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Angle-resolved electron-energy-loss study of Al/Si(111)
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We have performed a high-resolution electron-energy-loss study of the Si(111)-(~3x ~3)R30':Al
surface and have measured the dispersions of several surface phonons along the I'K direction. We
interpret these using two different simple lattice dynamical models, both employing force constants
from an ab initio electronic-structure calculation of Northrup. The first yields quantitative infor-
mation at q = 0; the second is a semiquantitive estimate of the dispersion. These models have no
adjustable parameters. The good agreement with the experiment for most of the observed modes
indicates that a single theory can explain both the electronic structure and vibrational modes of this
surface and also illustrates both the usefulness and limitations of simple models of lattice dynamics.

I. INTRODUCTION

In the study of a given surface, the electronic
structure and vibrational modes are frequently inves-
tigated separately, both in calculations and experiments.
However, the force constants which determine the lat-
tice dynamics may themselves be determined from the
ground-state energies of the electrons when the nucleii
are displaced from equilibrium. Thus a complete the-
ory of a surface system can, in principle, account for the
ground-state configuration, the electronic structure, and
the phonon dispersions.

The metal-semiconductor system Si(111)-(~3x v 3)
B30:Al presents an ideal challenge in this respect. The
Al adatoms are strongly bound to their neighboring Si
atoms, so one can expect several surface phonons to be
detectable with energies up to about 100 meV. The fre-
quencies of these phonons and their dispersions provide
strict limitations on any theory which includes the lattice
dynamics. Moreover, this system has already been inves-
tigated with several experimental probes. Low-energy
electron diffraction (LEED) analysis indicates that the
Al absorbs at the T4 site, while the unoccupied sur-
face states have been studied using angle-resolved inverse
photoemission. Both the ground-state configuration and
the positions of the surface states agree well with total
energy electronic-structure calculations of Northrup.
These calculations were extended to include small dis-
placements away from equilibrium, yielding force con-
stants for a q = 0 dynamical calculation, producing one
phonon at 69 meV and another at 32 meV. The first
of these was observed using electron-energy-loss spec-
troscopy by Kelly et al. , while the second was seen
in a higher resolution study by Glander, Akavoor, and
Kesmodel.

In the present work, we report experimental results
for the dispersion of several surface phonons along I'K
for Si(111)-(~3x v 3)B30':Al. These were found using
angle-resolved high-resolution electron-energy-loss spec-
troscopy (HREELS), in which both dipole and impact
scattering were observed. A total of five modes were de-

tected, none of which dispersed strongly. Apart from the
two mentioned above, three more, at about 16 meV, 42
meV, and 58 meV, were seen.

To understand the origin and nature of these modes,
we solve two distinct lattice dynamical models of this
surface. Neither yields a complete description of the dy-
namics, but together they explain most of the features
seen in the experiment. Both include some of the long-
wavelength low-frequency features not seen in the earlier
work.

In the first of these, we couple the layers of Northrup's
q = 0 calculation to the Si(ill) layers of the bulk below.
We restrict their movement to that of rigid planes mov-
ing perpendicularly to the surface and coupled by bulk
planar force constants. The most significant sources of
error in such a model are the exclusion of motions of
the bulk lattice which are folded into the q = 0 point in
the surface unit cell by the surface reconstruction, and
of those motions polarized within the surface plane. We
find several strong surface resonances in this calculation.
At q = 0 one expects the scattering to be predominately
dipole in origin, and we assume the strongest dipole
lies along the Al-Si stretch, where the Si atom is that
directly beneath the Al. When the density of states is
projected onto this stretch, we find only three remaining
strong peaks: at 33 meV, 45 meV, and 69 meV. Thus this
simple one-dimensional chain calculation explains three
of the five features of the experiment.

In a second calculation, we estimate individual inter-
atomic force constants from planar force constants for
the surface layers. This allows us to include dispersion.
We also couple these layers to an underlying elastic con-
tinuum model. We find that indeed there is little disper-
sion, and we can also follow the Rayleigh wave through-
out the zone. The 16-meV mode of the experiment is
simply the folded-back branch of the Rayleigh wave while
the acoustic branch is not seen in the experiment as it is
washed out by the large elastic peak.

Neither of these models is intended as a full lattice dy-
namical calculation, but only as a preliminary guide to
help interpret the experimental results. In particular, the

0163-1829/93/48(16)/12063(9)/$06. 00 12 063 1993 The American Physical Society



12 064 AKAVOOR, GLANDER, KESMODEL, AND BURKE 48

observed 60-meV mode does not occur in either of them.
This is probably a Lucas mode, as has been seen on other
Si(111) surfaces. It would not appear in our first
model if it were either a folded-in zone-boundary mode
or a saggital-plane polarized transverse mode. On the
other hand, the good agreement with the other observed
modes suggests that Northrup's electronic-structure cal-
culations yield a consistent picture of the surface geome-
try, electronic spectrum, and vibrational spectrum.

Section II is an account of how the experiment was
performed, including how peak positions were deduced
from the data. Section III is a description of the two
different lattice dynamical models we use. In Sec. IV we
make a detailed comparison between these models and
the experiment. We give our conclusions in Sec. V.

II. EXPERIMENT

The ultrahigh vacuum chamber used in this study was
composed of two parts. The upper portion of the cham-
ber was equipped with a rotatable Bange which supported
the sample manipulator built by Vacuum Generators Ltd.
(model HPLT305). The manipulator employed a dual
bellows system. One of the bellows allowed the X and
Y (lateral) movements and the other, the Z (vertical)
movement. Rotational motion was achieved by precision
rotary drives (model RD2-S) fitted on the manipulator.
One could rotate the sample about the Z axis and about
an axis perpendicular to the Z axis. The upper cham-
ber also housed equipment for surface analyses. This
equipment consisted of an Inficon mass spectrometer for
residual gas analyses, a Varian sputtering gun, and a Var-
ian retarding field analyzer for LEED and Auger electron
spectroscopy. The lower portion of the chamber housed
the HREEL spectrometer and was connected to a Perkin-
Elmer ion pump.

A schematic diagram of the HREEL spectrometer is
given in Fig. 1. The spectrometer had a dual monochro-
mator, a single stage 127 cylindrical deflection analyzer,
and a channeltron detector. A dual monochromator was
chosen to avoid problems of space charging which may oc-

S

FIG. 1. Schematic of the apparatus: electron gun (G),
monochromator stage 1 (Ml), mononchromator stage 2 (M2),
zoom lenses (ZL), sample (S), sample shield (SS), intermedi-
ate lenses (IL), analyzer (AN), and detector (D) are shown.

cur at high feed currents in stage 1 of the monochromator
and to provide a low spectral background free of "ghost
peaks. " The principle and operation of the spectrome-
ter have been thoroughly studied in the literature. The
design was similar to that described elsewhere. How-
ever, in the present system the detector angle a. could be
varied from 13 to 68 . This facilitated angle-resolved
measurements.

The samples, roughly 0.5 cm x 0.5 cm in size, were
single crystals cut from a commercial wafer of Si(111)(8—
12 Bcm, P doped). The samples were mounted on Mo
stubs that were transferred in and out of the chamber
using a load lock and a wobble stick.

To heat the sample, we used a modified version of the
standard resistive heater built into the Vacuum Genera-
tors sample manipulator. The heater consisted of a coil
of 8-mil-diam tungsten wire encased in alumina tubing
inside the sample manipulator. To improve the heating
of the sample, we machined holes in the front plate of
the sample manipulator and in the Mo stub so that the
back side of the Si sample was heated by direct radia-
tion from the heater coil. This arrangement allowed us
to reach maximum temperatures of the order of 900 C.
Still higher temperatures could be achieved, and tem-
peratures of the order of 900 C could be reached more
quickly by adding the capability to position the sample
in front of an auxiliary tungsten heater that radiantly
heated the front of the sample. Care was taken to in-
stall radiation shields behind the heater coil to minimize
radiation losses.

Fresh Si samples were annealed in vacuo at 900'C
for an hour and subsequently cooled at a rate of about
1 C/s. This annealing was done slowly so that the pres-
sure in the chamber would not rise above 1.0x10 Torr.
After such a heat treatment, no contaminants were de-
tected in the Auger spectra of the samples. LEED con-
sistently showed excellent Si-(7x7) patterns. Aluminum
was deposited onto the Si samples from a braided W fil-
ament wrapped with 99.999%%uo-pure Al wire. The amount
of Al deposited was monitored with a quartz-crystal mi-
crobalance, which was placed at about 6 the filament-to-
sample separation so that it was sensitive to submono-
layer coverages on the sample. Before we actually de-
posited any Al on the substrate, we slowly stepped up
the current through the braided tungsten filament and
carefully outgassed it. Assignment of different coverages
was primarily done using the LEED pattern. We relied
on the microbalance as a secondary scale for the cov-
erage, using it mainly to quantify the relative amounts
of Al used in various experiments and to determine the
best operating conditions for the Al source each time the
filament was replaced. There was good agreement be-
tween the calculated and observed frequency changes of
the quartz crystal for the various coverages.

As reported earlier, we were able to obtain different
ordered structures depending on the quantity of Al de-
posited. Deposition of s of a monolayer (ML) produced
a v 3 x v 3 LEED pattern; 7 of a ML produced v 7 x v 7
pattern; and 1 ML produced (7x7)-Al pattern. The most
reliable procedure to produce the ~3 x ~3 surface was to
deposit about 3 ML of Al, heat the sample to 800 C, and
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cool immediately. Similarly, the ~7 x ~7 and the (7x7)-
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FIG. 2. Sample spectra for (a) q =, q0 b = 022qo,
(c) q = qo. e arrows inxh ' dicate peak positions found by

fit. The experimental conditions areoptimizing the aussxan
described in the text.
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where l and l' label the K coordinates and D~~ is the
dynamical matrix for the system. For l = 1, ..., 7 the
coordinates are those within the surface layers shown in
Fig. 4, in which the primed and unprimed coordinates
are restricted to move together. For / & 7, they label
substrate Si(111) planes. The dynamical matrix is given
in terms of the force constants for the system K~& by

D(( = Kn /gm(m) .
FIG. 3. Comparison of continuum model and experiment

along I'K. The crosses mark dispersions in the model while
the squares are peak positions in the experiment. Not all
peaks in the calculated density of states have been plotted
here (see text).

sample temperatures between 20 C and 80 C. A total
range of 3—110 eV for the incident beam energy was used
to collect the data.

For a given input frequency ~ we can de6ne the Green's
function for this model by

N

) [(~ + &O ) ~ll' Dll']+I'l" —~ll" 1

from which the densities of states (DOS) of phonons can
be deduced:

III. SIMPLE MODELS
OF SURFACE LATTICE DYNAMICS

2&
p, I (~) = — lm[G„, (~)]. (4)

This section is devoted to a description of the lattice
dynamical models we use to interpret the experimental
results. Neither of our two models contains a complete
description of the true lattice dynamics of the adsorbate-
substrate system. However, they have the merit of being
parameter free, as all the force constants are uniquely
determined by the results of electronic-structure calcula-
tions or by the bulk elastic constants. Both are general-
izations of an earlier model introduced by Northrup.

This model contained motion of only the three topmost
Si layers and the Al adsorbate layer and only those mo-
tions allowed at q = 0, where q is the surface wave vector.
The model included only seven degrees of freedom, the
force constants for which were calculated in a supercell
approach, using an electronic-structure calculation which
had already been successful for the ground-state config-
uration and electronic surface states. Yet this calcula-
tion yielded very good agreement with the only observed
phonon at the time of the calculation and also correctly
predicted another long-wavelength phonon. Our two gen-
eralizations of this model help explain why it worked so
well and also incorporate some features from the experi-
ment.

I
ii 7
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JL4

8

TOP VIEW

SIDE VIEW

Al atom

First layer Si atom

~ Second layer Si atom

Q Third layer Si atom

A. Chain model for q = 0

In this model, we couple the force constants calculated
by Northrup for the surface layers to a large number of

FIG. 4. Schematic of unit cell used for lattice dynamical
models, where arrows indicate included coordinates. The
open circle represents Al, the solid circles represent Si. The
lattice repeats periodically in the parallel direction.
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These satisfy the normalization condition

N

did ) Pii(CO): N (5)

ture, we invoked the simple assumption mentioned above.
The seriousness of this shortcoming is best assessed by
the comparison with experiment in Sec. IV.

where N is the total number of degrees of freedom in the
calculation. We define the surface DOS as the projection
of the total DOS onto the surface coordinates

p~(~) —).«~(~)

and the dipole-projected DOS as the total DOS projected
onto the assumed dipole, the Al-Si stretch,

pdip(~) pll(~) + pss(~) pls(~) p31(~) (7)

using the notation displayed in Fig. 4.
The force constants for the surface layers were taken

directly from Northrup's calculation. The force constants
for the substrate layers were taken from a bulk calcula-
tion of interlayer (111) force constants. ~s We also took
these as the coupling constants between substrate layers
and surface layers. This should be a good approxima-
tion, as the lowest surface layer has an intralayer force
constant close to the bulk value, and the coupling to the
higher surface layers is already generally weak, because,
for longitudinal motion, the interlayer force constants fall
off rapidly.

The surface reconstruction poses a more difBcult ques-
tion. Parts of the Si surface layers can move indepen-
dently of each other. For example, coordinates 4 and
7 label independent sections of a single Si(111) layer.
However, the above prescription yields only force con-
stants for rigid motions of complete planes. We remove
this ambiguity by making the simplest possible assump-
tion, namely that the restoring force between a substrate
layer and a piece of a surface layer is proportional to
the number of atoms (per unit surface cell) in that sur-
face layer. We hope that this will be approximately true
for the real interplanar forces. In fact, this assumption
would be strictly valid if the total interplanar restoring
force were due to a sum of equal forces between pairs of
atoms in each plane separated by the minimum interpla-
nar atomic distance and no force between any others, but
this is unlikely to be true for Si and not necessary for our
assumption to yield a good approximation. In any event,
our results are insensitive to these details.

How accurate can we expect this calculation to be? We
first note that q = 0 motions parallel to the surface have
not been included. Although planar force constants are
also available for bulk transverse motions, they have not
been calculated for the surface layers. However, by sym-
metry, these are decoupled from the perpendicular mo-
tions, so their absence does not change the values of the
calculated frequencies. A more serious limitation is the
exclusion of bulk motions at the unreconstructed surface
zone boundary point M which, due to the reconstruction,
are folded into I for our surface. To include these would
require a second set of interlayer force constants for the
substrate. Because these are not available in the litera-

B. Continuum mociel for Bnite q

The above calculation works only at q = 0, but the ex-
periment yields the dispersion of the phonons. To model
this we need effective force constants between individual
atoms and to deduce these from the force constants given
by Northrup we make the same assumption as before. We
assume that the restoring force produced by the motion
of several atoms relative to one another is due entirely
to the stretch of the bonds of smallest length, and that
contributions from longer bonds are negligible. To see
what this means, consider a motion in which the coordi-
nates labeled 7, 7' move rigidly relative to those labeled
6 and 6' in Fig. 4. When these four atoms move relative
to each other in this way in the original model, there is
a restoring force which we attribute to the stretching of
only the two shortest bonds, namely the 6 —7 and the
6' —7' bonds. So our assumption implies that the stretch
of any 6 —7 bond has a force constant of Ks&/2, where

KQ7 is Northrup s value, if their equilibrium separation is
the shortest possible for a 6 —7 bond, and zero otherwise.

We repeat this process to deduce the force constants
for all shortest bonds. In fact, the relation between these
shortest distance force constants and the values in the
original calculation depends only on the positions of each
of the atoms in the neighboring pair within the surface
plane, not on their positions in the normal direction.
Note that for pairs of collective coordinates on the same
set of sites, e.g. , 2 and 5, the shortest distance bonds
are those of individual coordinates on the same site, i.e. ,

(2, 5), (2', 5'), and (2",5"). We write the 7 x 7 matrix of
shortest distance force constants in terms of Northrup's
as

Kp ——KpjS p,
(SD)

where n, P = 1, ..., 7, K
&

is the original force con-
stant matrix, given in Table I of Ref. 12, and where
the reduction of the single-pair force constant relative
to the collective-coordinate force constant is given by

S p
1,3,4
2,5
6,7

1,3,4
1
3
6

2,5
3
3
6

6,7
6
6
2

Constructed in this way, the matrix K
&

contains the
force constants for all the shortest distance bonds in our
model.

Next we construct the force constant matrix for the
entire surface. We label an individual coordinate by
(n, L), where now n = 1, 2, 2', 2", ... , 7, 7' labels its po-
sition within a surface unit cell and L labels a specific
cell in the surface. Then the force constant between the
(n, L)th coordinate and the (P, L')th coordinate is

K p(L —L') = K ~p O(n, L; P, L'),
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where 8(n, L; P, L') = 0, unless (n, L) and (P, L') are
separated by the shortest distance allowed for such a pair,
in which case it equals 1. Then the dynamical matrix at
a given surface wave vector q is

(10)

of the surface atoms, e are their directions, R are their
positions within the surface plane, m are their masses,
and A is the area of a surface unit cell. This projected
Green's function is then coupled to the dynamical matrix
of Eq. (10) to yield a T matrix which, in matrix notation,
is just

where m1 is the mass of Al and m for all other values
of o. is the mass of Si. Here the sum over L includes all
surface unit cells, but in our case, only the L = 0 and
nearest-neighbor cells have nonzero contributions. Fi-
nally, to find the frequencies and eigenvectors, one solves
the 13 x 13 eigenvalue equation

(15)

This T matrix is an effective dynamical matrix for the
coupled system, as the equations of motion are

13

) [~'h p
—T p(cu, q)]up = 0,

@=1

This yields 13 modes for each value of q, which we could
compare with the experimentally observed modes.

However, the model as stated above would still include
only the first few surface layers and therefore be missing
any long-wavelength acoustic modes. To overcome this
difFiculty, we couple the surface layers to a continuum
model for the Si substrate. We follow the method used
by Morse and Mele to analyze the Rayleigh wave on
As:Si(lll). The restoring forces which previously cou-
pled the surface layers to an immobile background now
couple them to the surface of an elastic Si continuum.
The equations of motion and their solution are described
in some detail by Morse and Mele, and here we only state
the solution, generalized to allow several surface degrees
of freedom. We define the Green's function for the sub-
strate elastic continuum as obeying stress-free boundary
conditions and the inhomogeneous equation

) ur 6;,. + —) G'"~ 0kB g,
'" '

(ur; R —R', z, z')
j=l ( km

= 8;,b( )(r —r'),

where i, j represent Cartesian coordinates, p is the den-
sity of the medium, (C*k~ j are the elastic constants
of the medium, and g,

'." '
(w; R —R,', z, z') is the three-

dimensional Green's function, evaluated at frequency ~
and positions r = (R, z) and r' = (R', z'). We next
project this onto the coordinates of the surface layers by
defining

G(subs) ( i iq (R —RP) V

P

xe g('" ')((u, q) ep,

analogous to Eq. (9) of Ref. 6. The Green's function for
the coupled system is then

G(u), q) = [(~+ i0+) —T(~, q)] (17)

from which the DOS may be easily calculated:

2'
p p(cu, q) = — Im[G(~; q) p]

analogous to Eq. (4).
The physics behind this coupling can be seen in the def-

inition of the T matrix, Eq. (15). We can imagine a rigid
substrate as one having infinite mass density, thereby
making G~'" '~ = 0, so that the T matrix is just the
dynamical matrix of the original problem. On the other
hand, for small w and q, G 'p

'
(ur, q) becomes very large,

so that the T matrix is just the inverse of the projected
Green's function of the continuum, and the dynamics of
the substrate dominate. In practice, we find the two
sources of dynamical response contributing differently in
different regimes.

The calculation of densities of states for this model is
not much more diFicult than for a rigid substrate. We
approximate the Si substrate Green's function by that of
a semi-infinite isotropic medium, with longitudinal and
transverse velocities set equal to their Si values along
the I"K. In that case, analytic expressions are known
for g,

'" '
(w; R —R', z, z'). For each pair of values (cu, q),

one then only needs to multiply and invert several 13x 13
matrices.

The results of such a calculation are semiquantitative
at best. An exact calculation would include the correct
interatomic forces and a discrete model of the substrate
Si. However, overall trends and rough numbers should be
correct, yielding some insight into the physics involved.

where g('"b') (w, q) is the three-dimensional Green's func-
tion, Fourier transformed in the parallel direction and
evaluated at the surface, i.e. ,

g
"' (z, q) = jd Re*z' g '(z;R, z=s, z'=0).

(14)

In Eq. (13) cs and P label the allowed degrees of freedom

IV. INTERPRETATION
OF EXPERIMENTAL RESULTS

Figure 5 is a picture of DOS calculated in the chain
model. The solid curve is the surface-projected DOS,
the dotted curve is the dipole-projected DOS, and the
arrows indicate the positions of the three observed vibra-
tions we can expect to see in this model (see below). In
practice, we replace 0+ in Eq. (4) by a small finite value
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FIG. 5. Densities of states (in arbitrary units) for the
chain model of q = 0 perpendicular vibrations. The solid
line is the surface-projected density, the dotted line is the
dipole-projected density, and the arrows indicate the posi-
tions of experimental peaks of modes which can be expected
to appear in the chain model.

(0.8 mev) in all our calculations of DOS to broaden very
sharp resonances for plotting and to smooth over any
roughness due to using finite length chains. Note that
we do not distinguish here between true surface modes
and strong resonances, as we have not included all con-
tributions from bulk modes in this model. The figure
shows that, while there are several modes at the sur-
face, only three have a strong dipole projection: 69 meV,
45 meV, and 33 meV. The first and last of these are
discussed by Northrup and are essentially unchanged by
the addition of the substrate layers. The displacements
of the surface atoms in the 45-meV mode are shown in
Fig. 6. This mode is predominantly a breathing mode of
the cluster comprising the Al, the three nearest Si atoms
in the next layer, and the two Si atoms directly beneath.
There is also a small contribution from another mode at
47 meV, which is essentially a vertical vibration of the
top Al and Si layers relative to the bottom two Si lay-
ers. The frequencies of these modes are suKciently close
to make them experimentally indistinguishable, and be-
sides, neither exactly correspond to the observed mode
energy of 42 meV. This small discrepancy may be at-
tributed to simplifying assumptions of the chain model
(see Sec. III A). The good agreement between peaks in
the dipole-projected DOS of the Al:Si stretch and the
q = 0 peaks of the experiment is consistent with the
strongest dipole lying along this bond.

This calculation improves upon the earlier calcula-
tion in several ways. Most importantly, we see that
most of the modes found in that calculation are insensi-
tive to the details of the substrate, because the cluster
at the surface is so tightly bound together. This explains
the success of the few surface layer model for the modes
observed. Second, the original calculation produces a
spurious mode at 15 meV, in which the surface layers
move rigidly relative to the fixed substrate. This artifact
does not appear in the chain model, which includes modes

with frequencies ranging continuously down to zero. Fi-
nally, another mode appears in the original calculation
at 41 meV, a mode which would also be a candidate for
the peak in the experiment at 42 meV. The chain model
shows that, when coupling to the substrate layers is in-
cluded, the dipole-projected DOS for this mode becomes
very weak, and so it does not appear in this more realistic
calculation.

Next we consider the dispersion of the surface modes.
In Fig. 3 we plot both the experimental (squares) and
theoretical (solid lines) dispersions of modes along I'K.
The calculation is that described in Sec. IIIB. We have
included in the theory plot only those peaks which corre-
spond with experimentally observed modes. Other peaks
appearing in the surface-projected DOS have not been
shown as, without experimental verification, and in the
absence of a more sophisticated calculation, there is no
way to determine if they are artifacts of the model.

As the fi.gure indicates, the three modes at 33 meV, 45
meV, and 69 meV disperse very little across the Brillouin
zone, in qualitative agreement with the experiment. Fur-
thermore, the eigenvectors are almost unchanged out to
the zone boundary. Note that as many of the coordinates
included in the model represent motions of atoms perpen-
dicular to the surface, most of the modes are transverse
modes, i.e. , dominated by transverse motions. This is
true for all the modes plotted in Fig. 3.

The dipole-projected DOS of this model at q = 0 is
very similar to that of the chain model of Fig. 5. How-
ever, for finite q, this projection is not so useful, dipole
scattering no longer dominates. We have studied the

TOP VIEW

SIDE VIEW

Al atom

Q First layer Si atom

Second layer SI atom

9 Third layer Si atom

I'IG. 6. Motions of atoms in the 45-meV mode at q = 0.
Lengths of arrows represent sizes of displacements.
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intensities of the experimental peaks as a function of an-
gle away from specular in an attempt to determine which
modes are seen by impact scattering and which are dipole
active. " Only the intensity of the 69-meV peak follows
the intensity of the elastic peak as q grows, so much
so that this peak was no longer visible beyond about a
quarter of the way through the zone. This suggests that
this mode is strongly dipole active. All others showed
evidence of impact scattering, i.e., the peaks remained
strong even out to the zone boundary.

Now we discuss how the Rayleigh mode was plotted in
Fig. 3. We calculated the optical branch of this mode,
due to the folding back of the unreconstructed surface
Brillouin zone, simply by extending the calculation to
values of q into a neighboring zone, &om K to I' in that
zone. As the elastic continuum contains no information
about the lattice structure, and in particular about the
surface reconstruction, the Rayleigh mode continues to
disperse beyond the boundary of the first Brilloin zone.
This dispersion was then reflected back into the original
zone and plotted on Fig. 3. Note that in general the
theory predicts a dispersion somewhat lower than was
found in the experiment. This can be attributed to two
eKects: the lack of a zone-boundary gap, which ought to
be present due to the reconstruction, and the tendency
of the continuum model to underestimate the Rayleigh
wave frequency. Note that the experimental results are
close to those for the Si(111)-(1x 1):H surface, both at
I' [compare with M on the (1 x 1) surface] and at K
[compare with the mipoint of I'M on the (1 x 1) surface].

So far we have avoided discussing the mode observed
at 60 meV in the experiment. Why does it not appear in
the theory, especially in the chain model at q = 0? We
suggest this may be a I ucas mode which does not appear
in the chain model either because it has been folded back
from the unreconstructed zone boundary to j." or because
it is polarized parallel to the surface. Modes at similar
energies have been found in both experiments and
calculations '~s 2 on both Si(111) (2 x 1) and Si(111)-
(1 x 1):H. The detailed nature of this mode must await a
fuller theoretical description of the lattice dynamics than
that presented here.

We conclude this section with the results of further
calculations based on this model. We have calculated
the surface phonons along all high symmetry directions
in the Brillouin zone and found results qualitatively sim-
ilar to those discussed above. Such calculations can eas-
ily be reproduced by following the prescription given in
Sec. III. In Fig. 7 we have repeated the calculation with-
out changing any force constants, but by replacing the
Al mass by that of In. The modes are qualitatively sim-
ilar to those in Al, with small changes in their frequen-
cies, except for that at about 15 meV. This mode i8 the
folded-back Rayleigh mode for this surface, appearing
here in the chain model. In this case, the heavy adsor-
bate imposes the characteristic displacement pattern of
a folded-back eigenvector on the neighboring Si atoms,
even though the substrate layers are restricted to rigid
motions. The true mode has the folded-back motion al-
lowed in the substrate layers and so can be expected to
have a slightly different frequency.

I I I I I I I I I I I I I I I I

0.4—

3
~ 0.2

0.0
20

~ (rneV)
60

FIG. 7. Density of states calculated in the chain model for
In/Si(ill) along q = 0, assuming the same force constants as
Al.

V. CONCLUSIONS

An angle-resolved HREELS study of the Si(111)-
(~3 x ~3)B30':Al surface has been performed and sev-
eral surface phonons observed. These have been inter-
preted using two very simple models for the lattice dy-
namics, which together reproduce all the modes seen in
the experiment, with the exception of an almost disper-
sionless mode at 58 meV. Both of these models include
the bulk lattice dynamics in some form. Their chief defect
lies in their incompleteness, when compared with more
sophisticated lattice dynamical models in state of the art
calculations. However, because the force constants have
been deduced from an electronic-structure calculation,
these models have no adjustable parameters. Thus com-
parison with experiment provides an unambiguous test
of their validity. This is to be contrasted with many
larger calculations, based on phenomenological models
for the dynamics, in which the force constants are fit to
the bulk dispersion curves and may be further adjusted
at the surface. The usefulness of such a procedure can
be undermined by the nonuniqueness of such a fit. Fur-
thermore, our model is easy to program (the calculations
may be performed on a personal computer) and concep-
tually straightforward, so that the underlying physics can
be easily understood. Such a simple approach may prove
very useful to experimentalists working on other surfaces,
especially when deciding what might be interesting to
look at.

While the agreement with experiment is satisfying,
there is much work yet to be done. This agreement
provides strong evidence that the force constants are
correct and could be coupled to a full calculation em-
ploying bulk interatomic Si force constants to get the
full dispersion curves. The results of such a calcula-
tion should not difFer markedly from those given here,
while a peak intensity analysis could be performed using
multiple-scattering theory. These should provide fur-
ther evidence for the validity of the electronic-structure
calculation. Also, He scattering experiments could be
done to plot out the full Rayleigh wave dispersion curve
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to further bolster our understanding of this system and
to justify a more sophisticated calculation.

ACKNOWLEDGMENTS
We are grateful to Bob Phelps, Kieran Mullen, and Bill

Schaich for useful discussions, and to John Northrup for

enlightening conversations about his lattice dynamical
model. This work was supported by the U.S. Department
of Energy through Grant No. DE-FG02-84ER45147
(P.A. , G.G. , and L.K.), and by the National Science
Foundation under Grant No. DMR-89-03851 (K.B.).

* Present address: Department of Physics, Clarion Univer-
sity of Pennsylvania, Clarion, PA 16214.

t Author to whom correspondence should be addressed.
For a recent example, see Karl D. Brommer, M. Needels,
B.E. Larson, and J. D. 3oannopoulos, Phys. Rev. Lett. 68,
1355 (1992).
For a review of surface lattice dynamical calculations, see,
for example, Surface Phonons, edited by W. Kress and F.
W. de Wette (Springer-Verlag, Berlin, 1991).
D. C. Allan and E. J. Mele, Phys. Rev. B 31, 5565 (1985).
O. L. Alerhand, D. C. Allan, and E. 3. Mele, Phys. Rev.
Lett. 55, 2700 (1885).
D. C. Allan and E. J. Mele, Phys. Rev. Lett. 53, 826 (1984).
D. C. Morse and E. J. Mele, Phys. Rev. B 40, 3465 (1989).
E. 3. Mele, D. C. Allan, O. L. Alerhand, and D. P. DiVin-
cenzo, J. Vac. Sci. Technol. B 3, 1068 (1985).
H. Huang, S. Y. Tong, W. S. Yang, H. D. Shih, and F.
Jona, Phys. Rev. B 42, 7483 (1990).
J. M. Nicholls, B. Reichl, and J. E. Northrup, Phys. Rev.
B 35, 4157 (1987).
J. E. Northrup, Phys. Rev. Lett. 53, 683 (1984).
Northrup's result for the ground-state configuration has
been further veri6ed by a Grst-principles molecular-
dynamics simulation; see H. Tsuge, M. Arai, and T. Fu-
jiwara, Jpn. J. Appl. Phys. 30, L1583 (1991).
J. E. Northrup, Phys. Rev. B 39, 1434 (1989).
M. K. Kelly, G. Margaritondo, 3. Anderson, D. J. Frankel,

and G. J. Lapeyre, J. Vac. Sci. Technol. A 4, 1396 (1986).
M. K. Kelly, G. Margaritondo, J. Anderson, D. J. Frankel,
and G. J. Lapeyre, J. Vac. Sci. Technol. A 4, 1481 (1985).
G. S. Glander, P. Akavoor, and L. L. Kesmodel, Phys. Rev.
B 44, 5893 (lggl).
A. Fleszar and R. Resta, Phys. Rev. B 34, 7140 (1986).
H. Ibach and D. L. Mills, Electron Energy Loss Spectro8copy
and Surface Vibrations (Academic Press, New York, 1982).
H. Ibach, Phys. Rev. Lett. 27, 253 (1971).
U. Harten et al. , Phys. Rev. B 38, 3305 (1988).
D. Roy and J.D. Carette, in Electron, Spectroscopy for Sur
face Analysis, edited by H. Ibach (Springer, Berlin, 1977);
Can. J. Phys. 49, 2138 (1971);D. Roy, A. Delage, and J.D.
Carette, J. Phys. E 8, 109 (1975).
L.L. Kesmodel, J. Vac. Sci. Technol. A 1, 1456 (1983).
See N. W. Ashcroft and N. D. Mermin, Solid State Physic8
(Holt, Rinehart, Wilson, Philadelphia, 1976).
A. A. Maradudin and D. L. Mills, Ann. Phys. (N.Y'.) 100,
262 (1976).
L. Miglio et aL, Phys. Rev. Lett. 62, 3070 (1989).
F. W. de Wette, in Surface Phonons, edited by W. Kress
and F. W. de Wette (Springer-Verlag, Berlin, 1991),p. 67.
D. L. Mills, S. Y. Tong, and J. E. Black, in Surface
Phonons, edited by W. Kress and F. W. de Wette (Ref.
25), p. 193.
R. B. Doak and D. B. Nguyen, Phys. Rev. B 41, 3578
(1990).


