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The screening of the electron-phonon interaction due to a quasi-one-dimensional (Q1D) electron
gas is investigated. The contribution of the electron-phonon interaction to the ground-state energy
of the Q1D polaron gas in difFerent semiconductor quantum-well-wire structures is calculated within
the Hartree-Fock and the random-phase approximation. The inQuences of the width of the quantum-
well wire and the electron density on the ground-state energy of the polaron gas are studied. We
found that the screening due to the electron gas reduces the efFective electron-phonon coupling in a
Q1D system appreciably and the contribution of the electron-phonon interaction to the ground-state
energy of the polaron gas decreases with increasing electron density.

I. INTRODUCTION

In the last decade, there has been a lot of interest
in the study of low-dimensional semiconductor systems.
The reduction of spatial dimensions will inQuence the ef-
Gciency with which electrons can interact with phonons.
The study of the polaron effects in two-dimensional (2D)
semiconductor structures indicates that the electron-
electron screening efFect is important for the diR'erent

polaron properties. Das Sarma studied the screening ef-
fect of the polaron gas in 2D systems using the Thomas-
Fermi approximation~ and the static RPA (random
phase approximation). The method of a Lee-Low-Pines
unitary transformation was introduced by Lemmens,
Devreese, and Brosens to study the 3D polaron gas.
Subsequently Wu, Peeters, and. Devreese extended this
approach to investigate the 2D polaron gas within a dy-
namical screening scheme by taking into account the
full &equency dielectric response. A detailed comparison
was made with the results from diferent approximation
schemes. Wendler studied the influence of screening on
the ground-state properties of the polaron gas in 2D sys-
tems within the full RPA. These works found that the
properties of the polaron gas in 2D systems dier signif-
icantly &om the one-polaron results.

Recent developments in semiconductor technology
have made the quasi-one-dimensional (Q1D) semiconduc-
tor structures more and more important. Some stud-
ies on the electron-phonon interaction in Q1D systems
have been done. Very recently, Campos, Degani, and
Hipolito~~ calculated the ground-state energy of the Q1D
polaron gas in a rectangular quantum-well-wire struc-

ture. They show that the screening effects in such a Q1D
structure are much more pronounced than those in the
corresponding Q2D systems.

In the present paper, we report a systematic investi-
gation of the ground-state energy of the Q1D polaron
gas and the screening efFect in diferent semiconduc-
tor quantum-well-wire structures. In Sec. II the uni-
tary transformation method ' is applied to study the
electron-phonon interaction in the Q1D polaron gas in-
cluding many-particle eKects. The modification of the
ground-state energy of the polaron gas and the effective
electron-electron potential due to the electron-phonon in-
teraction will be calculated. In Sec. III, our numerical
results for different Q1D structures are presented within
the RPA and the Hartree-Fock approximation (HFA)
and three types of the most often used Q1D quantum-
well-wire models are considered. For a comparison, we
also calculate the one-polaron binding energy without
screening but including the full set of intermediate states.
Our calculation for rectangular quantum-well wires found
that the numerical results in Ref. 11 overestimated the
polaron binding energy considerably. Our conclusions are
presented in Sec. IV.

II. FORMULATION AND CALCULATION

The Q1D system under consideration contains N elec-
trons which are assumed to be &ee to move in the x
direction and are con6ned in the yz plane. The phonons
are assumed to be the 3D bulk LO-phonon modes. Such
a system is described by the following Hamiltonian:

a=) + V~(yi, zs)
~
+ ) v(r; —rs) + ) Rur, o(ataz+ —) + ) ) (V~aze'~"' + V*ate '~"'),

i(j g )=1 g
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where p (rz) is the momentum (position) operator of
the jth electron, ms the electron band mass, V~(y, z) the
confinement potential of the quantum-well wire, aqt (a&)
the creation (annihilation) operator of an optical-phonon
with wave vector q and energy ~z,o, and with

N

U = exp ) s(x~) (6)

V =-~
(2m'(HALO) (Vq ) (2)

where o. is the electron-phonon coupling constant. The
term v(r; —r~) in Eq. (1) represents the Coulomb inter-
action between two electrons, which is given by

v(r, —r, ) =
2

E~ 7'q —T~

where e is the optical dielectric constant. The one-
electron wave function in such a system without electron-
electron and electron-phonon interaction can be written
as

(~, y, z) = e t,' (y)4' (z) (4)

2c
v(q ) = f(q ),

where („(y) and P (z) are the bound wave functions
resulting from the quantization in the y and z direction,
and k is the 1D wave vector along the quantum wire
with length L

To study the properties of the Q1D polaron gas we fol-
low the Lee-Low-Pines unitary transformation approach
which was introduced in Ref. 3 for a 3D polaron gas and
later applied to study the Q2D polaron gas problem.
For simplicity we will restrict our problem to the ex-
treme quantum limit where only the lowest subband
(n = 0, m = 0) is occupied. This approximation is jus-
ti6ed when the subband separation is much larger than
the phonon energy for the thin wire at low temperature.
Within this approximation the Fourier transform of the
Coulomb potential in Eq. (3) is given by

where g& is to be determined variationally. Note that
U in Eq. (6) depends only on the x component of the
electron position vector. This unitary transformation is
performed on the Hamiltonian H and the expectation
value of the Hamiltonian is calculated over the states
with zero real phonons and where the electron gas is in
the ground state described by a wave function pcs. The
gq is determined by minimizing the ground. -state energy
which leads to

0~ " 0 0~ 0
q RuLQS(q*) + h2q2/2m~

where S(q ) is the static structure factor of the Q1D
electron system in the absence of the electron-phonon
interaction.

After some algebra we obtain the ground-state energy
of the Q1D polaron gas

N
Z = (eos~ll. ~eGs)+ ) v(q. )[S(q.) —1j+~~a,

2L* ..
where LE is the contribution to the ground-state energy
per particle of the polaron gas due to the electron-phonon
interaction, which is given by

0&'"" 0 0&'' 0

~LO S(q.) + &'q.'/2mb

2o. , S2(q )
ncuLQ kLQ dq

(
f (q )

where f (q ) is the form factor of the Q1D system. Then
we employ a Lee-Low-Pines unitary transformation ap-
proximation. Here the unitary transformation U is taken
to be

where kLQ = (2msuLO/h) ~ . Another interesting result
which can be found in the transformed Hamiltonian is
the effective electron-electron potential

v,s(r —r') = v(r —r') —2) (V* g ~e~ '~ + V~rje '& —hcuLorjg~)e
q

where q& (r~) is the component of q (r) in the yz plane and the last term on the right-hand side corresponds to the
modification of the electron-electron interaction due to the electron-phonon interaction. The effective electron-electron
potential can be calculated as a function of the distance between two electrons along the quantum wire

Vs(*) = V..(~) — ~LokLO dq*«s(q*~) S
* *„,I, S(q*)f(q*)

4~ S(q*) + 2q.'kLo
7t p qx + qx LO

(12)
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where

2 2 oo

V„(x) = dq cos(q x) f(q ).
p

From Eqs. (10) and (12) we see that the static struc-
ture factor S(q ) is a key quantity which has to be cal-
culated in order to determine the screening properties of
the polaron gas system. S(q ) can be obtained from the
dielectric function e(q, id) through

x(q*, ~) = xi(q*, ~) + ix2(q*, ~) (15)

with

systems. In typical samples of Q1D electron gases in
GaAs one has r, )& 1 and the RPA is a fairly good ap-
proximation.

Within the RPA, e(q, id) = 1 —v(q )X(q, ~), where
v(q ) is given by Eq. (5) and x(q, u) is the polarization
of the Q1D electron gas which is given by

—1
S(q ) = d(u

7l A V(q ) G e(q, id)
(14)

mb 2 2

Xi (q, id ) = 1rl
Ãg& (d —QJ+

(16)

where n, is the electron density and v(q ) the Fourier
transform of the unperturbed Coulomb potential. In the
present work we will calculate S(q ) within the RPA and
the HFA.

A number of papers have been published in which
the dielectric response of a Q1D electron gas was inves-
tigated. As for the 2D and the 3D cases, the RPA is
justified for high electron densities. In fact, the RPA be-
comes exact in the limit r, ~ 0, i.e. , the high density
limit. For low electron densities, electron-electron cor-
relation is more important and this is more so in Q1D

and

-m in'
x.(q. , -) =

0 otherwise,

S(q ) = S.h(q ) + S i(q ) (18a)

with the electron-hole contribution

where id~ = hq /2m' 6 hk~q /mr, and k~ = em, /2 is the
Fermi wave vector. We found that the static structure
factor is given by

S,r, (q ) = dx q u'(q )

(1 + x) 31'2 ((u" + z(u" ) i2 ([1 + u(q ) ln x]2 + sr 2)
(18b)

S(q, cu) = b(id —(dy, q ), (2o)
k (kF

Ik +& l)kF

where idr. . .= hq2/2m' + hq k /mg. We found that the
static structure factor has a simple form in this case,

( )
q /2k', q (2k'
1, q ) 2k',

which does not depend on the form factor f (q )

and the plasmon contribution

q u'(q )e "(q.)
(18c)P ( ) .

(
I2 g2 m(q ))ri2(1 e u(q ))3)2 '
+

where u(q ) = 2vrRur, oq~/(kLov(q )), ~'~ = lq~ + 2k~i.
Within the HFA the static structure factor is calcu-

lated by
OO

S(q ) = — did S(q, ~)N p

with

III. NUMERICAL RESULTS AND DISCUSSION

According to the derivation in the previous section the
contribution of the electron-phonon interaction to the
ground-state energy of the polaron gas depends on the
electron density and the form factor, and the latter is
determined by the confinement potentials of the Q1D
semiconductor structures. In this section we will calcu-
late the energy of the Q1D polaron gas in GaAs-based
semiconductor quantum-well-wire structures with differ-
ent confinement potentials. The relevant material param-
eters which are used in the calculations are Ruj.o ——36.25
meV, mb ——0.067m„e = 10.9, and o. = 0.068.

Before we give the results for the screening effects on
different polaron properties we calculate the binding en-
ergy of a one polaron in the Q1D system without screen-
ing (n, = 0). Applying second-order perturbation the-
ory the one-polaron binding energy due to the electron-
phonon interaction is given by

zz )-).l(u, m, k. —q. ;qla.„lo,o, k. ;o)l

t

CI y 3 p V p

q'[1+ (E, —@o,o)/Mr. o + (q /kr. o)'] ' (22)
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curve approaches the 3D polaron binding energy. No-
tice that when n~ ) 1.6 x 10 cm the second subband
becomes populated in the case of 0/cur, ~ = 1, and the
extreme quantum limit approximation is not valid. The
corresponding results in Fig. 1(b) are only approximate
in this density region.

B. Parabolic combined with triangular con6nement
potential

The contribution of the electron-phonon interaction to
the ground-state energy of the polaron gas is plotted
as a function of err, o/0„ for W, = 0 and with difFer-
ent electron densities nz 10 ) 10

y
and 10 cm in

Fig. 2(a). The RPA and HFA results are indicated by
thick solid and thick dashed curves, respectively. The
thin solid curve represents the one-polaron binding en-
ergy within the leading term approximation and the thin
dotted-dash curve gives the one-polaron result including

as
In this case, the confinement potential can be written I I I I ~

I
~

I

(a)

V~(y, z) = —mph'„y + V(z), (28a)

where we took a triangular potential in the z direction,

z&0
z(0, (28b)

E

LLI
CI

I

—( z~/0„)
f(q ) = dz F(x, q )

Q x + q /kLQ
(29a)

with

with E the e8'ective electric field. In such a case, the
wave function in the z direction is given by Po (z)
(b /2) / ze '/, where b = 2(3emgE/2h ) /, and the
electron gas has an average width W, = 3/b in this di-
rection. This confinement situation is realized in hetero-
junctions. The corresponding form factor is given by 0 I I ~ I a I s I I

0.2 0.4 0.6 0.8
CDLo/0

I I I ~ I I I ~
I

~ ~ I I I III I I I I I ~ ~ I

(b)-

8b3 + gb2 p + 3bp2

( +.) (29b) w, =50A

where p = QkL~z2+ q2.
Now, let us consider the Q1D system which is com-

posed of an ideal-2D (I2D) electron gas in the zy plane
with a parabolic well potential in the y direction. This
system can be reached by b -+ oo (W, = 0) for the con-
finement potential Eq. (28a) or 0, —+ oo for the confine-
ment potential Eq. (24). In such a case, the form factor
reduces to

2
E

LLI

I

2 q4m~O„) q4m~Q„)
'

where Ko(x) is the modified Bessel function of the second
kind.

From Eq. (22) the one-polaron binding energy incorpo-
rating the full intermediate states in this system is given
by

AE = — dx e K( 1 —P„/x2),
0

where P„= (~Lo/0„) (1 —e ( ~/ l ) and K(x) is the
complete elliptic integral of the first kind. When 0& ~ 0,
i.e., P„—+ x, Eq. (31) leads to the I2D result AE
—(vr/2) nRuL~.

010' ~o'

n, (cm ')
&o'

FIG. 2. The contribution of the electron-phonon interac-
tion to the ground-state energy of the Q1D polaron gas as a
function of (a) ui, o/Q„with W = 0 and different electron
densities n, = 10, 10, and 10 cm, and (b) the electron
density with W = 50 A and 0„/wi, o=l, 10, and 100. The
thick solid and dashed curves indicate the RPA and HFA re-
sults, respectively. The thin solid curve gives the one-polaron
binding energy within the leading term approximation and
the thin dotted-dash curve represents the one-polaron bind-
ing energy including full intermediate states. The thin hori-
zontal dotted lines indicate the I2D and the 3D value of the
one-polaron binding energy.
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full intermediate states. The two thin horizontal dotted
lines indicate the 3D and I2D values of the one-polaron
binding energy, respectively. For O„~ 0 an I2D system
is reached and the dotted-dash curve approaches the I2D
polaron value. In Fig. 2(b), the polaron energy due to
the electron-phonon interaction is plotted as a function
of the electron density for W, = 50 A. and Oy/w1, Q =1,
10, and 100. When n, ) 1.6 x 10s cm ~ for 0/~LQ = 1

subband will also be populated and the results are only
very approximately valid.

It is seen that the electron-electron screening reduces
the electron-phonon interaction appreciably with increas-
ing electron density. When n ~ oo, AE —+ 0, while
for n, —+ 0 the one-polaron binding energy is recovered
within the leading term approximation. We find that
the polaron correction energy within the RPA is smaller
than that within the HFA. For large densities the RPA
and HFA give nearly the same results.

The electron-phonon interaction leads to a modifica-
tion of the Coulomb interaction between the electrons.

e have calculated the efFective electron-electron inter-
action potential in the Q1D system from E (12) (13),
( 8), and (29) within the RPA. In Fig. 3 the effective
electron-electron potential is plotted as a function of the
distance between the two electrons in the x direction for
Wz 0

q Ay /(c)LQ = 1 (thin curves), and 10 (thickW =20
curves) and with different electron densities n, = 10,
io' and &0' cm ~ The electron-electron Coulomb po-
tentials without the electron-phonon interaction modifi-
cation are given by the solid curves. The latter does not
diverge for x ~ 0 because we have averaged this poten-
tial over the confinement electron wave functions. We

C. ~. Two-dimensional rectangular confinement
potential

as
In this case, the confinement potential can be written

+q(s «) —(
yl ( Ly/2 and Izl ( I /2

otherwise, (32)

where L„and L are the well width in the y and z di-
rection, respectively. The corresponding form factor is
given by

4 sin' (q„L„/s) rl (q, q„)
Qy

(qy yl —(q.L./ )'0' q'+ q'

(33a)

with

F(q, q„) = —+2

p 4''+ p~

32m (1 —e ~)
p2(4~2 + p2)2 ' (33b)

find that the modification due to the electron-phonon
interaction is pronounced and it decreases with increas-
ing average width of the polaron gas and with increasing
electron density. When n ~ oo V x ~ V ' '. F) eff x ~ eex ~ or
Oy/ur1, Q = 1 and n, = 10 cm we do not show the ef-
fective potential because in this case the second subband
is populated, which was not included in our calculation.
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FIG. 3. ThThe effective electron-electron interaction poten-
tia is platted as a function of z (the distance between two
electrons in the z direction) for different quantum wires with

, f1„/rsrso=l (the th. in curves), and 10 (the thick
curves), and different electron densities n,, = 10, 10, and
10" cm . The solidd curves present the electron-electron in-
teraction potential without electron-phonon modification.

FIG. 4. The contribution of the electron-phonon interac-
tion to the ground-state energy of the Q1D polaron gas as a
function of the wire width W for different electron densities
n~ = 10, 10, and 10 cm . The thick solid and dashed
curves indicate the RPA and HFA results, respectively. The
thin solid curve gives the one-polaron binding ener within
the leadin ter

rgy wi in
e ea ing term approximation. The thin horizontal dotted

ines indicate the 2D and the 3D value of the one-polaron
binding energy.
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where p = L, q +q„.
We have calculated the polaron energy in the @1D sys-

tem with L„=L, = R'. In Fig. 4 the contribution of the
electron-phonon interaction to the ground-state energy of
the polaron gas is plotted as a function of the width TV

for three different electron densities. In Ref. 11 Campos,
Degani, and Hipolito gave the numerical results in such
systems with W=50 A and 100 A. . We find that their
results are about a factor of 2 larger than as obtained
&om the present calculation. Notice that, different from
the present calculation, their RPA result becomes larger
than that within the HFA at high electron density.

IV. CONCLUSION

We have calculated the contribution of the electron-
phonon interaction to the ground-state energy of the
@1D polaron gas within a dynamical screening scheme
by taking into account the full frequency-dependent di-
electric response. The screening effects due to electron-
electron interaction are included into the electron-phonon
interaction within the RPA and HFA. Our results show
that the electron-electron screening reduces the electron-
phonon interaction appreciably. For n, ~ oo, the
electron-phonon interaction correction energy goes to
zero. For purposes of comparison we also calculated
the one-polaron binding energy without screening within
second-order perturbation theory. We found that, when
the electron density n, —+ 0, the one-polaron binding en-
ergy within the leading term approximation is recovered
both for the RPA and the HFA results. The electron-
phonon coupling is enhanced by including the full inter-
mediate states.

We also calculated the effective Coulomb interaction
potential between electrons and obtained the corrections

due to the electron-phonon interaction in a Q1D system.
The calculation shows that the electron-phonon interac-
tion correction to the electron-electron potential is pro-
nounced and i.t decreases with increasing electron density.

The present model can be generalized to study the
screening of the electron-phonon interaction of the Q1D
polaron gas including higher subbands. In such a case
one needs the dielectric function of an electron gas in a
multi-subband system. This was done recently in Ref. 17
for a quasi-two-dimensional system and should be gener-
alized to the multisubband quantum wire case. Then this
result can be used to calculate the polaron effect which
will be left for further study.

The present approach can also be used to calculate
the effect of screening on the polaron binding energy for
low density samples. Instead of using the RPA struc-
ture factor one should use the one which also incorpo-
rates electron-electron correlations and Huctuations, ex-
change, etc. For intermediate densities and, in particu-
lar, in the small density region, we know that the RPA
overestimates screening. Nevertheless the present calcu-
lation, within the RPA, already shows that we are able
to recover the correct zero density result for the polaron
energy. Therefore we believe that the present calculation
gives a reasonable interpolation for the polaron energy
between the zero and high density limit.
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