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Fluctuations in domain growth: Ginzburg-Landau equations with multiplicative noise
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Ginzburg-Landau equations with multiplicative noise are considered, to study the effects of fiuctua-
tions in domain growth. The equations are derived from a coarse-grained methodology and expressions
for the resulting concentration-dependent diffusion coefficients are proposed. The multiplicative noise
gives contributions to the Cahn-Hilliard linear-stability analysis. In particular, it introduces a delay in
the domain-growth dynamics.

I. INTRODUCTION

The study of fluctuations in spatially extended systems
far from equilibrium constitutes an active field of
research. Recent experiments indicate that noise seems
to have an important role in dynamic processes such as
pattern formation and growth. Examples of such effects
have been observed in the generation of sidebranching in
dendritic growth, ' cells in Rayleigh-Benard convection
and William domains in the electrohydrodynamic insta-
bility of nematic liquid crystals. For an overview of this
topic see Ref. 4.

Some analytical work and computer simulations have
been carried out to explain such phenomena. Howev-
er, many fundamental aspects remain to be clarified, for
instance, the origin of the noise, ' or the correct model-
ing of the coupling between the noise and the state of the
system. ' The simplest way to consider fluctuations is to
add a thermal noise to the macroscopic equations. How-
ever, it has been observed that in some cases ' there is a
large discrepancy, as large as four orders of magnitude,
between the values of the intensity required to get a good
agreement with experiments' and those corresponding
to the assumption of thermal noise. The origin of the
noise in these experiments is not known and a type of
modeling of fluctuations may be needed to explain them.
In other cases the fluctuations are introduced in such a
way that it is difficult to determine the form in which the
noise is coupled to the state of the system. For example,
small perturbations or random numbers are added to the
values of the variables in the numerical integration of the
corresponding macroscopic equations. '

A different type of stochastic model is required when
the effects of the noise are considered to depend on the
state of the system. In this situation, the noise appears in
the equations multiplying a function of the relevant vari-
ables. This is known as multiplicative noise. Its effects
on the system are, in general, more important than those
induced by simple additive noise. The reason is that the
existence of a coupling could induce amplification of the

stochastic effects. Multiplicative noise usually appears
when noise of external origin is considered. In some ex-
periments in liquid crystals, this situation has been stud-
ied by deliberately superimposing a noise to the ac volt-
age. The results imply a strong effect on the response of
the system, like changes in the threshold of the instability
points. The possibility of externally originated noise in-
cluded in the apparatus in Rayleigh-Benard cell genera-
tion is an open question. An internal noise could also
appear in a multiplicative way. This is the situation that
we will consider in this paper.

Theoretical studies of the effects of multiplicative noise
have been carried out in simple models without spatial
dependence, ' but very little is known regarding spatially
extended systems. First, some aspects need to be studied
in detail, like the interpretation of the stochastic equa-
tions or the analytical and even the numerical treatment
of the equations. To this end, in this paper we start by
deriving a model with spatial dependence in which the
noise of thermal origin appears in the equation in a multi-
plicative way. The resulting Ginzburg-Landau equations
with multiplicative noise could be used to describe the
temporal evolution of the concentrations of a system of
two components, like a binary liquid or an alloy that
could undergo phase separation. " In this situation, the
system is suddenly quenched from a one-phase region in-
side its coexistence region. Then, the homogeneous
phase becomes unstable and domains of the new stable
phases start growing. This mechanism is called spinodal
decomposition. In a previous paper, ' the deterministic
evolution of such a system was studied when a variable-
dependent diffusion coefficient was taken into account.
This assumption has been considered to model deep
quenching' ' or to take into account the presence of an
external field, like gravity. ' In Sec. II we introduce fluc-
tuations in this macroscopic model. ' ' We find that
the assumption of a concentration-dependent diffusion
coefficient implies multiplicative thermal fluctuations.
The field model that we derive is given by the following
Ginzburg-Landau-type equation with multiplicative
noise:
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Bc(r,r)
)
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+V'm (c)g'(r, r),
where c (r, r) is the concentration variable, F [c] is the
Ginzburg-Landau free-energy functional, and
M(c)=m (c) is the concentration-dependent diffusion
coefficient. The noise is a d-dimensional vector with a
correlation:

=1C~=
Nk

(2.1)

where o.
k =1,—1 indicates a site occupied by a particle

A or B, respectively. Then, it is assumed that a Markovi-
an master equation is obeyed by the probability P ( [c j, t)
of the configuration of cells, [c j

= [c&, cz, . . . j,

The lattice is divided into regular cells of volume b,x
containing N sites and the concentration of the binary
mixture, c, at the cell a is defined by

( g'(r, r)P(r', r') ) =2P '5; ~5(r r')5—(r r') .— (1.2)
a,P([c j, t)=y[W([c j

' [c j)P(tc j ', t)
p is the intensity of the Gaussian white noise. A com-
mon assumption regarding the dependence of M on con-
centration has been obtained by phenomenological argu-
ments. ' ' That is

M(c) =1—ac (1.3)

where a is a parameter related to temperature. For a =0
we obtain the usual model B of phase separation dynam-
ics with additive noise. "For aAO, apart from the multi-
plicative term, we find a spurious term, the second term
on the right-hand side of Eq. (1.1), of stochastic origin.
This spurious term ensures the evolution of the system to
the correct equilibrium solution.

In Sec. II we present a derivation of the model in two
main steps. In the first, we obtain the formal Fokker-
Planck and Langevin equations from a general master
equation by means of a coarse-grained procedure. This
method has been used to derive dynamic models of phase
separation in the presence of additive fluctuations. '

Here, we generalize the procedure to multiplicative noise.
The second step of our derivation is required because the
coarse-grained procedure does not give explicit expres-
sions of the concentration-dependent diffusion coefficient.
We propose a general expression for this magnitude at
the level of the cell variables and discuss the continuous
spatial limit. The model contains a characteristic mesos-
copic length which gives a size of the region of inter-
change of matter between different cells at each time step.
In Sec. III, as one of the relevant results of this paper, we
show that both terms of stochastic origin give relevant
contributions even in a linear-stability analysis, that is to
the standard Cahn-Hilliard theory. Our theory predicts
that the multiplicative noise induces a delay in the short
term behavior of the domain-growth dynamics. In a fol-
lowing paper, ' we present an algorithm for the numeri-
cal integration of general equations of the type of Eqs.
(1.1)—(1.3). Results from this numerical integration are
in good agreement with the linear analysis. In Sec. IV we
give a summary of conclusions. In Appendix A, we
derive the Fokker-Planck equation corresponding to the
Langevin equations (1.1)—(1.3). In Appendix B, we
present a derivation of Langevin equations with multipli-
cative noise for the case of a nonconserved order parame-
ter.

II. DERIVATION QF THE MODEL

Following the standard coarse-grained procedure, ' '
we start from a lattice-gas model of interacting particles.

—W([cj~[cj ')P(tcj, t)], (2.2)

W([c j '~[c j)=M(t jc', (c j)e~a"~', (2.3)

where F ( j c j ) is a coarse-grained free energy. The de-
tailed balance condition is fulfilled provided M is sym-
metric by interchange of the initial and final states. In
the usual derivation of the field model, with constant
diffusion coefficient and additive noise, no dependence of
M on the configurations is considered, and it is assumed
that M( [c j ',

)
c
J

)=P (E), where P (E) is a sharp function
around a=0. ' '

Here, we present a generalization of this procedure
that will give rise to a model with a variable-dependent
diffusion coefficient and a multiplicative noise. By assum-
ing that e is a small quantity, we can expand the different
terms of the right-hand side of Eq. (2.2) in power series of
e and we get to the lowest order:

=I gK, M, [(K,F)+p 'K.
, ]P( [c j,t), .

ai

(2.4)

where I =(e )p/2 and (e ) is the second moment of
P (e). The operator K; is given by

8 8K;=
Bc +; Bc

(2.5)

In Eq. (2.4), we have made use of the symmetry condition
on

M, =M(jcj ', jcj)=M([cj,[cj ') .

Equation (2.4) can be written in more usual form (see Ap-

where the indices a and i enumerate the cells and their
nearest neighbors in the positive direction, respectively.
W( ( c j '~ [c j ) is the transition probability between the
initial configuration

[c j
= [cl,c2, . . . , c~ —G, c~+I

and the final one [c j = [c„c2,. . . , c,c +, , . . . j. e is the
concentration exchanged in an elementary step of the
evolution. The model could be generalized to include
long-range interactions.

We consider situations for which the system evolves to
an equilibrium state given by a steady-state distribution
P„([c j ), which is proportional to the Boltzmann factor.
Then, we write for the transition probability, 8'
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pendix A for details):

a~ , a , , ar , a= —hx I (V L) pMp;(V~)p +P ' P,
Bc

n, of cells in the vicinity of a and a+i:
M, =QQ' pf (cp),

P
(2.12)

(2.6)

where VL and Vz are the left and right discrete versions
of the gradient operators:

= 1
(V~ ) p= (& +;p

—& p),

1
(VL ) p= (5 p

—5;p) .
Ax

The operator K, has been expressed as

8K; =Ax(V~ ) p Bc&

(2.7)

(2.8)

where summation over repeated indices is understood.
The Langevin equation, in the Stratonovich interpreta-

tion, associated with the Fokker-Planck equation (2.6) is
given by

where f (cp) is a function of only one variable cp and the
matrix elements Q'

p are diff'erent from zero only when
the index P corresponds to a, a+ i, or the n cells in the
vicinity of this couple. By taking into account the nor-
malization condition:

QQ'p= 1,
P

(2.13)

we find that the continuous limit of M;( [c j ) is given by
M (c)=f (c). To simplify the model, we take that
Q' =Q' +; =—Qo. A characteristic mesoscopic length
is present in the family of models described by Eq. (2.12).
This length gives the size of the region which includes all
cells which appear in the definition of M,.((c j ). The
transition probability, Eq. (2.3), depends only on the con-
centration values of cells that are closer than a distance
of the order of n' "Ax. To characterize the size of this
region, we take into account that, from Eq. (2.13), Qo is
of order n ' and we define a new parameter R by

c =I b,x (V'L ) pMp;(V~)p ——P 'b,x (V'L ) pBc~ 2 R =bxQ (2.14)

BMp,
X(Vg )p +(VL, ) pmp;gp(t),

C~
(2.9)

where gp(t) is a Gaussian white noise of zero mean and
correlation

which is precisely of the order of a'~"Ax and represents
the mesoscopic length scale of the model.

An explicit example of M,.((c j ), Eq. (2.12), which
corresponds to Eq. (1.3) in the continuous limit, is given
by

& P.(rgj(t') & =2xx'rP 'S„a.-g(t t ), —

and m@ is defined by

(2.10) M;(jcj)=Qoj(1—ac )+(1—ac +;)j+Qog(1 —acp),
P

(2.15)

Mp, ( tc j ) = [mp;( [c j )] (2.11)

The Langevin equation (2.9) can be shown to correspond
to be Fokker-Planck equation (2.6) by deriving the latter
from the former. In Appendix A we present the details
of this derivation.

At this point, Eqs. (2.6) and (2.9) are formal and gen-
eral equations in which the expressions of M, ( {c j ) need
to be specified for each model. In particular, explicit ex-
pressions of M;( tc j ) are required to perform numerical
simulations. Furthermore, these equations are given in
terms of the cell variables and we are also interested in
finding the corresponding equations in the continuous
spatial limit. Here, we make some assumptions about the
form of M, ( j c j ) and then we propose a family of mod-

els. In general, M;( [c j ) depends on the concentration
values of all the lattice points in a given configuration. In
the continuous spatial limit, this gives rise to a functional
expression of M [c]. In order to obtain a local mobility
function M(c) like the one considered in the macroscopic
model, ' ' given by Eq. (1.3), we assume that the transi-
tion probability, Eq. (2.3), only involves exchanges of
matter between nearest-neighbor cells e, a+i at each ele-
mentary step. Furthermore, we restrict ourselves to
functions M;((c j ) that only depend on the concentra-
tion values of the cells n, a+i, and on a limited number,

which depends on c, c +;, and on all the nearest neigh-
bors P of this couple.

The dynamics represented by Eqs. (2.4), (2.6), or (2.9)
involves not only the function M; but also derivatives in
terms of the operator K;, Eq. (2.5), like K,M, . The re-
sult of the action of K; on the mobility of Eq. (2.12), or,
in particular, on the example given by Eq. (2.15), could
be written as

BM;
d+i Kai™ai ( R )aphx acp

(V' )
df (Cp)

dc
(2.16)

6 M( )
1 df (c)

5c R" dc
(2.17)

Now, the statistical properties of the mesoscopic model
considered in this paragraph are completely specified by
Eqs. (2.12) and (2.16) and the corresponding Fokker-
Planck or Langevin, Eqs. (2.6) or (2.9), respectively.

At this point, we give a version of this mesoscopic
model in the continuous spatial limit, as is given in Eqs.
(1.1)—(1.3). Then, writing Eq. (2.16) in the continuous
limit, we make the following identification:
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Then, from Eqs. (2.16) and (2.17) we find that the con-
tinuous limit of K;M; could be written in terms of the
gradient of the functional derivative:

1
, K;M;~V M(c),6

(2.18)

where M (c) is the continuous limit of Eq. (2.12),
M (c)=f (c). It is interesting to notice that Eq. (2.17) in-
volves the meso scopic parameter R for a complete
specification of the model and it could be considered as a
definition of the functional derivative of M (c).'

Now, for the generic form of M;, Eq. (2.12), we can
write the Fokker-Planck equation (2.6) at the continuous
limit:

Then this conjecture appears to avoid the problems intro-
duced by a multiplicative noise, whereas, this is not, in
fact, the case. In principle, a formal derivation of a
Fokker-Planck equation from Eqs. (2.22) and (2.23) does
not give rise to Eq. (2.6) if the Gaussian noise has zero
mean. In fact, to reproduce the stationary equilibrium
solution, one needs to introduce a spurious term in Eq.
(2.22), which involves the presence of functional deriva-
tives of M(c). Then a similar treatment to that presented
here would be required. Furthermore, from the practical
point of view a numerical integration of the stochastic
Eqs. (2.22) and (2.23) introduces additional problems due
to the requirement of a prescription to simulate a Gauss-
ian noise that depends on the variable.

= —fdr VM V +p ' p,
Br 5c(r) 5c(r) 5c(r)

(2.19)

where the new time scale is

~=tI Ax2+ (2.20)

Analogously, Eq. (1.1) is the continuous Langevin equa-
tion corresponding to the discrete Langevin equation
(2.9).

From the Fokker-Planck or the Langevin, Eqs. (2.6)
and (2.9), respectively, it is possible to derive the equation
for the moments. For example, at the continuous limit
the first moment obeys the following equation (see Ap-
pendix A):

(2.21)

cti = b, Vx't MVti + roti(t),
BF
Bc&

(2.22)

where g&(t) is now a Gaussian white noise with a correla-
tion:

(pter(t)qp, (t) ) = 2p 'bx VJ MV'~5tit3, 5—(t —t') . (2.23)

In this way, the noise would still be additive but the
correlation would depend on the concentration variable.

where the functional derivative included in the last term
is evaluated in accordance with the prescription given by
Eq. (2.17). The most interesting aspect of the Langevin
equations (2.9)—(2.12), or equivalently (1.1)—(1.3), is the
presence of multiplicative noise that gives rise to the
second term of Eq. (2.21).

As the last remark of this section, it is worth sounding
a note of caution regarding other Langevin equations
that one could be tempted to propose to consider
concentration-dependent diffusion coeKcients. In princi-
ple, the statistical properties of the noise in a Langevin
equation should be independent of the variable for the
stochastic process techniques to be used safely. For ex-
ample, this requirement is needed in a derivation of a
Fokker-Planck equation from a Langevin equation, like
that used in Appendix A. However, one could try to use
these standard techniques in a forrnal manner and postu-
late a Langevin equation of the following type:

III. CONTRIBUTIONS TO LINEAR-STABILITY
ANALYSIS

A simple way to analyze some of the effects of the mul-
tiplicative noise is by means of a linear approximation on
the equation of motion for the structure function. Cer-
tainly, this analysis is limited to short times after the
quench, but it wi11 give results which help us to under-
stand the evolution of the long-wavelength instability.

The structure function S(k, t) is defined as the Fourier
transform of the correlation function

G(r, t)= —fdr'( (cr+r', t) (cr', t)) .
1 (3.1)

By studying the behavior of S(k, t) as a function of k, we
can determine which modes grow or decay in the early
stages of evolution. To do this explicitly, we choose a
model which is described by a Ginzburg-Landau energy

(3.2)

and by a mobility function given by Eq. (2.15), which cor-
responds, at the continuous limit, to the mobility of Eq.
(1.3). The evolution of the correlation function can be
obtained by the same method that was used in Appendix
A for the equation of the first moment. By writing only
the linear terms (that is, up to order c in the equation for
the correlation function) and performing the Fourier
transform we have

—1

S (k, t) = —k' k' —1+
dt Rd S(k, t)+2P 'k2

—2p 'ak
d f dqS(q, t) .(2'�)' (3.3)

From this result one can conclude that, for the early
stages of the evolution, those modes with
k (k, =1—4ap '/R" are unstable and grow with time.
In contrast, the modes with k )k, relax. For a =0 (the
case studied until now in the literature), k, = l. Hence,
the presence of the multiplicative noise reduces the
domain of the unstable modes in the k space. This im-
plies a delay in the domain-growth dynamics at an early
stage. This is an explicit prediction of our theory that is
confirmed by computer simulation. '
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IV. CONCLUSIONS

In this paper we have derived Ginzburg-Landau equa-
tions for conserved and nonconserved order parameters
with concentration-dependent mobility and multiplica-
tive noise, which could be relevant in the context of
phase-separation and domain-growth dynamics. These
equations incorporate new terms of stochastic origin that
give new contributions to the evolution of statistical
properties. In particular, we have obtained new contribu-
tions to the Cahn-Hilliard theory.

Our derivations of the Fokker-Planck equations are
based on coarse-grained procedures in a discrete lattice,
and the corresponding Langevin equations are obtained
by standard techniques of stochastic processes. A mesos-
copic model, which contains a characteristic mesoscopic
length, is introduced. This model is used in a numerical
integration of the Ginzburg-Landau equations that is
presented in a following paper. An expression for the
mesoscopic model is also obtained in the continuous spa-
tial limit. In this respect, we would like to remark that
the dynamics depend on the characteristics of the partic-
ular mesoscopic model and it would be of interest to dedi-
cate some effort to obtain such models from first princi-
ples.
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P{{ ],t)—= (/5[(t) , ,—])=(p({],t)],
a

(A2)

and averaging the stochastic Liou ville equation for
p( t c J, t) we obtain

BI' = —ax r (v,').,at Bc~

Bm&,.
PX Mg(V~ )g

—P mp(v~ )p
a
Bc Bc

(VL ) pm@(gp(t)p) '.
ca

(A3)

Now, the average in Eq. (A3) is worked out with the aid
of Novikov's theorem '

5c (t)
(g',(r)p) = ~x'p {r-

Bg&(t')
(A4)

The response function 5c /5$ is obtained from Eq. (2.9):

deterministic drift, the second term is the "Stratonovich"
spurious drift and the last is the Stratonovich-like
diffusion term. From Eq. (Al) one can conjecture that
the corresponding Langevin equation is given by Eq.
(2.9). This is a stochastic differential equation in the Stra-
tonovich interpretation, with a Gaussian white noise of
zero mean and correlation given by Eq. (2.10).

Now, to prove that the Langevin equation (2.9) corre-
sponds to the Fokker-Planck equation (2.6), we derive the
latter from the former. According to van Kampen lem-
ma,"

APPENDIX A: CONSERVED ORDER PARAMETER
5c (t)

5gp(t')
=(V~ ) pm' .

Here we present the mathematical details of the
equivalence between the Fokker-Planck equation (2.6)
and the Langevin equation (2.9). Although the derivation
of the Fokker-Planck equation corresponding to a
Langevin equation is standard, the case of the model de-
rived in Sec. II presents special aspects owing to the pres-
ence of the gradient operators and the dependence of M
on the concentrations of the whole configuration.

The first step is to write the Fokker-Planck equation
(2.6) in a more familiar form:

a~( I c I,r), a,
c.

X Mp;(V~ )I]
—P 'm@.(V~ )pBc Bc~

+P 'mp (V~)p mp, P(IcI, t),
Bc~

(A 1)

where the function m ( j c I ) was defined in Eq. (2.11). In
Eq. (Al) we have made use of the property
(V~ ) p= —(V~ )p .

In this Fokker-Planck equation the first term is the

By substituting Eqs. (A4) and (A5) into Eq. (A3), we re-
cover the Fokker-Planck equation (Al).

Both Eqs. (2.6) and (2.9) can be used indistinctly to
derive the statistical properties of the system. As an ex-
ample, the equation of the first moment is

(c„(t))=~& r (V,')„,M, (V', ),.Bt Bc

amp
p ]rex' (v,'—)„,(-v, ),.Bc

(A6)

where the first term accounts for the mean of the drift
and the second term contains the contributions of both
the spurious term and the noise term of the Langevin, Eq.
(2.9), which turn out to be identical. Equation (A6)
reduces to Eq. (2.21) in the continuous limit.

APPENDIX B: NONCONSERVKD ORDER PARAMETER

This case corresponds to the study of ferromagnetic
systems in which the order parameter is not conserved.
Now the change of concentration e in a cell does not in-
volve the neighboring cells. The transition probability,
Eq. (2.3), has the same expression but the initial
configuration is now
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c c]pep) ~ ~ ~ y c 6'p

(B3)

We perform the same steps as in the former case, also
reaching the Fokker-Planck equation (2.4) but with a
different K operator, now given by

where we have defined a new time scale:

, &e')psv
2

(B4)

K
Bc

By taking this fact into account, we finally obtain

(B1) From this last equation one can write the correspond-
ing Langevin equation:

r)c(r, r) 5F P ' 5M(c) + ( )~( )
B~ 6c 2 5c

aP({c) t) &~')p a aF, a
r)t 2 t)c r)c t)c

XP([cI,t) .

(B5)

where M(c) =m (c) is the mobility corresponding to this
case. Actually there is no derivation of an explicit form
for it. The noise is now a scalar with a correlation:

(B2) &g(r, t)g(r', t')) =2p '5(r —r')5(t —t') . (B6)

The continuous version of this equation is easily ob-
tained:

A linear analysis of this case would give similar results
to the conserved case, and the computer simulations can
be implemented much more easily. '
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