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Effects of three-body and backflow correlations in the two-dimensional electron gas
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We investigate the efFects of three-body and backfIow correlations on ground-state properties of
the two-dimensional electron gas by both variational and fixed-node Green s-function Monte Carlo
methods. It is found that the backfIow efFect is dominant over the three-body efFect at high density
(v, 1) while they are of equal importance at the lowest density considered (r, 20). With these
correlations, we find significant improvements in both variational and fixed-node energies over the
Slater-Jastrow results which consider only two-body correlation. The efFects are comparable to those
in bulk He. We present an analytic expression for the correlation energy of the two-dimensional
electron gas as a function of the density.

I. INTRODUCTION

The homogeneous electron gas, which is a system of
electrons interacting with each other through a 1/r po-
tential to which a uniform positive background is added
for charge neutrality, is one of the most simple and widely
used models to study the electronic motion in two di-
mensions. This can actually be realized at interfaces
of GaAs/Al Gai As heterostructure and metal-oxide-
semiconductor structure and there has recently been a
great deal of experimental work on the system. In ad-
dition, electrons in two-dimensional (2D) systems are of
much interest since the copper-oxide planar structures
are crucial to the superconducting properties of high-T,
materials and under strong magnetic fields they display
some fascinating phenomena such as the integer and frac-
tional quantum Hall effects. This paper is concerned only
with the ground-state properties of the 2D electron gas
at zero magnetic field, which have been studied by vari-
ous approximate methods in many-body physics. To
calculate the zero-temperature properties of this system,
Tanatar and Ceperley used the variational (VMC) and
the fixed-node Green's-function Monte Carlo (GFMC)
methods with trial wave functions which consisted of the
Slater determinant of single-body orbitals and products
of two-body correlation functions.

There has been recent progress in understanding
the importance of higher-order correlations in liquid He,
a strongly correlated quantum Fermi liquid. When back-
flotv effects were put into the Slater determinant, good
agreement for the total binding energy with experimental
results was obtained. The idea of backfIow was orig-

inally suggested by Feynman and Cohen based upon
conservation of particle current and the variational prin-
ciple.

In this paper, we consider the effects of three-body and
backfkorv correlations among electrons. As will be ex-
plained in Sec. II, the results of both VMC and Bxed-
node GFMC method depend upon the trial wave func-
tion used. The nodal structure of the wave function is
changed by backflow correlations, resulting in lower fixed-
node energies. We have investigated how these higher-
order correlations'affect the ground-state properties, es-
pecially correlation energies and pair distribution func-
tions, of the 2D electron gas when compared to the two-
body trial function. In our forthcoming paper, we will
examine the properties of particle-hole excitations with
these improved wave functions and try to 6.nd the Fermi-
liquid parameters of this system. Furthermore, we have
found that backflow correlation is crucial to determine
the Fermi-liquid parameters because the interactions be-
tween quasiparticles with different spins cannot be fully
explained without this correlation. Monte Carlo work
with backfIow correlation was previously done only for
bulk He. ' To our knowledge, this is the 6rst applica-
tion to an electron system. We compare our results for
the 2D electrons with the previous results for 3D bulk
3He.

All properties of the electron gas without magnetic
fields are a function of the dimensionless parameter r, =
a/ao, where ao is the Bohr radius, a = 1/grrp is the
radius of a circle which encloses one electron on the av-
erage, and p is the number density. Using energy units
of Ry/electron and length units of a, the Hamiltonian of
A electrons is
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II. MONTE CARLO METHOD

In a VMC simulation, one estimates the properties of
a given quantum state assuming a trial wave function
@T(R) with the correct symmetry, where R represents a
point in the 2N-dimensional space which describes the
positions of N particles. The variational energy is just
the average of local energies, EI, (R) = H4T(R)/@T (R),
if B is sampled with Metropolis algorithm1 from the
probability density function

i CT(R) i' dR
i

@T (R) i'.

The choice of a trial wave function is very important in
a VMC method like any other variational method. We
can get a good upper bound to the exact energy by this
method if a reasonable trial wave function is used.

In order to calculate more accurate fermion ground-
state properties, the GFMC method is used assum-
ing the fixed-node approximation. In this method, the
Schrodinger equation for a many-body system is solved
by treating it as a diffusion equation. The Schrodinger
equation multiplied by a trial function @T(R) written in
imaginary time t is

N
( ) )- ( f f,„)

s i=1

where the constant is the term due to the uniform back-
ground of opposite charge. We are here interested in the
density range 1 & r, & 20. The ground state of the
2D electron gas at these densities was shown to be in a
normal (spin-unpolarized) liquid phase. Most of the ex-
periments on this system have been done for the density
range 1 & r, & 5.

In the next section, we introduce the basic scheme of
both VMC and fixed-node GFMC methods and show the
form of our improved trial wave function including three-
body and backflow correlations. In Sec. III, the results of
our simulation using both VMC and fixed-node GFMC
are presented and we analyze how much these higher-
order correlations affect ground-state properties. We also
present a new fit to the correlation energy as a function
of the density.

fixed-node approximation is made to avoid the negative
weights that would otherwise be generated by the anti-
symmetric property of fermions. The fixed-node GFMC
energy is known to be an upper bound to the exact en-

ergy, and usually lies well below the variational energy.
We will try to assess how accurate the fixed-node ener-
gies are. If the nodes of our trial wave function are the
same as those of the exact eigenfunctions, this method
gives rise to the exact ground-state properties. This is
one of the reasons why a good trial function is very im-
portant even in the GFMC method. In addition to that,
improved trial functions significantly reduce the equili-
bration time by initiating the stochastic process nearer
the ground state and act to reduce statistical errors.

The usual choice of a trial function is of the Slater-
Jastrow type

N

@T(R) = det(p „) exp —) u(r, , ) (4)

2 -1
So(k) = —[sin (y) + y(l —y )'~ ], (6)

and y = k/2k~. This correlation function possesses
properties which the optimal one has, such as the cusp
condition,

du(r)
lim rsdr

and the long-range behavior necessary for the correct
plasmon dispersion,

where y~ = e'~ '" for a homogeneous liquid phase and
k & k~ occupied. The nodal structure of the many-
body wave function O'7 (R) is determined by only the
Slater determinant. There are actually two separate de-
terminants for the spin-up and spin-down states because
the Hamiltonian of Eq. (1) is spin independent. We use
the correlation function u(r) that minimizes the varia-
tional energy in the random-phase approximation (RPA)
as first derived by Gaskell and determined in Ref. 22
to be nearly optimal. The RPA correlation function for
a liquid phase is

1/2
1 ( 1 4v(k)mp)

S,(k) S,'(k)

where p is the density of the system, v(k) = 27re /k is the
Fourier transform of the Coulomb potential, So(k) is the
static structure factor for the system of noninteracting
fermions

where f (R, t) = 4(R, t) @z (R) is a probability distribu-
tion. The initial ensemble of configurations (R) with
probability density f (R, 0) =

~

@T(R)
~

is evolved for-
ward in time by the above diffusion equation and reaches
the equilibrium distribution at suKciently large t. This
equilibrium distribution is determined by the probability
density f(R, oo) = C (R)@T (R), which is called the mixed
distribution. Here, C (R) is the lowest-energy eigen-
function of the Hamiltonian which satisfies the fixed-
node boundary conditions [i.e. , C'(R) O'T(R) ) 0]. The

lim u (r) = 1.48
T ~OC) r

- 1/2

With this trial wave function, Ceperley and Tanatar
and Ceperley calculated the ground-state properties
of the 2D electron gas using both VMC and fixed-node
GFMC methods.

In order to get better results for the ground-state prop-
erties of this system, we consider improved trial functions
which include backQow and three-body correlations and
investigate the effects of these correlations. Using the
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local energy method in Appendix A, we assume an im-
proved trial wave function which has the form ' of

IIIT (R) = det(e* *" ')
N

x exp —) u(r;, )—

1.2

1.0

0.8

where x., 's are quasiparticle coordinates displaced from
the real coordinates by a bosonic force

(10)

0.2

0.0
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r/a
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FIG. 2. Optimized three-body correlation functions ((r )
for r, = 1 (o), 5 (~ ), 10 (0), and 20 (S).

and
i+i

u(r) = u(r) —AT ( (r) r
1+ s~r

rgg + ~~r + r7~'

In addition to the two-body correlation, this improved
ansatz includes the three-body correlation C(l) C(l)
and the state-dependent correlation k (r, —rz)rl(r, ~),
which incorporates backflow effects originally introduced
by Feynman and Cohen. The latter changes the nodal
structure of the wave function. The terms of —AT ( (r) r
cancel two-body terms arising from G(l) . C(l). We
call ((r) the "three-body correlation fuiiction" and rl(r)
the "backflow correlation function. " We have used spin-
independent forms for both three-body and backflow cor-
relations as was done for the two-body correlation.

Our calculations are done for a finite number % of elec-
trons in a square simulation cell with periodic boundary
conditions. The Ewald method is used for two-body
correlations u(r) to minimize size effects. The correla-
tion functions rl(r) and ((r) are required to go to zero
smoothly at a cutoff distance r equal to half the side of
the simulation cell we use:

The backflow and the three-body correlation function are
parametrized as

1 5, 0

and

((") = xp[ (" "T) / T1

V@~ —— (16)

using the correlated sampling method. ' If our trial
function 4T were the exact ground-state wave function,
the variance would be zero. The optimum sets of varia-
tional parameters for these correlations, which of course
depend upon the density of the system, are given in Ta-
ble I. Figure 1 shows RPA two-body correlation functions
as a function of the density. The forms of optimized back-
flow and three-body correlation functions are presented

3.0

This functional form for rl(r) satisfies the long-range be-
havior presented in Appendix A, while our three-body
correlation has the same form as that used for liquid He
in Ref. 14.

In order to optimize our higher-order correlation func-
tions, we minimize the variance of the local energy, de-
fined by

1 0.0
2.0

5.0
1.0

0.0
0.0

I I I I I I I I I

1.0 2.0 3.0 4.0 5.0
r/a

0.0
0.0 1, 0

r/a
2.0 3.0

FIG. 1. RPA correlation functions u(r) at r, = 1, 5, 10, 20.
The larger r, values correspond to the larger u(r) at a given FIG. 3. Optimized backflow correlation functions rI(r) for

r, = 1 (o), 5 (~), 10 (0), and 20 ().
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TABLE I. Qptimized variational parameters of three bo-dy and backgoio correlation functions for
N =58.

1.0
5.0

10.0
20.0

Ag
0.083
0.185
0.664
0.262

8g
0.761
0.299
-0.161
0.908

rB
0.200
0.050
0.040
0.020

tU gy

1.276
0.533
1.516
0.582

AT
-0.110
-0.470
-0.929
-0.954

rT
0.156
0.225
0.284
0.322

8)T
0.883
0.954
0.908
0.959

in Figs. 2 and 3, respectively, from which it can be seen
that our higher-order correlations are short ranged and
so the finite-size adaptation in Eq. (13) does not have a
signi6. cant effect.

The technical difhculty in using a trial function with
the backflow correlation is that there is no advantage
for moving only one electron at a time because each el-
ement of the Slater matrix is a function of all the elec-
tronic positions. Therefore, we move all particles simul-
taneously to increase computational efFiciency. The most
time-consuming part in this process is to calculate the
kinetic energy for a given configuration. An efII.cient
way to calculate these terms is given in Appendix B.
The time step (rnF) in one VMC step with the back-
flow correlation is about 10'%%uo of one (7s~) in the Slater-
Jastrow simulation. The eQciency of VMC, defined by
1j[var(E„) x CPU time], with the backflow wave func-
tion is about 20'%%uo of one with the Slater-Jastrow func-
tion (for example, at r, = 10, rsg = 23.0, 7BF = 2.8,
effs J ——220 x 10, eff'BF = 041 x 10 ) . In GFMC, the
Slater-Jastrow trial function is only twice as eKcient as
the backflow function since the time steps we used are
different only by a factor of 2.

III. GROUND-STATE PROPERTIES

A. Monte Carla results

First we calculated the ground-state properties of the
system with N = 58 electrons by both VMC and GFMC
methods with the Slater-Jastrow trial functions, where
the RPA correlation functions of Eq. (5) were used. It
can be seen Rom Table II that our variational energies

are equal to those of Tanatar and Ceperley within the
error bar at r, = 5, 20 but are different from theirs at
r, = 1, 10, while our Axed-node GFMC energies are sig-
ni6cantly higher than theirs over the whole density range
considered. Their GFMC results are systematically too
low. This error approximately cancels the error due to
the Axed-node approximation with the Slater-Jastrow
function, so that their results are fortuitously close to
our present Anal results.

The same calculations have been done with the im-
proved wave function in Eq. (9). We can see from Table
II that both VMC and Axed-node GFMC ground-state
energies with the wave functions including backflow and
three-body correlations improve significantly the results
with the Slater-Jastrow wave functions. Figure 4 shows
the effect of backflow and three-body correlations on the
remaining correlation energy beyond the Slater-Jastrow
variational result and on the correlation energy missing
in the Slater-Jastrow fixed-node method. At a high den-
sity of r, = 1, the effect by the three-body correlation is
negligible and the backflow effect is dominant. However,
as the density decreases, the three-body effect increases
while the backflow effect decreases. At a low density of
r, = 20, the effects of these two correlations are almost
the same. We can conclude from the trends of Fig. 4
that at the density where Wigner crystallization occurs,
estimated to be r, 37 by Tanatar and Ceperley, the
three-body effect will be dominant. This is consistent
with the fact that the velocity-dependent backfIow cor-
relation is less important as electrons are localized by a
strong correlation. The combined effects of both higher-
order correlations in the variational wave function ac-
count for 60—70%%uo of the remaining correlation energy be-
yond the Slater-Jastrow variational energy. At high den-

TABLE II. Variational and 6xed-node GFMC energies with various trial wave functions for
N = 58 in Ry per electron. (TC', energies obtained by Tanatar and Ceperley with the
Slater-Jastrow function in Ref. 11; SJ, the Slater-Jastrow function; 3BD, three-body correlation;
BF, backflow correlation. )

Method
VMC

Trial wave
functions

TC*
SJ

SJ+3BD
SJ+BF

SJ+3BD+BF

r, =1.0
-0.3905(3)
-0.3879(2)
-0.3894(5)
-0.4024(5)
-0.4029(5)

r, =5.0
-0.2940 (3)
-0.2936(1)
-0.2947(1)
-0.2972(2)
-0.2976(l)

r, = 10.0
-0.16851(5)
-0.16837(2)
-0.16895(2)
-0.16962(2)
-0.17000(2)

r, = 20.0
-0.09165(4)
-0.09164(1)
-0.09195(2)
-0.09199(2)
-0.09225(2)

GFMC TC*
SJ

SJ+3BD+BF

-0.4092(6)
-0.4043(5)
-0.4087(2)

-0.2998(1)
-0.2980(l)
-0.2991(1)

-0.17105(8)
-0.17037(2)
-0.17086(1)

-0.09273(2)
-0.09248(1)
-0.09265(1)
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We see that this estimate of the exact energy is lower
than our best fixed-node result by approximately 0.0005
Ry/electron. Since our extrapolation is quite crude, this
must be viewed as a rough estimate of the fixed-node
error. Release-node calculations possibly using the
maximum-entropy method could be done to get a more
accurate estimate of the exact ground-state energy.

The pair distribution function, defined by

0.20—

&0 I » I I I I I I I «« I I I I I I I I I I0 0

g()=~) (~ (r' r )) (17)

00 50 100 150 200 250
r

FIG. 4. EfFects of three-body and backflow correlations
as a function of the density of the system. The vertical axis
shows AE/DEsz = (E—EaFMc)/(Ev EoFMc) that is, the
one corresponds to the Slater-Jastrow variational energy E&
and the zero to the GFMC energy E&&Mc with the trial func-
tion including three-body and backflow correlations which is
the best estimate of the exact energy available at the present
time. (a) shows the effect by the three-body correlation, (b)
the effect by the backffow, and (c) represents the combined
effect of both correlations. Finally, (d) shows the result by
the GFMC method with the Slater-Jastrow function.

sities (r, & 5), this variational energy is almost as low as
the fixed-node energy from the Slater-Jastrow trial func-
tion, which captures about 80gj& of the remaining correla-
tion energy throughout our density range (1 & r, & 20)
within statistical errors.

Figure 5 shows how the variance of the local energy
defined in Eq. (16) changes at r, = 10 depending on
the variational energy, that is, the trial wave function.
We can see that the variance gets smaller as the varia-
tional energy improves. The extrapolation to the zero
variance [Fig. 5(c)] gives some idea of the exact energy.

is one of the important microscopic properties of the sys-
tem which can be calculated by the Monte Carlo meth-
ods. First, we calculated these functions by variational
methods. Those results could depend upon the trial
wave functions used. Figure 6 shows at r, = 10 the
Slater-Jastrow variational calculation g&~~(r) and how the
variational result changes when backflow and three-body
correlations are added. It can be seen from Fig. 6(b)
that the backflow correlation tends to increase the prob-
ability that two electrons are close to each other up to
the distance of 1.5a while decreasing the probability that
two electrons are separated by the mean electron dis-
tance ( 2a), which corresponds to the peak position of
the pair distribution function, and beyond that distance.
Figure 6(c) shows the three-body correlation makes it
more probable that two electrons are very close to each
other up to about 0.8a and separated by the mean elec-
tron distance while making it less probable that the other
electrons exist at the distances of 0.8a 1.5a [before the
peak of g(r)] and 2.2a 3a (after its peak) from one
electron, compared to the Slater-Jastrow result. That is,
the backflow correlation makes the shape of g(r) more
smooth around its peak and the three-body correlation
makes it more structured.

Figure 7 shows the differences at r, = 1, 5, 10, and
20 between two variational pair distribution functions
gP(r), obtained with the Slater-Jastrow trial functions,

0. 167

-0. 168—

N4 -0. 169—

- -0. 170—
:..'(a)

0
-0. 171'Jb). -

-'(c)

& -0. 172—

0 173 I I I I I I I I I I

0.0 0, 2 0, 4 0, 6 0, 8 1, 0 1, 2

10 Variance

FIG. 5. Variational energy vs variance of local energy with
58 electrons at r, = 10. Each point ~ represents one varia-
tional calculation, (from higher to lower energies) the Slater-
Jastrow, three-body, backflow, and (backflow + three-body)
results, respectively. Points (a) and (b) show the Slater-
Jastrow and the backflow fixed-node GFMC energies, respec-
tively. Point (c) is obtained by the extrapolation through ~

points. Energy unit is Ry per electron.

1,2—

oa 0, 6
(a)

0.0
0.03

g) 0.00
cl P 03

0, 03
0.00

~ -0.03

(b)

(c)
I I I

0, 0 1, 0 2.0 3.0 4.0 5, 0 6.0

r/a

FIG. 6. Variational results for the pair distribution func-
tion at r, = 10. (a) shows the Slater-Jastrow result gv (r),
(b) the difFerence gv (I ) —gv (r) between the Slater-Jastrow
result and the result with the trial function including the
backflow, and (c) represents the difference gv (r) —gv (r)
between the Slater-Jastrow one and the result with the trial
function including the three-body correlation.
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FIG. 7. DifFerences gv "(r) —gv (r) between two varia-
tional results for the pair distribution function, the Slater-
Jastrow result g& (r), and the result g~ (r) with the trial
function including both backBow and three-body correlation
at r, = (a) 1, (b) 5, (c) 10, and (d) 20.

and gvB~(r), obtained with the trial functions including
both backflow and three-body correlations. The effect of
these higher-order correlations at r, = 1 is very similar
to that of the backflow correlation alone [see Fig. 6(b)j
while the effects at r, = 20 are rather like that by the
three-body correlation. These results are consistent with
the fact, found by investigating correlation energy dif-
ferences, that the backfIow correlation effect dominates
over the three-body correlation efFect at a high density
regime of r, 1 but the former decreases while the latter
increases as the density becomes lower.

The exact pair distribution function g(r) within the
fixed-node approximation can be obtained by the GFMC
method. The radial pair distribution function gM(r),
calculated with the mixed distribution f (R, oo)
4(R) @7 (R) in the GFMC method, should be halfway2s
between the variational result g~(r) and the exact one
g(r) if the trial wave function is accurate enough. That
1S,

Note that the error in the variational calculation for g(r)
is of the first order in 4(R) —iifz (R) while the error in this
extrapolation process is of second order. Figure 8 shows
the extrapolated pair distribution functions gsnF(r) cal-
culated by the GFMC method with the trial functions
including both three-body and backflow correlations.

B. Analytic expression for correlation energy

Since the present results are the most exact energies
known for the 2D electron gas, we have used our results
to determine an analytic expression for the correlation
energy as a function of r, . We have followed the same
scheme and the same approximations as Tanatar and
Ceperley. In order to extrapolate to the thermodynamic
limit, the finite-size efFects must be assessed. Tanatar
and Ceperley employed an extrapolation scheme based
upon the Fermi-liquid theory, which assumes that the
energy per particle for a finite system is related to the
bulk energy by

1E~ = E + b, (r.) AT~ + b2(r. )
—.

Here, AT~ is the difFerence between the kinetic ener-
gies of % noninteracting electrons and the infinite sys-
tem at r, = 1. We determine the parameters E
b~, and 62 by a least-squares fit to VMC calculations
with Slater-Jastrow trial functions at different values of
% = 26, 42, 58, 74, 114. In Table III the energies, fitted
parameters, and the y value of the fit are shown. To ex-
tract the extrapolated three-body and backflow GFMC
energy for the infinite system E it is assumed
that the size dependence for the VMC and the GFMC
are the same. We did the GFMC runs only at N = 58
whose results are shown in Table II and then use the
parameters determined from VMC to get E

Having determined the finite-size corrections to the
Monte Carlo energies, we now try to obtain the corre-
lation energy of the 2D electron gas in the normal liquid
phase as a function of the density parameter r, . The to-
tal energy is the sum of the Hartree-Fock energy EHF and
the correlation energy E„and the Hartree-Fock energy
consists of the kinetic energy and the exchange energy

1.4

1.2
1

EHF—r2
S

(20)

1,0

0.8

00

0.4

0.2

0.0
0.0 1.0 2.0 3.0 4.0 5.0 6.0

r/a

FIG. 8. The extrapolated pair distribution function
g,„(r) calculated by the GFMC method with the improved
trial function including both backflow and three-body cor-
relation at densities r, = 1, 5, 10, 20. The larger r, values
correspond to more structured forms.

1+ aux
Ec ap 2 3 )1+ aux'+ a2& + a3

(21)

where x = ~r, and the parameters a, 's in this Pade
approximant are determined by a nonlinear least-squares
fit to the correlation energy at four densities. We use the
constraint of E = —0.390 + 0.005 at r, = 0, which was
calculated with various methods by several authors.
The fitted value for each parameter and the resulting y
value are shown in Table IV.

The correlation energies extrapolated to the infinite sys-
tem at r, = 1, 5, 10, 20 are shown in the bottom row of
Table III. In order to fit the energy to a functional form
of r„we assume the correlation energy can be approxi-
mated by
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TABLE III. Size dependence in the Slater-Jastrow VMC method of normal electron liquid at
1 & r, & 20 and y -fit parameters. Also shown are the extrapolated GFMC energy at an infinite
system (E ) and the correlation energy E,(r, ). The kinetic (T) and potential energies
(V) were obtained by difFerentiating our fit for the correlation energy (see Sec. III C).

@sJ
V N=26

N =42
N=58
N=74

N = 114

r, =1.0
-0.3694(4)
-0.4429(3)
-0.3879(2)
-0.4140(3)
-0.3967(4)

r, =5.0
-0.2935(1)
-0.2960(1)
-0.2936(1)
-0.2945(1)
-0.2937(1)

r, = 10.0
-0.16850(2)
-0.16899(2)
-0.16837(2)
-0.16855(2)
-0.16833(2)

r, = 20.0
-0.09172(1)
-0.09179(1)
-0.09164(1)
-0.09168(1)
-0.09161(1)

@sJ—vMc

b, (r.)
b2(r, )

x'

-0.3990(4)
1.102(7)
-0.40(2)

2 ~ 11

-0.2935(1)
0.044(2)
-0.046 (5)

0.13

-0.16822(2)
0.0105(5)
-0.018(1)

0.41

-0.09157(1)
0.0023(2)
-0.0063(5)

0.38

E3BF—CFMC

(T)
(V)

-0.4195(6)
1.1425
-1.5622

-0.2990(2)
0.0751
-0.3738

-0.17071(4)
0.02519
-0.19594

-0.09258(2)
0.00844
-0.10102

E (r.) -0.2191(6) -0.0989(2) -0.06067(4) -0.03506(2)

Figure 9 shows our Gtted result for the correlation en-
ergy as a function of r„along with results obtained by
various approximate methods. Compared to the previous
Monte Carlo result by Tanatar and Ceperley, our result
shows slightly higher correlation energy at r, & 1 and
lower correlation energy at r, ( 1. The Gt satisfies the
known result at r, = 0 with a y value being 4.59.

Since our parameters were fit to data only for r, & 20,
there is no reason to believe our results should describe
the correlation energy for r, & 20. Nevertheless, we note
that Eq. (21) with our fitted parameters is reasonable
even at very low densities because it gives a total energy
slightly higher than that for the Wigner crystal as ex-
pected. The functional form for the fitted total energy
has the asymptotic form

tallization from our results. This problem was previously
studied by Monte Carlo methods in Ref. 11.

C. Further analysis

The virial theorem for the electron gas may be written
in the form

2(T) + (V) = —&
d„
dE

where (T) and (V) are the kinetic and potential energies
per electron. Since E = (T) + (V), we have

E = EHF+E Y+ + + ~ ~ ~

3/2 r2s rg S

r OO

(22)

-0. 10

Our fitted parameters give rise to cr = —2.1448, P
0.9928, and p = 2.0594. In the crystal phase, the main
contribution to the total energy is a static Madelung
term proportional to —2.2122/r, for the hexagonal lat-
tice which has the lowest Madelung energy in two
dimensions. Since we have not studied either the liquid
or the crystal at low density, it is not justi6ed to attempt
to draw any further conclusions regarding Wigner crys-

-0.20

-0.30

-0.40
(&

0.0 1.0 2.0 3, 0
r

I

4.0 5.0

Gp

-0.3896
Cly

5.544?
CX2

2.7861
A3

2.2939
x'

4.59

TABLE IV. Parameters of the Pade approximants [Eq.
(21)j to the correlation energy determined by a nonlinear
least-squares fit and the resulting y value.

FIG. 9. The correlation energy E, (units of Ry per elec-
tron) as a function of the density parameter r, . The solid
line shows our MC result and the dashed curve is that of Sim,
Tao, and Wu (Ref. 10). x represents the STLS calculation
of Jonson (Ref. 3). Also shown are the results of Freeman by
the coupled-cluster summation in the ring approximation (~,
Ref. 5) and in the ladder approximation (o, Ref. 7).
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1.50—

1.00—

0.50—

the missing correlation energies for a finite system of
58, our extrapolation scheme IEq. (19)] assumes

that they have the same values for an infinite system.
Less energies are missing at higher densities when com-
pared to the kinetic energies, which reHects a weaker ex-
change correlation hole. In order to compare our results
to another correlated system, we also show in Fig. 11 the
same ratios for 3D bulk He from Refs. 13 and 14. We
see the ratios for He are close to the present results for
the 2D electron gas.

0.00
0.0

I I I I I I I I I I I I I I I I I I I I I I

5 0 10 0 15 0 20 0 25 0
r IV. CONCI USIONS

FIG. 10. Kinetic energy (T) per electron divided by the
Fermi energy E+ (= 2/r, Ry) of the noninteracting system
as a function of the density parameter r .

d(r, E)
dp

d(r2E)
r.dr. (24)

0. 14

0, 12 He

0, 10—

0, 08
V I

0, 06
CI

0, 04
I

0.02

0, 00
0.0 5.0 1

I

0.0 15,0 20.0
r

FIG. 11. The energy missing from the Slater- Jastrow
wave function (o) and from the three-body and back8ow
wave function (~ ) divided by the kinetic energy as a func-
tion of the density parameter r, . The vertical axis shows
AE/(T) = (Ev —EoFMo)/(T). The corresponding ratios
for bulk He were calculated at its equilibrium density (see
Refs. 13 and 14).

Therefore, we can calculate (T) and (V) from Eq. (24)
and our fitted expression for the correlation energy ob-
tained in Sec. IIIB. The results are shown in Table III.

Figure 10 shows the kinetic energy per electron divided
by the Fermi energy (E&~ ——2/r2 Ry) of the noninteract-
ing system for the densities considered. Correlations al-
ways lower the ground-state energy while increasing the
kinetic energy above that for the noninteracting system.
As expected, the high-momentum tails are more impor-
tant at small densities, so that (T)/E& increases with r, .
The ratio approaches 0.5 as r, goes to 0.

Figure 11 shows the correlation energies missing from
the Slater-Sastrow wave function and from the three-
body and backHow wave function divided by the kinetic
energy at several densities. Even though we calculated

We have seen from investigating the correlation energy
and the pair distribution function in the ground state of
the 2D electron gas that effects of the three-body and
the backHow correlation depend upon the density of the
system: the backHow effect is dominant over the three-
body effect in the high-density regime but the latter is
as important as the former at low densities r, = 20. The
variational wave function including these correlations is
a significant improvement over the usual Slater-3astrow
function. Although the energy changes in rydberg units
are only 0.015 Ry/electron at r, = 1 and 6.1 x 10
Ry/electron at r, = 20, on the scale of interesting phe-
nomena the effects due to these higher-order correlations
could be important (note that these changes are 2368 K
and 96 K, respectively). At all densities from r, = 1
to r, = 20, we find that three-body and backHow cor-
relations account for approximately 70% of the rernain-
ing correlation energy beyond the Slater-Jastrow varia-
tional result. Since backHow changes the nodes, we also
find that the fixed-node GFMC result is improved signif-
icantly. The fixed-node GFMC method based upon the
Slater-Jastrow nodes captures only 80%%up of the remaining
correlation energy found with backHow-modified nodes.

We have determined parameters in an analytic expres-
sion for the correlation energy as a function of r„which
fit our calculated energies as well as the known value at
r, = 0. The results are given in Eq. (21) and Table IV,
and displayed in Fig. 9. Compared to the earlier result
of Tanatar and Ceperley, our result shows a significant
correction especially at high densities.

Finally, we compare the effects of three-body and back-
How correlations in the 2D electron gas with those in bulk
He. We show the effects are comparable in both systems.
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APPENDIX A

In this appendix, we present how we get the form of
improved trial functions in Eq. (9) and how the backflow
correlation function g(r) behaves at a large r. If the trial
function 4~ ~ is not orthogonal to the exact ground-state
wave function C, then

t
oc lim exp — E("i[R(t')] dt'

DRW

(A2)

where E( i = II @("l/iII( i is a local energy. Up to here
4 has been a distinguishable-particle wave function. For
a fermion system, we antisymmetrize the wave function

C ~ llm e '0 e~~
taboo (Al) 4 ("~ oc ) (

—l) P P @("l,
P

where H is the Hamiltonian of the system. Writing this
in terms of path integrals using drifting random walks
(DRW), we geti

where P is a permutation operator, (—l) = 1 for an
even permutation and —1 for an odd permutation, and a
subscript F means a fermion wave function. We can pull
the permutation through the averaging

Ox tx lim ) (—1) P (exp I

t —woo
P

t
E("~[R(t')] dt' e("~

) DRW

(A4)

By letting t be an adjustable variational parameter 7 and
approximating

curate. Our choice for the functional form of ((r) does
not satisfy (A7).

T
E("&[R(t')]dt' —~E(")[a(0)]

DRW
APPENDIX B

we get

iII(~+i)(R) ) ( I)P P —x E("~(R) @(n)(R)
P

(A5)

We calculate the local energy of a backBow wave func-
tion and show that it is O(&s), where K is the number
of particles. We will do it for a general trial function of
the form

This is called local-energy method to improve a trial wave
function.

Suppose we start from a simple Hartree wave function
as the zeroth order with plane waves k & k~ occupied.
Equation (A5) will give a first-order wave function of
the Slater-Jastrow type. Then the local energy with the
Jastrow function has the form of

CT ——De ",
where D is the Slater determinant and u involves two-
and three-body correlations. Since the local energy is
given by

El, (R) = V(R) — ) [v2ln@T+(v, in@~)'],

E('l = —,) k,'+2ik;. V;) u(r;, )+ V", ) u(r, , )
jgi we need to calculate

(B2)

— V, ) (...) + V(R), (A6)

where V(R) is the Coulomb potential energy. Then
the antisymmetrized second-order wave function has the
form in Eq. (9), which includes backflow and three-body
correlation. Furthermore, we see that q(r) and ((r) in the
improved wave function would be proportional to
at long distance. From the long-range behavior of the
two-body correlation u(r) in Eq. (8), the backflow and
three-body correlation has the following property:

~(&) &(&) r' OO (A7)

The approximation going from (A4) to (A5) may cause
this long-range behavior for the correlations to be inac-

G, = V', ln D, K; = V', ln D,
where o. = 1, 2 is x or y and i is the particle index.
Let the backflow matrix be pi, ; = rpk(x, ), where x, is
the quasiparticle coordinate and pg(x;) = e' " '"* for the
electron gas. Then, D = det[p~, ]. The following is the
procedure for calculating G, and K, with the numbers
in brackets being the computational complexity.

(1) Determine quasiparticle coordinates 2:, 's and their
first and second derivatives [N2]:

x,- = r,- + ) q(r, , ) (r, —r, ),
jgi

~n P ggcx ~2 cxj ij= i j
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(2) Form the backflow matrix and its first and second
derivatives [% ]:

G, =V', lnD=) ) F,~A, ~. (Bs)

P Pk' ~P Pk'2

ya' = ye(xx)~
ax

(6) Calculate the second derivatives of the logarithm
of the Slater determinant [N ]:(B5)

K, =V';1DD

=) B,, I', , —) ) A ~A~~
(3) Invert the backflow matrix [Ks]:

1 BD) V, A, pq; = 8... V,.k =—
D t9+k&

(B6) n, P,p j,k

+~, F,'k —~s~). Vs-& ', (B9)(4) Calculate the intermediate matrix [N ]:

I',, —= ) VA, p„, .
k

(B7) where we have used

1 82D = Vnk Vmj Vmk VnjD Oyk~BP&m
(5) Using the chain rule, obtain the first derivatives of

the logarithm of the Slater determinant [K ]: (B10)
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