000 time steps (with time step of
0.23 fs). As the wave packet travels through the scatter-
ing region, two reflected (in lead III) and transmitted (in
lead II) wave packets with small amplitudes have been
generated. This behavior is difFerent from the usual one-
dimensional resonant tunneling through a double-barrier
structure where the buildup of electron density inside
the quantum well is via multiple reflections (Fabry-Perot-
type mechanism). In that case only one reflected and
transmitted wave packet is obtained. This is easily un-
derstandable: for EWC the scattering of the incoming
wave is due to the geometric junction, hence the electron
wave packet is propagating through the structure con-
tinuously rather than resonant tunneling, and there are
essentially two T-shaped junctions in the structure which
leads to the two reflected and transmitted. wave packets
with amplitudes large enough to be seen.

For the transfer of waves from one wire to the other,
we note that the Gaussian wave packet consists of plane
waves with an average momentum kp and the compo-
nent with exactly kp can transfer through completely
from lead III to I as mentioned above. Reflected and
transmitted waves with small amplitudes are generated
due to plane-wave components with momentum ofF kp.
Obviously as we increase the spatial spread of the wave

packet o or equivalently decrease the incident energy
width, more wave will be transferred. The transfer is
measured by a transfer coeKcient T, which is the total
probability of electrons in lead I. For instance, T is in-
creased from 0.69 to 0.71 and 0.75 as o is increased from
400 A to 500 A and to 600 A, where the calculation is
performed at kpa = 0.6.

The switching time ~ of the electron transfer from one
wire to the other cannot be defined uniquely and a rea-
sonable prescription is needed. We computed this quan-
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FIG. 2. Time evolution of the electron wave packet for
every 1000 time steps'on the electron waveguide coupler. The
figures are ordered according to time from up to down and left
to right. Over 60'Fo of the electron wave has been transferred.
Parameters: a = L = 100 A. , b = 440 A, cr = 300 A, koa =
0.8, Vo = 4.54 meV, and the time step is 0.23 fs.
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tity by monitoring the electron probability density p(t)
in the junction region 0, i.e., region A=VI+VII+V such
that we can follow the electron transfer in time:

p(t) = ~g(x, y, t)i dxdy.

In Fig. 3, we plot the electron probability density p ver-
sus time t (solid line) for koa = 0.6, a = L = 100 A,
b = 440 A. , o = 800 A. , Vo ——4.54 meV, and a time step
of 0.174 fs. The density p increases from zero as the elec-
tron begins to transfer, reaches a peak value, and then
decreases, indicating the completion of the process. The
dwell time7 7g is defined as

p(t) dt. (4)

0.3

From Fig. 3, we obtain qg = 0.267 ps. Notice that p(t)
is approximately a Gaussian-like curve; we can fit p(t) =
p „exp[—(t —to) /o. ] where p „and o. are the peak
value and spread of p(t). Using this fit, r~ = np
1.065&p, where we have introduced the full width at
the half maximum w. Prom Fig. 3, we have 7 = 1.133 ps
and p „=0.2117, resulting in vg ——0.255 ps, which is in
reasonable agreement with rd = 0.267 ps. For a = 600 A
(dotted line) and 500 A (dashed line) plotted in Fig. 3,
we have wg —0.265 ps for both 0's, indicating that 7g is
not sensitive to this parameter.

Another time scale of interest is the transit time
defined as r~ = 2b/v. This time scale corresponds to
the electron traveling through a distance 26 with veloc-
ity v. Taking the average initial velocity of the electron
wave packet inside the junction, v = 5 x 10 m/s and
b = 440 A. , one obtains qq

——0.17 ps, which is not too far
from the value of 7g ——0.267 ps. This is understandable
since our system is quite transmissive thus the dwell time
should be close to the transit time. Note that for one-
dimensional resonant tunneling through a double-barrier
system where a classically forbidden region is present, the

two times are usually considerably diferent and w~ is
usually much larger than 7&. It is known that the tun-
neling process is mediated by quasibound states inside
the junction region. Hence the lifetime of a quasibound
state wz can be another relevant time scale. If we view the
transfer of electrons from one wire to the other as through
a resonance process, then the nature of the quasibound
state which mediates the resonance can be inferred from
a static calculation. For instance, using the transfer co-
efFicient T as a function of the incident energy E, the
half-width at half maximum of the peak of T(E), 4, is
related to 7q.'rq ——Ii/A. For koa = 0.6 (corresponding
to Fig. 3) we have 4 = 1.5 meV or qq = 0.4 ps from a
static calculation.

We have also examined difFerent structural parameters.
For a = L = 100 A, b = 520 A, and Vo ——3.4 meV, a
static calculation indicates that the transfer coefBcient
T(E) reaches unity at a larger momentum koa = 5.32,
which is just below the threshold of the second subband
koQ = 5.44. Dynamically, we use a wave packet with 0
400 A. and time step of 0.116 fs about 63'%% of the wave
transfers. In this case we found that the dwell time w~ ——

0.119 ps (see Fig. 4), which can be compared with the
transit time wq ——0.11 ps. Again, these two time scales
are essentially the same. As before, the lifetime of the
quasibound state is estimated from a static calculation
where we found 4 = 5.5 meV, thus w~ 0.114 ps, which
happens to be close to the other two times.

Another interesting situation which we studied is the
propagation in a quantum wire in which a narrow dou-
ble constriction is put in place. See Fig. 1(b). In this
structure the energy of the propagating electron in the
first subband in the wider region may be lower than the
propagation threshold of the constrictions. This leads to
a classically forbidden region where electrons can only
tunnel through. For certain energies resonant tunneling
is observed. " The temporal behavior of this structure
has been studied using the same method as above. In
particular, for a variety of system parameters where res-
onant tunneling occurs, the dwell time as defined above
is considerably larger than the transit time, similar to
the case of one-dimensional resonant tunneling. Typi-
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FIC. 3. The electron density p inside the junction region
A=VI+VII+V vs time t (fs). Parameters: a = L = 100 A,
b = 440 A, koa = 0.6, and Vo = 4.54 meV. Here the solid
line, dotted line, and dashed line correspond to the spatial
spread of incoming electron wave packet a = 800 A. , 600 A,
and 500 A, respectively.

0.0
0 300 400

time (fs)
500 600

FIC. 4. The electron density p inside the junction region
0 vs time t (fs). Parameters: a = L = 100 A, b = 520 A. ,

cr = 400 A, koa = 5.32, and Vo ——3.4 meV.
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cally, we found rg/7t 5. For instance, for "barrier"
width to = 60 A, well width l = 140 A, the width of the
wire a = 600 A. , and kpa = 0.66 the dwell time is found
to be wg

——0.383 ps while the transit time is ~q
——0.072

ps. This difference in the two time scales is understand-
able since the resonant tunneling process leads to a time
delay, such as what happens in one-dimensional tunnel-
ing diodes. Finally, we have also studied the temporal
response of the T-shaped quantum modulated transistor
proposed by Sols et a/. In this case, the wave propagation
is continuous and thus the switching time is comparable
to the transit time.

In summary, we have presented an extensive investi-
gation on the temporal behavior of ballistic transport in
two-dimensional quantum-wire structures. In particular,

results for two useful time scales were presented for the
electron waveguide coupler and quantum wire with nar-
row double constriction. The dwell time of the former
is ranging from 0.12 to 0.27 ps for typical system pa-
rameters and is of the same order as the corresponding
classical transit time. For the latter case, the two time
scales are quite different due to the resonant tunneling
nature.
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