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Oscillator strength and sum rule for intersubband transitions in a superlattice
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The oscillator strength for inter-minisubband optical absorption is calculated for a superlattice.
For periodic structures the matrix element (n|z|n') is ill defined and we show how the definition of
the position operator has to be modified in order to obtain the correct result which then leads to
the same result as a calculation of the oscillator strength using the matrix element (n|p|n’). A new
sum rule for superlattices is derived, which involves averaging over wave vectors in the first Brillouin

zone.

I. INTRODUCTION

Optical spectroscopy is a very important experimental
tool to investigate the energy levels in semiconductors.!™
This knowledge is highly important both for a fun-
damental understanding of the band structure as well
as for technological applications, e.g., in optoelectron-
ics (quantum-well lasers, photodetectors). The quantity
that determines the strength of an optical transition, if
it is experimentally observable, is the dipole matrix el-
ement between initial and final states. For comparison
of transition strengths in different physical systems, the
dimensionless quantity of the so-called oscillator strength
proves to be very useful. Historically, it was introduced
for optical transitions within atoms and molecules where
electrons are bound. In this case it is usually defined
through the coordinate (z) matrix element between the
one electron wave functions by?

2mwn'n 2
Faim = 2T

(1.1)

where m is the electron mass and wpy, = En,/h =
(En' — Ey) /A the angular frequency of the corresponding
electron transition.

The direct way of coupling the radiation field to the
electron Hamiltonian is, however, through the A - p
interaction,® where A is the vector potential of the elec-
tromagnetic field and p is the momentum operator. This
leads to a definition for the oscillator strength of

2

fam = m“n'lplnﬂz . (1.2)
For bounded systems both definitions (1.1) and (1.2) are
equivalent, which is a direct consequence of the commuta-
tion relation p = 3% [H, x|, valid for velocity-independent
potentials and in the absence of any magnetic field.

Furthermore, the oscillator strengths satisfy the so-
called f sum rule

(1.3)

qu’uzl .
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Here v specifies one set of quantum numbers. The »/
summation has to be performed over all possible final-
state quantum numbers. When the final state has a
higher energy than the initial state, f is positive (absorp-
tion); in the opposite case f is negative (emission). This
sum rule actually does not rely on specific matrix ele-
ments, but follows from general analytic properties of the
dielectric function and therefore is a fundamental prop-
erty of matter. Equivalently, it can be written as®

/ dw wez(w) = gwf, , (1.4)
0

in which form it is called the Thomas-Reiche-Kuhn? sum
rule. In Eq. (1.4) ez(w) is the imaginary part of the
dielectric function and w,, is the plasma frequency. The
above sum rule is valid within linear response in the elec-
tric field of the radiation and for arbitrary order in any-
thing else (i.e. multiphonon processes, scattering with
impurities, etc.).

In the case of electron states which are not bounded,
such as for a free particle or electrons in a periodic system
(i-e., superlattice), the two expressions (1.1) and (1.2)
lead to different results. For a bounded system the first-
order processes exhaust completely the sum rule (1.3).
We found that this is no longer true for an unbounded
system.

The purpose of this paper is (1) to show that in peri-
odic systems (we will take a superlattice as an example)
Eq. (1.1) is not applicable, but instead it is mandatory
to use the A - p interaction with Eq. (1.2) as a definition
for the oscillator strength. The reason for this is that
the x operator is not well defined in periodic systems.
(2) We show under which conditions (1.2) and (1.1) are
equivalent and how the = operator has to be modified
to yield the correct results in the other cases. (3) Fur-
thermore, we apply the formalism to transitions between
minibands in semiconductor superlattices, where we are
able to prove a new sum rule, which contains an average
over the wave vectors in the first Brillouin zone.
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II. OPTICAL TRANSITIONS
IN BOUNDED SYSTEMS

In order to pose the problem clearly we will give a con-
cise review of the relevant results for optical transitions
in bounded systems. In classical electrodynamics an elec-
tromagnetic field is described by the electric E(r,t) and
magnetic B(r,t) fields which satisfy the Maxwell equa-
tions. These fields can be expressed in terms of the four
vector [A(r,t),¢(r,t)] as follows: E = —13& _ gradg
and B = rotA, where A(r,t) is called the vector poten-
tial and ¢(r,t) the scalar potential which are determined
up to a gauge transformation. A nonrelativistic particle
of mass m and charge ¢ interacting with an electromag-
netic field is described by the Hamiltonian®

H= 1 (p-9a) —gp.

2m c
One can choose a gauge in which ¢ = 0 and divA =
0. This leads to the interaction Hamiltonian for a plane
wave A(r,t) = Agexp(ik - r — iwt),

(2.1)

H = ZLE . pei(k~r—wt) .

— (2.2)

For most systems one can expand the exponen-
tial exp(¢k-r) leaving only the zeroth order, i.e.,
exp(ik - r) ~ 1. This is valid as long as the wavelength of
the light is much larger than the characteristic dimension
of the electron system (electron wavelength). In atoms
this inequality is fulfilled very well, but also for sub-
band transitions in semiconductor superlattices, where
Aphoton ~ 10 pm > Aelectron ~ 100 A. This is usually
called the electric dipole approximation.

Through a gauge transformation, which is exact within
the dipole approximation,® an interaction Hamiltonian

H' = eE -re ™! (2.3)
is achieved which is the more commonly used electric
dipole interaction Hamiltonian. D = er is the electric
dipole moment associated with the electron. So we see
that both interactions (A - p as well as E - r) appear well
justified. But for periodic systems (such as, e.g., in a
superlattice where the electron states extend to infinity)
Eq. (2.3) contradicts the periodic boundary condition
while Eq. (2.2) contains only the momentum operator
and is consequently periodic.

A bounded system is one in which the electron wave
function satisfies the boundary conditions ¥(z) |z—4c0—>
0. For future purposes we will introduce dimensionless
units by making the following transformations: = —
aox, p — Ap/ag, where ag is some characteristic length
in the system which we do not have to specify at this mo-
ment. The energy is measured in units of Eq = h%/ma2
(= 11 meV for ag = 100 A and m/mo = 0.068, which is
a typical value for GaAs).

For simplicity we will consider the operators to be one
dimensional and use only one quantum number. First
we will derive a relation between the & and p matrix ele-
ments. Therefore we consider the following commutator:
p = & = i[H, z], which may be written in matrix form
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(n[p|n) = iBpin(n’'|z|n) (2.4)
from which we easily derive the identity of the oscillator
strengths (1.1) and (1.2),

2
fan = 2En’n|<nllw|n>l2 = m“n’lpln)‘z (25)

The sum rule (1.3) is obtained by considering the com-
mutator i[p, z] = 1, which in matrix representation reads

1= i{n|[p, z]ln) = iy _[(nlp|n’)(n'|e|n)

—(nlz|n’)(n|p|n)]

= 2ZIm(n'|p]n)(n']m|n)* = Z fam - (2.6)

III. SYSTEM WITH A PERIODIC POTENTIAL

In order to check the validity of Egs. (2.4) and (2.6)
in periodic potentials V() = V(x + 1) we consider the
simple one-dimensional Schréodinger equation

2

4 aE - V(w)l] ¥(z) =0,

— (3.1)

where the unit of length agy is taken to be equal to the
period of our system. The generalization to problems in
higher dimensions is straightforward. For semiconductor
superlattices the above equation is valid within the en-
velope function approximation? where we have neglected
the mass difference between the barriers and the wells for
simplicity. The solution of Eq. (3.1) has a Bloch form

Y k() = e’kzun,k(z:), (3.2)

where the function u,r(x) is periodic u,x(z + 1) =
Un,k(x) and obeys the following Schrodinger equation:

Vix) (a)

(b)

0 X 1+Xxq

FIG. 1. (a) Superlattice potential and (b) periodic coordi-
nate operator in dimensionless units.
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FIG. 2. The first two minibands of the energy spectrum (in
units of A%/mad) of a superlattice with well width of a = 0.6
and potential strength: (a) Vo = 3, (b) Vo = 20, and (c)
Vo = 50.

[H(k) — En k] tinx(z) =0 (3.3)
in the interval 0 < z < 1 with the Hamiltonian
1 d2 d 1,
= —ik— + = . 3.4
H (k) 5 Ia? zkdm + 2k + V() (3.4)

We will assume the following normalization condition:

1
(n,kin, k) = / dz|un, k|? = 1. (3.5)
0

As a numerical illustration we took the simple poten-
tial V(z) = 000 < =z < a),Vy(a < z < 1), shown in
Fig. 1(a), which models a typical superlattice. In both
intervals the electron wave function can be written as lin-
ear combinations of trigonometric and hyperbolic func-
tions. The eigenvalues (see Figs. 2 and 3) and corre-
sponding wave functions are obtained by matching nu-
merically the above-mentioned functions at the potential
steps. For optical transitions the wavelength of light is
much larger than any characteristic dimension in the su-
perlattice and consequently we can restrict ourselves to
vertical intersubband transitions (i.e., in which Ak = 0).
In the present paper we will also neglect photon-phonon
transitions. The matrix elements relevant to us are

1
Pt (k) = (m, Klpln’, k)= / At (2)" Pt 1 (2)
0

1
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FIG. 3. The same as Fig. 2 but now for a = 0.3 and (a)
Vo = 10, (b) Vo = 40, and (C) Vo = 70
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and

X (k)= 1Bt (k) (n, k2|, )

1
= iE.,,,nr(k)/ dz up i (z) TUn 1 (2),
0
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FIG. 4. Real and imaginary part of the coordinate (X, )
and momentum (P, ,/) matrix elements as a function of the
wave vector for n = 2,n’ = 1, quantum well width of a = 0.6
and potential strength of (a) Vo = 3, (b) Vo = 20, (c) Vo = 50.
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which we defined such that it enables us a direct com-
parison with P,/ (k). In Eq. (3.7) we used E, (k) =
E,.r — Eyn . In a bounded system the matrix elements
P, (k) and X, (k) coincide according to Eq. (2.4).
In the case of a periodic system the real and imaginary
part of the matrix elements (3.6) and (3.7) are depicted
in Fig. 4 for n = 2,n = 1, and for a superlattice with

Oscillator strength
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FIG. 5. The oscillator strengths corresponding to the ma-
trix elements of Fig. 4 as defined by Eqgs. (1.1) and (1.2).
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f21lk)

k/m

FIG. 6. The oscillator strength f2;(k) as function of the
electron wave vector for a well width of @ = 0.3 and three
different values of the height of the potential barrier. The
results for Vo — 0 and for a single quantum well are given by
the dotted curves.

well width @ = 0.6 and for various values of the potential
strengths: (a) Vo = 3, (b) Vo = 20, and (¢) Vp, = 50.
It is apparent that the relation (2.4) is not valid in the
present case. The corresponding results for the oscilla-
tor strength defined by Eq. (2.5) as obtained from the
momentum matrix elements f? , and position matrix el-
ement fZ , are shown in Fig. 5. In Fig. 6 the oscillator
strength f3, is plotted for a narrower well of a = 0.3
and three different values of the barrier height. Notice
that the oscillator strength f5, is an increasing function
of the electron wave vector, which is a consequence of the
fact that F3;1(k) decreases with increasing k (see Fig. 2).
This is more apparent for strongly coupled superlattices
[Fig. 5(a)] where near the Brillouin-zone boundary the os-
cillator strength can become more than ten times larger
in comparison to its value at the zone center. The func-
tion f; is less than 1 and it is a uniformly decreasing
function of the wave vector except for very strongly cou-
pled superlattices [see Fig. 5(a)].

IV. SOLUTION TO THE PROBLEM

The discrepancy between the matrix elements P, and
Xpn' is due to the fact that the electron coordinate oper-
ator is unbounded and its matrix element is ill defined in
the case of a free particle or electrons in a periodic sys-
tem. This problem was also encountered in other areas in
solid-state physics, e.g., in the definition of the Wannier
position operator in the discussion on Wannier states in
crystals. Because of the imposed periodic boundary con-
dition in such a system all operators should have at least
the same periodicity.®

Following Ref. 9 we remedy this by replacing the co-
ordinate operator by a periodic function x,(z), which
is shown in Fig. 1(b). It coincides with the coordinate x
in the elementary cell and is composed of a periodic rep-
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etition of the “sawlike” function g(z) = z6(1 — ) where
0(z) is the step function 6(z) = 1(z > 0),0(z < 0). Note
that the elementary cell can be chosen with an arbitrary
shift zq relative to the periodic potential V(z).

Now we have to calculate the following commutator:

[H(k),q(z — z0)] = — (% + zk)

d . :
+6(z — xo) (E + zk) + 6(z — zo),
(4.1)
from which we obtain the corresponding matrix element
E, i (k){n, k|z|n', k) = —i{{n, k|p|n’, k) + kbpn'}
+wnn’(k; -'EO), (4'2)

where we defined the following function:

1 * - . *
W (B3 2) = 5 {tn k(@) tnt (%) = ln 1 (@) timr e (2) }
+ikun,k(w)*un:yk (:E)
1 Y . .
= 5 {¥ni(@) Pn k(@) = Pn (@) Ynr 1 (2)},
(4.3)
which is actually half the Wronskian of two solutions of
Eq. (3.1). For n = n’ this Wronskian is nothing else but
the matrix element of the current operator for an electron
in subband n with wave vector k. In a periodic poten-

tial the relation between the z and p matrix elements
becomes

|
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Popr + kbt = Xt — tWape (k, 1’0), (4.4)
where the term linear in the wave vector disappears for
the nondiagonal elements.

We have checked numerically the validity of Eq. (4.4)
for the above-mentioned model system. Note that in a
periodic system the Wronskian (4.3) has to be added
to the standard relation (2.4), which is only valid for
a bounded system. The Wronskian (4.3) is in general
a complex quantity and we found numerically that the
absolute value of it is less when (1) the elementary cell
edges xo are in the barrier region (¢ < z < 1), (2) Vo is
large; in the limit Vo — oo the system turns into a bound
system and the Wronskian is zero, and (3) for £ = 0 the
Wronskian is real and there exist z values for which the
Wronskian is zero and Eq. (4.4) accidentally coincides
with the relation (2.4) for bounded system. This is no
longer true when k& # 0. Thus it follows that when the
potential is sufficiently strong and the elementary cell
edges are in the barrier region, the E - r and A - p in-
teraction become equivalent again. The system is then
still periodic, but the unit cells are completely decoupled
from each other.

Next we will follow the approach of Sec. II in order to
derive the sum rule valid for periodic systems. Therefore
consider the following commutator:

ilp, q(z — z0)] = [a%,q(:c - wo] =1—6(z — zo), (4.5)

with its corresponding matrix elements

i(n, k|[p, g(z — zo)]|n’, k)= ZZ{(’IL, klp|n', k)(n', k|z|n, k) — (n, k|z|n', k)(n', k|p|n, k)}

= —iZ{(n',k|p|n, k)(n', k|z|n, k)* — (0, k|p|n, k)*(n’, k|z|n, k)}

=1 [tn k(o) -

Finally we obtain the sum rule

2 " Im{(n', k|pln, k)(n', k|z|n, k)*} = 1 — |un x(2o)|*.
(4.7)

Notice that this sum rule (4.7) and relation (4.4) depend
on the way we have chosen the elementary cell relative to
the potential V(z). Furthermore, the terms in the sum
on the left-hand side of the above equation are not simply
the oscillator strengths for optical absorption. In order
to find an expression which contains only P,:, and not
Xnin, we insert Eq. (4.4) into Eq. (4.7) to get

(4.6)
[
5 fall)= 3 »E—nfl—@wn'n(knz
=1 — Jun i (o) ?
Wain (k; To)
+2Im ; Poin(k) Tn(lﬁ .
(4.8)

Making use of the Wronskian properties one easily proves
that the right-hand side (RHS) of Eq. (4.8) does not de-
pend on zo. The above expression can hardly be con-
sidered as a sum rule because the RHS depends in a
very complicated way on the detailed features of the band
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structure. However, this is not a real surprise, since in
(4.8) a summation is only performed over the miniband

index n’ and not over the final wave vectors k’. The
complete f sum rule must have the form
Z Z Ikl =1. (4.9)

k' n!

This cannot, however, be proven explicitly, since the
transitions to states with different final wave vectors k' #
k are second-order (and higher-order) processes, where
the momentum transfer has to be provided by phonon
emission/absorption or impurity scattering. Physically,
these processes correspond to intra-miniband (or free-
carrier) absorption/emission, when n’ = n (for a related
experiment, see Brozak et al.l!). In contrast, the transi-
tions with k' = k and n’ # n are inter-miniband transi-
tions. In order for the complete f sum rule to be satisfied,
all possible transitions have to be summed up, no matter
if they are higher-order processes. In the next section we
will show that it is possible to obtain a new sum rule,
which involves inter-miniband transitions. This is done
by averaging Eq. (4.8) over the first Brillouin zone.

V. AVERAGED SUM RULE

In order to prove this new sum rule we will first need
a number of relations which we obtain by differentiating
Eq. (3.3) by d/dk and integrating it over the elementary
cell

/ dz Unt b 16)* (I:dH(k) di;,k] Un b

du,
En i) dk”“)zo, (5.1)

+[H(k) -

which, by using Eq. (3.4), can be reduced to

F, (k)=

D Fam(k) =

n'#n n'#n

-> [(n k|p|n’, k)<n k| —

n'#n
d
—<n,k p% n,k> — <n,k

In the last step we used the fact that the wave functions
with the same k vector satisfy the completeness relation

and
d
< ik n k> <n k| —

—

d d _
n k> dk(n,k|n,k) =0.

(5.6)

dk

d
ak?

12 013

! L .d dE, i
/0 dr un k() (—z%) Up k() — (———(ﬁ;— - k) Onin

1
d
+(Epr g — En,k)/ dz un:‘k(w)*ﬂun,k(rn) =0.
o
(5.2)

Finally we obtain

(', Klpln, k) = S (di}i’k - ’“)

E, n(k)<n k| —

which does not depend on the choice of the position of
the unit cell. The first term on the RHS of Eq. (5.3) is
the velocity of the electron state in the miniband n minus
the contribution from the Bloch term Eq. (3.2). The last
term is the nondiagonal contribution.

An analogous mathematical trick is applied to the com-
plex conjugate of Eq. (3.3) and we obtain a similar ex-
pression

d n,k>. (5.3)

dk

(', klpln, k) = 6arn (dii’k - ’“)

—

d n, k>, (5.4)

dk

+Epi, (k) <n k|—

where the symbol E /dk indicates that the differential
operator acts on the left function.

Next we make use of Egs. (5.3) and (5.4) for the non-
diagonal case (n’ # n) and calculate the sum over the
oscillator strengths for inter-miniband transitions

Z ﬁ(n, klp|n, k) (n', k|p|n, k)

—

d n k> <n k ddk >(n’,k|p|n,k)}
n,k>. (5.5)
[
Finally, we arrive at the following sum rule:
= 3 fun)) =~k (n kipin, k), (57)

n'#n

which tells us that the sum of the oscillator strengths for
vertical transitions is in general not equal to 1 anymore
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and depends on the initial state |n, k).

The derivative d/dk on the RHS of Eq. (5.7) suggests
that the above equation can be simplified by averaging
it over the first Brillouin zone. Indeed, integrating Eq.
(5.7) over k we obtain

1 ™
F,=—

~or o

F,(k)dk = 2% |:(n, —7|p|n, —7)

—(n,7r|p|n,7r)}. (5.8)

This can be further simplified if we use the definition for
the average electron velocity [see the first term on the
RHS of Eq. (5.3)]

vp(k) = k + (n, k|p|n, k) (5.9)
and the fact that the velocity is zero at the Brillouin-zone
edges. We finally obtain the average sum rule

1 ™
F,=— dk (k) =1, .
A I3 >F R CAT)
n'#n
which now is independent of the band index n. Note

that we integrate over k (3= [dk = Y, in our units),
whereas in Eq. (4.9) the integral goes only over the fi-
nal states k’. The physical meaning of this sum rule is
that now the influence of intra-miniband emission and
absorption is averaged out, and we regain a sum rule
similar to a single quantum well. Now it is also easy
to see why the oscillator strength at the Brillouin-zone
center has to be smaller than one, whereas at the edge
it can be larger (see Figs. 5 and 6). The center of the
Brillouin zone of the bottom band is the lowest energy
in the system. Therefore, only absorptive transitions are
possible, of which some fraction are n # n’, k = k'
interband transitions, and some are n = n’, k # k' intra-
band transitions. Clearly, for both parts, the oscillator
strength must be smaller than one. In contrast, at the
edge of the Brillouin zone, the intraband transitions are
emission processes and count negative in the oscillator
sum. Therefore, the interband oscillator strength at the
zone edge has to be greater than one. This asymmetry
has recently been proven experimentally by some of the
present authors.'®

In Figs. 7(a) and 7(b) we illustrate this averaged sum
rule by plotting fo1 (dotted curve), fa; + f31 (dashed
curve), and fa1 + fs1 + fa1 (solid curve) as a function of
the strength of the potential step V; for the case of (a)
a = 0.3 (i.e., the well width is roughly half that of the
barrier) and (b) @ = 0.6 (i.e. the well width is 1.5 times
the barrier width). Notice that in the limit of V5 — 0
(the nearly-free electron case) the main contribution to
the sum rule comes from the transition fy;, which is con-
centrated in the k ~ 7 region [see Figs. 5(a) and 6]. When
Vb increases the oscillator strengths are redistributed into
the upper bands and we notice that fz; passes through
a minimum while the other oscillator strengths attain a
maximum. Notice also that f3; is different from zero and
can be even larger than f,; for not too large values of Vj,
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FIG. 7. The sum of the oscillator strengths averaged over
the first Brillouin zone as function of the height of the poten-
tial barrier for a well width of (a) a = 0.3 and (b) @ = 0.6.

i.e., when the system still exhibits wide minibands. This
is in contrast to the quantum-well case where f3; = 0 for
symmetry reasons. The minimum in f2; becomes deeper
with decreasing well width [e.g., for @ = 0.2 we have
(f21)min = 0.34 at Vp ~ 85 where we have f3; = 0.42 and
fa1 = 0.18] and it is less pronounced for larger a values
[e.g., for a = 0.6 we found (f21)min = 0.987 at Vi ~ 20
where f3; = 0.011]. We can understand the behavior of
f21 in Fig. 7 as follows. For small values of V; the elec-
tron in the first level is quasifree in the superlattice direc-
tion, but with increasing Vp it becomes more and more
localized in the well region. As a consequence the overlap
with the wave function of the second miniband, which is
still quasifree, decreases and thus f2; also decreases. For
a = 0.3 the energy of the first miniband is below the bar-
rier when Vy > 20. Further increase of V, will start to
trap the wave function of the second miniband into the
wells of the superlattice; in fact for Vi ~ 55 the bottom
of the second miniband becomes equal to V, and the top
of the second miniband is completely below the barrier
for Vo > 73 in the case of a = 0.3. At the same time the
wave function of the second miniband |2) becomes more
and more trapped into the wells and the overlap with
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the wave function |1) increases leading to a concomittant
increase of fz;. The substantial difference between Figs.
7(a) and 7(b) is a consequence of the fact that in super-
lattices with small well widths (i.e., small a values) there
is a larger contrast between bound and extended states,
which makes the matrix elements substantially different
and also different from the quantum-well case.

The distribution of the oscillator strength fas;(k) in
wave-vector space is illustrated in Figs. 5 and 6 for
a = 0.6 and a = 0.3, respectively, and three different
values of the barrier height. For small V; values the oscil-
lator strength is strongly determined by the energy term
E31(k) [see the definition of f21(k) in Eq. (4.8)], which
becomes very small near kK = w and which results in a
f21(k) which is strongly peaked near the edge of the Bril-
louin zone. It is possible to obtain an analytic expression
for f; in the nearly-free-electron approximation,!? i.e.,
Vo — 0. In this approximation the two lowest-energy
minibands are approximated by free-electron bands, ex-
cept near the zone boundary where the splitting of the
band is calculated using the superlattice potential as a
perturbation. In doing so, we obtain

_ v
fa1(k) = 05 A= ke (5.11)

where
Y= Yointea) S;;(m), (5.12)

which for V, = 10 is depicted in Fig. 6 by the dotted
curve. The agreement becomes exact in the limit V5 — 0.
Similarly we can prove, within the same limit, that f,; ~
V¢ for n > 3. With increasing Vp the difference Ea; (k=
7) increases and f2; (k = 7) decreases as is apparent, e.g.,
in Fig. 6 when we compare the V5 = 10 result with the
Vo = 40 result. With increasing Vp the energy bands are
becoming more and more dispersionless (see Figs. 2 and
3), which results in an almost constant difference Eq; (k)

12 015

and consequently in an oscillator strength fa;(k) which
is independent of the wave vector and which approaches
the quantum-well result (dotted horizontal curve in Fig.
6).

VI. CONCLUSIONS

We have shown that the standard expressions for the
calculation of the oscillator strength as used in atomic
physics, which is based on the z-matrix element, are not
applicable in systems where the electron wave function
is unbounded. The correct calculation has to be based
on the p-matrix elements. The fundamental Thomas-
Reiche-Kuhn sum rule of course still has to be satisfied,
but both intra- and inter-miniband transitions have to
be taken into account. A new sum rule has been de-
rived, which only contains interband transitions. This is
achieved by averaging the oscillator strengths over the
first Brillouin zone of the superlattice.

In conclusion, we would like to point out that, although
we considered only the simple one-dimensional case (i.e.,
superlattice) of periodic potentials, the main results and
the averaged sum rule can be easy generalized to two-
dimensional and three-dimensional periodic systems.
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