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Collective modes in tunneling quantum-dot arrays
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We present a theoretical study of the collective excitations and optical response of two-dimensional
arrays of quantum dots. We calculate the dispersion curves and oscillator strength for the various
modes when tunneling between nearest-neighbor dots is considered. The self-consistent-Geld formal-
ism and a Wannier representation, described in the tight-binding approximation, is used to study the
behavior of the modes of the system for difFerent lattice parameters. We show that a band of interdot
tunneling modes appears due to carrier tunneling between neighbors. The relative oscillator strength
of the various interband and intraband excitation modes is calculated from the density-density corre-
lation function. The tunneling modes are found to have a nonvanishing strength, possibly detectable
in experiments.

Optical and transport properties of quasi-zero-
dimensional structures (called quantum dots), where car-
riers are confined to a set of discrete energy levels, have
been studied experimentally and theoretically with great
interest in the past few years. Most experimental studies
of optical properties in these structures have been focused
on systems where tunneling effects are negligible, since
dots have been typically well separated, preventing car-
rier hopping from dot to dot. However, clever sample de-
signs have allowed the study of a regime in quantum-dot
systems, where coupling due to interdot carrier tunnel-
ing is very important. These studies have shown that
tunneling introduces interesting effects, such as anoma-
lous dependence of the plasma oscillation frequency on
magnetic Beld. Tunneling effects are likely to become
important also for closely placed quantum dots, systems
of great current interest given theoretical predictions for
an "antiferroelectric" ground state.

Collective excitations in two dimensional (2D)
quantum-dot arrays without tunneling have been studied
theoretically by several groups. ' Moreover, recent work
on tunneling quantum-dot arrays has appeared, ' in
which tunneling is considered only via the energy disper-
sion of different energy states, while the wave function
overlap (and corresponding multipole matrix elements)
between different quantum dots are neglected in the cal-
culation of the dielectric response function.

In this paper we present a more general theoretical
study of tunneling quantum-dot structures where the en-
ergy dispersion and the overlap of wave functions coming
from different quantum dots are included in the calcu-
lation of the polarization matrix. We also allow here
for possible intraband and interband mixing due to the
Coulomb interactions, an effect not previously included
in studies of these systems. ' We show that the gen-
eral shape of the dispersion curves of collective excitation
modes associated with interband transitions is indeed de-
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where (p is the wave function of the lowest state in the z
direction, (p(z) = (2/zp) ~ sin(vrz/zp) (the z direction
conBnement length zo is assumed to be much smaller
than in the x and y directions). We use a Wannier rep-
resentation along the x and y directions on the array as
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where d and d„are the periods of the lattice array, /, 6 in-
dicate site indices in the x and y directions, respectively,
and i,j label the bands.

The density response of the system to a potential per-
turbation V(r) is then given in the self-consistent-field
formalism by

termined mainly by the details of the single-particle level
dispersion, producing a strong q dependence. ' On the
other hand, we show that inclusion of wave-function over-
laps results in a band of collective excitation modes asso-
ciated with interdot tunneling of electrons in both lateral
directions of the array. We present calculations of the os-
cillator strength for both families of interband and intra-
band (tunneling) collective excitation modes, obtained
from the electron density-density correlation function for
this generalized modulated 2D system. These calcula-
tions also show that the coupling to external probes ex-
hibits rather complex anisotropies and q dependencies, a
somewhat unrecognized result in the literature.

The wave functions of the system are assumed separa-
ble and written as
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where II(a, a', w) is the polarization term

f(a ) f(a)
E(a') —E(a) + h((u+ irI)

' (4)

and the corresponding induced Coulomb interaction is
given by

V(q, z) =
Eq

dz' e q~' '
~ n(q, z'),

where q is a 2D vector, q =
I q I, e is the back-

ground dielectric constant, f(a) is the Fermi distribu-
tion function, and a, a are composite quantum indices,
a = (k, k„, i, j). The energy of the a state is expressed by
the usual nearest-neighbor tight-binding energy bands,

E~ = e;z —W'~ cosk~d~ —W„'~ cos k„d„, where W'~ are
the half bandwidths in each direction. The phenomeno-
logical broadening factor rI in Eq. (4) is introduced to
describe the effects of imperfections in the system, and
regularizes the behavior of the polarization function near
the poles. Notice that Eq. (3) involves multipolar and
Coulomb matrix elements between eigenstates located on
difFerent dots, as well as intradot terms. All these are
included in our calculations (see A, ;, and B", below),
while the multipolar terms have been ignored previously
in theoretical studies of these systems.

Solving Eqs. (5) and (3) self-consistently, and after in-
tegrating out the z degree of freedom, allows one to write
a secular equation for the normal modes of the system,

4ze I) ) A,*;, (q + nG )B* , (q„.+ mG„)IIA,', , (q + nG )B",(q& + mG„) —8„hlr, hH~ g, = 0,
sl h,HL q~m

(6)

where G (G„) is the smallest reciprocal lattice vector
component along the x (y) direction, q = (q + nG
q„+mG„), s = (i,i', j,j') is a compound index,

I(q-) = ««'e ' ' '
'
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(10)

g,'":—) V A ~ (q +nG )B (qy+mGy). ~

and II = II(s, q, q„, L —I, II —Ii, w). Notice that II has
been Fourier transformed from the continuum variables
k~ and k„ to the discrete site indices I and h, , to take full
advantage of the Wannier function representation. The
solutions of Eq. (6) for given q~ and q„yield the collective
excitation frequencies at that wave vector. Notice that
the size of the matrix Q (nominally infinite) depends in
practice on the total number of levels/bands and neigh-
bors included. The formalism can be used, in general,
to study different systems for any value of q and q„or
number of subbands.

In the numerical calculations below we assume a square
array (d = d„= d), that tunneling exists only be-
tween nearest-neighbor dots [up to III = 1 in Eq. (8)j,
and that each dot is well described by three energy levels
(the higher two being degenerate) yielding three tunnel-
ing bands. We also assume the Wannier functions to
be given by those of a local parabolic potential charac-
terized by the harmonic frequency Mp = e] p/h. This
Gaussian representation simplifies the calculation of the
matrix elements considerably and it should give a proper
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FIG. 1. Dispersion curves for collective modes in the non-
tunneling limit for a square array of quantum dots. Parame-
ters used are rqo ——huo ——25 meV, eg ——6.5, m* = 0.014m
zp ——50 A, di ——1000 A, dq ——500 A, ds ——250 A. , and
kF~~~ = 7r/2d. "Dot size"= Qh/m" (u = 148 A. I' = (q
0, q„= 0), Ã = (m/d, 0), and M = (7r/d, vr/d).

I

description of the problem. ' It is further assumed that
only the lowest band is partially filled, for simplicity. In
this case, the dimension of the determinant in Eq. (6) is
20 x 20.

Figure 1 shows collective excitation dispersion curves
in the nontunneling limit along high-symmetry directions
in the first Brillouin zone, for typical structure parame-
ters (see caption). Since we focus our attention on the
qualitative behavior of the dispersion curves, we have
not included the self-consistent correction to the ground
state. Absence of this correction as mell a8 the inter-
dot coupling in this system causes a small depolarization
shift at the I' point (q = 0). This shift vanishes for the
single parabolic dot case, according to the generalized
Kohn's theorem. We can see in Fig. 1 drastic changes
in the shape of the dispersion curves when the lattice
constant decreases. These changes are qualitatively ex-
plained by the enhanced Coulomb fields at smaller array
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We can write y as a matrix in reciprocal space, with com-
pound indices y( )( i i), so that y = [I —yoV]
The relative oscillator strength of the collective excita-
tion modes is then evaluated, as it is proportional to
the imaginary part of the matrix element y(qoo, qpp M) =
x(q, q ~)."

Results of a typical calculation for —Imp(q, q; ur) are
shown in Figs. 2 and 3. These plots show the full response
function peaks as the collective modes for this tunneling
quantum-dot array system. In changing the bandwidths
from zero to R" = W„= O. lejp and W = R'
W ~ = Wo~ = 0.15sqo, Fig. 2(a), it is clear that the main
interband mode curves acquire strong slopes along the
I'-X and X-M directions. For even larger bandwidths,
W „=0.2sgp and W „= W '„= 0.3sgp, Fig. 2(b),
these slopes increase further. This strong q dependence
is due to the single-particle level dispersion, as one would
expect an effectively weaker Coulomb interaction (and
then sma/ler slope) as the carriers are allowed to spread
laterally. Notice that in addition to the changes in mode
dispersion curves, the interband collective excitations in
the nontunneling case (see Fig. 1) become more like a
broadband. This "broadening" of the plasma peaks of
the system with hu around E'j p is due to admixtures with
the interband single-particle-like transitions made avail-
able by the interdot tunneling. A similar background
of single-particle-like transitions, shifted due to Coulomb
depolarization eKects, appears in other systems that al-
low carrier tunneling, such as superlattices. ' Notice
that the main plasma peak rides at frequencies higher
than all the possible single-particle transitions and in fact
carries most of the oscillator strength (see also Fig. 3).

Also shown prominently in Fig. 2 is the band of low fre-
quency modes in the range hu & 0.5G'j p. The characteris-
tic frequency of these modes increases as a weak function
of q, although one would expect that for larger tunneling
this function would become closer to a ~q dependence,

as in a 2D system (see Ref. 11 for a discussion on the
one-directional tunneling case). This is qualitatively ob-
served in Fig. 2(b), with a larger tunneling coefficient
than in 2(a). We also notice that allowing larger tun-
neling enhances the oscillator strength of the low-energy
tunneling modes. Some of these features are illustrated
better in Fig. 3, where —Imp(q, q; w) is shown versus the
transition frequency w at four diferent q values along the
I'-X and X-M lines. At larger q values, we have higher
transition frequencies with a somewhat reduced oscillator
strength. One should also notice that the single-particle
background and tunneling modes have relatively weaker
intensities compared with the main interband modes, al-
though their intensities may still be strong enough to
be detected by infrared or inelastic light-scattering ex-
periments. EKects of varying electron density will be
presented elsewhere, although mode features are weakly
dependent in this case of the Fermi level contained in the
lowest band.

We have studied the collective excitations and optical
response of 2D arrays of quantum dots where tunnel-
ing between nearest-neighbor dots is allowed. We show
that tunneling strongly aKects the shape of the interband
mode dispersion curves. We also show that the suitable
introduction of the wave-function overlap in the polariza-
tion function creates bands of modes near the interband
single-particle excitation region and a tunneling plasma
mode at low energies. Moreover, we show that the oscilla-
tor strength of the various modes shows a rather complex
and anisotropic q dependence.
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