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Finite-size effects on superlattice acoustic phonons
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The high-resolution Raman spectrum of a Si/Sii „Ge„superlattice with %=15 periods has been
studied. It is shown that the principal, secondary, and fine-structure features in the acoustic-phonon
spectrum can all be consistently understood within a linear-chain model using first-principles force con-
stants. The physical appearance of the features is very sensitive to X for N (20. It is also pointed out
that simpler theories (e.g., Rytov model) would fail to predict the secondary structure and the fine struc-
ture, and the superlattice layer parameters fitted to the observed principal spectrum would be different
from the true values. Thus it is important to use a detailed theory in using Raman spectra as a tool for
the reliable characterization of microstructures.

I. INTRODUCTION

Since the beginning of semiconductor superlattice tech-
nology, Rarnan-scattering spectroscopy has proven to be
an essential technique both for characterizing the super-
lattice structure and for investigating the physics in-
volved. ' A large part of this work has involved inelastic
light scattering from acoustic phonons in superlattices.
The effect of the artificially introduced periodicity d
along the superlattice growth direction is to produce a
Brillouin zone (minizone) much smaller in size (the max-
imum wave vector q,„=srld) than the original Brillouin
zone of q „=2~/a, where a is the lattice constant. The
acoustic phonons with a wave vector along the superlat-
tice growth direction can be simply thought of as result-
ing from the folding back of the original lattice dispersion
curve into the minizone. A very commonly used method
for the calculation of phonon dispersion curves is to use
the elastic continuum model of Rytov: '
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Here q and co are the phonon wave vector and frequency,
d „d2 and u „U2 are the thicknesses and sound velocities
of the two-component layers of the superlattice,
R =p2U2/p, u, , and p, and p2 are the densities of the two
layers. This model has been remarkably successful in
predicting the acoustic properties of a large variety of
semiconductor superlattices. '

The Rytov model is intrinsically a continuum model,
and Eq. (l) is thus derived for the case where the number
of superlattice periods N —+ ~. Experimentally, it has
been shown that Eq. (l) is an excellent fit to the measured
dispersion in cases where iV is at least 20 and the experi-
mental resolution is not too high ()0.5 cm '). It is
also necessary that the layer thicknesses d& and d2 are
large enough if bulk velocities u, and U2 or values derived
from them are to be used. When the number of periods

X becomes small, a detailed description of the spectrum
requires a complete modeling of the microstructure in-
clusive of substrate, finite superlattice, and the cap, which
is usually a few atomic layers of one of the two materials
forming the superlattice. The need to do such modeling
was emphasized in Ref. 5 where optical phonons in
Ge Si„superlattices were discussed. It was also shown
in Ref. 6 that a complete finite-structure modeling was
necessary to describe the acoustic-phonon spectra of 10-
period Ge2Si2 and Ge4Si4 superlattices, which showed
Fabry-Perot type resonant-phonon phenomena due to
substrate and capping layer effects on the phonon spec-
trum. Such resonance properties are entirely due to
finite-size effects and their treatment is delicate. Similar-
ly, acoustic-phonon spectra of finite-stage Fibonacci su-
perlattices of GaAs/Al, Ga„As could only be interpret-
ed using a full calculation that did not invoke the N ~~
periodicity. Recently, high-resolution studies of thick-
layer Si/Si

&
Ge superlattices have shown additional

structure as well as fine structure in the acoustic-phonon
Raman spectrum that cannot be explained by the Rytov
model. ' Also, the gaps that appear in the phonon
disperson at q =q „can only be fitted to a Rytov model
by reducing the known values of U and p for Si by —

l%%uo

and increasing those for Si, Ge, by —
5%%uo,

' '" and
even then the agreement with experiment is not up to ex-
pectations.

The fine structure that appears in the higher-resolution
((0.5 cm ') Raman spectra comprises splittings of the
main folded acoustic-phonon peaks and numerous weak-
er peaks in between the main features. ' These fine
structures have previously been explained by assuming
that the growth process had not produced the expected
crystal and contained a variation in the superlattice
period ' '" and also that there are resonant modes of the
entire superlattice structure. '" Here, we analyze the
high-resolution Raman spectra with a linear-chain lattice
dynamical model ' that explicitly includes the finite-size
effects of the crystal. It is shown that the microscopic
model accounts for all features of the experimental spec-
tra in a systematic and coherent fashion. If the superlat-
tice layers i and j have layer thickness fluctuations Ad,
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and Ad, the Raman spectrum is sensitive to the correlat-
ed fluctuation (b,d;hd ). The general agreement be-
tween the observed spectra and the microscopic model
results suggest that the molecular-beam epitaxy (MBE)
growth has produced the target crystal with
(b,d; b,d ) =0, although the mean (random) layer Auctua-
tion" (~b,d, ~) is of the order of 2%. The previous
analysis' of the Raman spectrum was motivated by the
disagreement with the Rytov model. We now believe
that the shortcomings are in the Rytov model, which as-
sumes an infinite-period superlattice, and not in the
MBE-grown crystal, which is really a finite-period super-
lattice (FPSL). Thus the use of a proper detailed model
can lead to conclusions that are diametrically opposite to
what may be indicated by a simplified model. Similar size
effects have been observed' in the electronic spectra of
FPSL's.

II. HIGH-RESOLUTION RAMAN SPECTRA
OF A 15-PERIOD Si/Si

&
„Ge„SUPERLATTICE

If the number of periods A' in the FPSL is sufficiently
large, but not large enough to be in the Rytov regime,
finite-size effects on the Raman spectra of acoustic pho-
nons would be a secondary effect modulating the strong
scattering from the accumulation of modes which finally
become the folded modes. To observe it, a high-
resolution Raman spectrometer is necessary. In fact, we
have used two double-grating spectrometers to obtain the
acoustic-phonon spectra: a Spex 14018 and a SOPRA
DMDP2000. The spectra obtained by the Spex 14018
were just like the usual folded acoustic-phonon spectra
and no special features were observed with a resolution of
-0.5 cm ' while that obtained by the SOPRA
DMDP2000 revealed considerable fine structure. '

As an example, we consider here a 1S-period
Si/Si, Cxe superlattice with ds; =20.5 nm,

ds; &, =4.9 nm, and x=0.48. ' Figure 1 shows spec-

tra obtained with the SOPRA DMDP2000 using 300 mW

of laser excitation at 496.5 and 476.5 nm recorded in a
Brewster angle pseudobackscattering geometry at room
temperature. The sharp intense peaks in Fig. 1 corre-
spond approximately to the pairs of folded phonons of
Rytov theory' "and their positions shift with varying
laser frequency due to the change in the scattering wave
vector of light. These peaks exhibit splittings, and other
weaker but sharp features are observed between them.

III. THEORY

A. Rytov model

2&Pl
ro(q) = v q+

d
(2)

where v is the superlattice sound velocity given by

As mentioned in Sec. I, the Rytov model is simple and
widely used for discussing the basic physical properties of
acoustic modes in superlattices. It was first developed by
Rytov from a study of sound wave propagation in lay-
ered structures. For simplicity, he took two component
layers and arranged them in a periodic manner. One of
the conditions of this model is that the wavelength of the
sound wave should be much larger than the layer thick-
ness. The elastic continuum approximation is then valid
and the wave equation in each layer can be solved. By
further applying periodic boundary conditions to the lay-
ered structure, Rytov obtained Eq. (1).

Following the development of artificial superlattices, it
was found that the Rytov model could be used to de-
scribe the acoustic phonons in semiconductor superlat-
tices. The structure is regular and periodic, and in most
cases the wavelengths of the acoustic phonons are larger
than the thicknesses of the component layers.

Rytov theory predicts two important differences be-
tween acoustic phonons in superlattices and phonons in
the bulk component materials. First, the Brillouin zone
is folded. This can be seen clearly from a simplified form
of Eq. (1):
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and I =0, 1,2, . . . is the folding index. Second, phonon
energy gaps are opened at the folded Brillouin-zone
center and boundary (at q =sr/d). Notice that the very
possibility of using the concept of a wave vector q, and
energy dispersion e(q), are associated with full periodici-
ty, which is strictly valid only for the limit X—+ ~.
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FICx. 1. Part of the Raman spectra of folded acoustic pho-
nons in a 15-period Si/Sio»Geo 48 superlattice excited with
476.5- and 496.5-nm argon laser light recorded at a resolution of
0.18 and 0.15 cm ', respectively.

B. Linear-chain model

If the growth direction of the superlattice is along a
favored symmetry direction like the (100) direction,
then it can be shown that the lattice dynamical problem
can be exactly and rigorously reduced to a linear-chain
model of interacting parallel atomic layers. The analysis
is well known and is given in standard texts. ' A discus-
sion appropriate to superlattices, but assuming super-
periodicity, is given in, for example, Ref. 3. Such models
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require the interlayer force constants and the masses
(average mass in each layer) as input parameters.

In our previous studies ' we used a linear-chain model
of the total structure

substrate+ ( A 8„)z+cap,

where the substrate was modeled by 500—1000 atomic
layers of A =Si or B=Ge, as the case may be, while the
Si cap of 50 A was modeled by 37 atomic layers of Si.
The first atomic layer of the substrate was assumed to be
fully anchored, while the surface layer (last layer of cap)
was treated as free or anchored, depending on a parame-
ter o., which specified the degree of anchoring. In the
present problem A is Si, while B is an alloy layer of
Si, „Ge where x is, e.g. , 0.48. The layer thicknesses d,
and d2 defined by the growth conditions were 20.5 and
4.9 nm, and corresponded to 151 atomic layers of Si and
35 atomic layers of alloy along the growth direction
(100). Thus each superunit cell corresponded to 186
layers. Here the alloy monolayer thickness was taken to
be 0.1408 nm using the bulk values for Si and Ge, and in-
terpolating linearly for the composition x =0.48.
Theoretical force constants k, to k4 for bulk silicon' and
germanium' up to fourth-neighbor interactions were
used in the linear-chain model, with linear interpolation
to x =0.48 for the alloy. For interactions between
(=Si) and B (=alloy) the arithmetic mean of the force
constants was used. These force constants as used by us
are reported in Table I of Ref. 5. In our calculations we
do not assume any translational invariance, etc., but sim-

ply diagonalize a matrix that is of dimensionality equal to
E b +X

p
+X

p
where X, b X p

and X„p are the
number of substrate, superlattice, and cap atomic layers,
respectively. The matrix is a banded matrix, since only a
limited number of interactions, viz. , up to fourth-nearest
neighbor, are taken into account. In order to keep the to-
tal size of the matrix relatively small we used N, „b =2000,
while there was no cap in these structures.

IV. COMPARISON OF THEORY AND EXPERIMENT

A. Principal peaks

Figure 2 presents the full experimental spectra, togeth-
er with the spectra calculated using the linear-chain mod-
el. The intensities I(co) of the model spectrum were cal-
culated using the photoelastic model. Thus I (co) is given
by the following expression, which contains a finite-range
Fourier transform:

I(co)-g QP(x; )U„'(x;)exp(iqx, )
n i

n(co)+1 I /2m

(co —co„) +(I /2)

Here n (co) is a Bose factor at room temperature, while
P(x;) and U„'(x, ) are the photoelastic constant and the
derivative of the phonon amplitude in the ith layer at the
position x; for the mode with energy co„.The Lorentzian
broadening factor I was taken to be 0.1 cm '. The pho-
toelastic constant P(x, ) was taken to be unity for Si lay-
ers, and 10 for alloy layers. U„(x) and ro„were obtained

488nm

515nm

10 20 30
Raman Shift (crn )

40

FIG. 2. Comparison of experimental and calculated Raman
spectra in the Si/Sio»Geo «superlattice under different laser
excitation wavelengths. In each box, the top trace is the experi-
mental result (Expt), the middle trace is the linear-chain model
result (Lchn), and the bottom trace is the Rytov model result
(Rytov).

from the eigenvector solutions of the linear-chain prob-
lem. The scattering wave vector of light, q, is given by
q =4mrIA, '[I —(4') ]. The refractive indices rI used in
the calculations were 4.777, 4.423, and 4.273 at the wave-
lengths 458, 488, and 515 nm, respectively. Experiments
and calculations were also done at two other laser fre-
quencies.

The curve labeled Rytov in Fig. 2 was calculated using
the photoelastic theory, analogous to that used in the
theory of the linear chain, using P»=1 and P»&oy 10&

employing the formulas of Ref. 3. It should be pointed
out that this type of intensity theory is known to be
inadequate and that the "superlattice" equations for the
Maxwell equations also have to be solved in consort with
the lattice dynamics equations to recover reliable intensi-
ty results. Thus the doublet intensities of the curves
marked Lchn and Rytov in Fig. 2 are essentially equal,
while this is not at all the case in the experimental data.
However, the linear-chain calculation clearly reproduces
the general features of the spectrum and the correct peak
positions, without adjustment of the input parameters.

In solving the linear-chain problem, the behavior of the
first atomic layer (first layer of the substrate) forming the
chain, and the last atomic layer (i.e., the surface layer)
specify the boundary conditions. In this calculation we
assumed that the first layer (substrate) was fully anchored
(o =1), while the surface layer vibration was damped
(o =0.1). Unlike in optical mode calculations, the
(long-wavelength) acoustic-phonon spectrum is not sensi-
tive to the boundary conditions. Thus if the surface layer
was allowed to vibrate freely (o =0), or fully anchored
(o = 1), no new features are explicitly seen in the part of
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in the experiment. By returning to Fig. 2 it is easy to
conclude that the broadening parameter of 0.1 cm ' ap-
plied to the calculated structure may not be adequate for
this case. If we ignore the fine structure on the principal
peak, the interval between fine-structure peaks of the cal-
culated spectrum and their positions seem to be in gen-
eral agreement with the experiment. A more detailed as-
signment is not justifiable since the intensities are calcu-
lated with a limited theory and this affects the quality of
the assignment. As already stated, a correct evaluation
of the intensities requires the layer-by-layer solution of
the Maxwell equations along the finite-sized superlattice.
Such a solution for the Rytov case is quite tractable and
has been given by He, Djafari-Rouhani, and Sapriel (see
Ref. 1).

VII. CONCLUSIONS

20 25
Raman Shift (cm )

30

is inadequate, and also because we have scaled the very
intense Brillouin peak and the relative intensities of the
other peaks in order to present the information in a con-
venient graphical form.

In Fig. 5 we display the experimental fine structure and
the calculated fine structure for two laser wavelengths for
the range 15—30 cm '. The theoretical spectrum carries
a broadening parameter of 0.1 cm ' as already men-
tioned. It is clear that the qualitative agreement is strik-
ingly good. At the quantitative level, the 488-nm spec-
trum is very satisfactory, ' the 515-nm spectrum is visually
less satisfactory, since the apparant double peak structure
shown in the principle peaks of the Lchn curve is not seen

FIG. 5. Comparison of calculated (Lchn) and experimental
(Expt) weak fine structure observed in the Raman spectrum of
the Si/Sio»Geo 48 superlattice for different laser excitation
wavelengths.

The analysis of the high-solution experimental Raman
spectrum of a finite-size superlattice has served to demon-
strate the importance of detailed modeling when the
spectrum shows deviations and fine structure not predict-
ed by simpler theories. The linear-chain model used here
has successfully predicted the principal- and secondary-
peak positions, as well as the general features of the fine
structure, without having to adjust the fitting parameters.
In addition, considerable variation was found in the phys-
ical appearance of the calculated Raman spectrum de-
pending on the number of superlattice periods. We con-
clude that this is of significance not only for elucidating
the physics, but also for detailed characterization of mi-
crostructures by Raman methods.
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