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Interlevel optical transitions in quantum wells
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A general expression for optical matrix elements describing interlevel absorption in size-quantized sys-
tems in the presence of electric and magnetic fields is derived. For rectangular and triangular confining
potentials, this approach does not require detailed knowledge of the electron wave function and consid-
erably simplifies the problem. As a result, selection rules and analytical expressions for the matrix ele-
ments are obtained for many cases where the standard procedure is much more complicated. As exam-

ples, optical matrix elements and selection rules are calculated for some particular shapes of quantum
wells: triangular, single, and double asymmetric rectangular. The problem is generalized to the case of
heterostructures with effective-mass mismatch. A similar approach to quantum wires and dots is also
considered. Interlevel absorption spectra for quantum wells in a parallel magnetic field are calculated.

I. INTRODUCTION

Interlevel optical transitions in quantum wells (QW)
have attracted significant attention in recent years and
have found an important application in infrared photo-
detectors. ' To describe these transitions theoretically,
one must calculate the momentum matrix elements be-
tween corresponding electron states. For the intricately
shaped QW actively studied in recent years, this problem
is rather complicated, especially in the presence of strong
electric and/or magnetic fields. In the present paper a
theory is given expressing these matrix elements through
the values of wave functions at the heterointerfaces,
which simplifies the problem considerably and excludes
the necessity of a wave-function calculation in the entire
space followed by integration. This allows us to obtain
new analytical results as well as to generalize the problem
to the cases of quantum wires and dots.

II. GENERAL EXPRESSIONS

We begin with the general Hamiltonian of the system
with some potential relief U(r) and the magnetic field
characterized with the vector potential A:

2e

2mc2 Bx

e
2 [ AV, A„]— U eEr, —

mc

aU
Bx

H, P+ HP, . (2)
mc ' " mc

Calculating the matrix elements of (2) and taking into ac-
count that

d
t cofj Pfc [cofj ( Ef E; ) IA]

we obtain

general formula for (P )f;. To do so, let us calculate the
time derivative of the operator P„. If there is no explicit
time dependence of P, and the magnetic field H = rot A
is uniform, then

d Px =—[&,P„]=— [V, A„]— AV,
dt A

' " 2mc ' " mc
' Bx

+ U(r), P= i%V+-
2m c

icof (P )f (F )f 'co (Py)f +ClJ'y'(P )f;'
where co =eH Imc and the effective force

(3)

Let c; be the eigenvalues of the Hamiltonian. To describe
the optical properties of the system, we must calculate
matrix elements of the generalized momentum (P )f; (f
and i mean the final and initial states, a =x,y, z).

For further calculations, it is worth deriving a useful

F= —7'U+eE . (4)

Two similar expressions can be obtained from (3) by a cy-
clic permutation of x,y, z. Solution of this linear system
gives the eventual formula for (P )f;.

'

( )f;=
(F )f;(cof; co ) g(F—tl)f; [(—I 5 tl)co cot—l+ie rtlcof;coy)

P, r
l cof; ( cof; co~ )
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hU = U(x. +0)—U(x~ —0)

are the band offsets at heterointerfaces x =x, which can
be both positive and negative, and B(x) is the unit step
function. In this case the term VU in the effective force
(4) is the sum of several 5 functions, and the correspond-
ing matrix elements do not require integration over the
entire space and contain only the values of wave func-
tions at the interfaces. The matrix elements also do not
contain the uniform electric field E since the wave func-
tions %'; and 4f* are orthogonal. As a result,

(F )f;= —g b, U %, (x )%f(x ) .
J

(7)

If at some interface the potential step is very high
(b, U.~ oo ), then %(x )~0 and Eq. (7) contains an un-

certainty. To resolve it, we note that in this limit the
wave function in the barrier has the form

%(x)=0'(xj )exp[ —+26,U m (x —xj )/fi]

and, hence, its derivative at the interface is

4'(x )= +26U/m %(—xj)/A' .

For 5U~ ~, the penetration depth of the wave function
tends to zero, so we may neglect the coordinate depen-
dence of the potential caused by electric and magnetic
fields. As a result, the wave functions in (7) are to be re-
placed by their derivatives:

lim b, U, +, (x, )%f*(x )= 4,'(x, )%f*(x,) .
QU'. —+ oo 2m

J

At extremely high magnetic fields, the wave functions
are localized in the area with the width —A, =(cA/eH )'~
much less than the QW width a. The energy of the
ground state depends on the momentum parallel to the
QW plane (see Sec. VII) and has its minimal value for the

Here, co, =(co„+co~+co,)' is the cyclotron frequency
and e &~ is the antisymmetric tensor, equal to +1 if all
three indices are different and vanishing in other cases.

Strictly speaking, in the presence of electric field E, the
electronic states in QW are nonstationary and our formu-
las are incorrect. In fact, however, they are also adequate
for not very strong E, until the characteristic time of tun-
neling decay for the initia1 state %'; exceeds considerably
the period of classical oscillations A'/c, .

We have managed to express optical matrix elements
through the energy spectrum of the system ~f, and the
matrix elements of another physical quantity: the
effective force F. There is a wide range of physical ob-
jects where this procedure considerably simplifies the cal-
culation. These are step-shaped rectangular and triangu-
lar QW's corresponding to the situation when the whole
space can be divided into regions with constant (but
different) values of potential energy. The most attention
will be paid to one-dimensional wells with the potential

U(x) =y SU, e(x —x, ),
J

where 27TAe

corn

(N is the photon density). The absorption coefficient
a(co) is proportional to ~M ~

times the number of possible
final states for a given value of cu. Since y- and z-
momentum components are conserved in optical transi-
tions, the latter factor is equal to the one-dimensional
density of states describing x motion, which is -co ' in
the absence of magnetic field. So we obtain the asymptot-
ic behavior of the QW photoionization spectrum:
a(co)-co ~ . For the particular case of rectangular QW
this result has been known before, but we see that it is of
general character and takes place for any QW shape.
Now we shall apply the general expressions (5)—(8) to
some particular low-dimensional systems.

III. TRIANGULAR QUANTUM WELL
WITH THE INFINITE WALL

Let us consider first a triangular QW, U = Fx-
(x (0), with the infinite potential wall at x =0. The
wave functions of the well-known problem are the Airy
functions

4, =C,.Ai[ —(x+c,;/F)/l~],
where l~ = (A' /2mF )' and the normalizing constant

C, = [+1~Ai'( —e;/Fl~)]

The integral

f Ai[ —(x + c.; /F )/l~]Ai'[ —(x+sf /F )/l~ ]dx

representing the optical matrix element has no analytical
representation and usually is calculated either numerical-
ly or in the quasiclassical approximation. Our approach
allows us to obtain the exact and very simple expression
for this element.

According to (5), (7), and (8),

state localized far from the interfaces. As a result, the
wave function of the ground state has an exponentially
small value at the interfaces which means that, according
to Eq. (7), (F )f;~0. In this case, (P )f; will have a
nonzero value only if the denominator in Eq. (5) tends to
zero and we obtain the well-known selection rules for free
electrons in a quantizing magnetic field: cof; =+co, .

Formulas (5), (7), and (8) give the final solution of the
problem of optical matrix elements for various QW in
uniform electric and magnetic fields. Note that we have
not assumed both the initial (i) and the final (f) state to
be localized in QW and, hence, our formulas can describe
not only interlevel transitions but also optical ionization
of QW, that is, the light-induced electron transitions
from the bound state in QW to the delocalized states
above QW. If the photon energy A'co exceeds considerably
the QW depth, then the final state corresponds to that of
an almost free electron with ~Vf(x)~ =L ' (L is the
normalizing length) which is independent of co. In this
case Eq. (5) gives that for co~ oo, (P )f,. -co '. The total
electron-photon matrix element

1/2

(p ) ~—3/2
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4,' (0)%f(0) x =c;— U (12)

fi . (2eirtmF)'=l =l2' Nf; IF3
(9)

where ( ); means the averaging over the state i ( U)
contains integration only over barrier regions where
UWO. Since for x &0,

where —a; is the (i +1)th zero for the Airy function
(ao-—2.24; ai-—4.09).

IV. ASYMMETRIC RECTANGULAR WELL

The next model to be considered is the QW with
diff'erent wall heights [Fig. 1(a)] used in some cases in
photovoltaic detectors. According to Eq. (3), the diag-
onal elements (F );;=0. In our case this means that
U2qI, (0)= U, +,.(a). The wave function of the ith bound
state has i nodes in the interval 0 & x & a and, hence,

(P„)f;=4iro& (e;Ef )' (a+i'd, .&'+s,.2')

X(a+Irfi +Irf2 )

where

(13)

0';(x) = iII;(0)exp[+2m ( U, —E, )x /fi],
and similarly for x )a, Eq. (12) gives the relation between
~11;(0) and 4;(a) which, together with Eq. (10), can be
used to determine both of these values and, finally, to cal-
culate optical matrix elements:

4;(0)=( —I)'QU, /U2%;(a), (10) Ir;k=4' '+2m(Uk —E;), k=1,2 .

which, after substituting into Eqs. (5) and (7), gives

2irof; U2%;(0)+f(0), for odd i+f
0, for even i+f .

So the selection rule resulting from the parity con-
siderations in symmetric QW appears to take place for
this particular type of asymmetric QW also.

To calculate the exact value of nonzero matrix ele-
ments, we need the value of 0'(0). The simplest way to
find it is to use the virial theorem:

U

V. DOUBLE QUANTUM-WELL STRUCTURE

Now we consider the system of two QW separated by a
tunnel barrier with the energy spectrum representing a
series of doublets [Fig. 1(b)]. In this system there is a
principal possibility of an inverse population inside the
upper doublet under the optical pumping from the lower
doublet states. Therefore, the probabilities of both intra-
doublet and interdoublet optical transitions are of consid-
erable interest. We shall consider the situation when the
tunnel transparence

T=exp( —2a s, ) [Ir, b
=+2m ( U, b

—E; ) /i' ]

U2

U„

B X

of the central barrier is not large so that the doublet split-
ting is much less than the interdoublet energy separation.
In this case, while considering the interdoublet transi-
tions, we may neglect T and use the results of Sec. IV.
So, only the intradoublet transitions require special treat-
ment, which will be given below. Our approximation al-
lows us to neglect the difference between c,; and cf and
consider ~, and ~& to be the same for both states of in-
terest.

By means of (5) and (7), we obtain

U,

Ub

f f
COf I.

a;f = U. 1~11;f(a)l'= U. I p;,f( —~ )I',
p' f Us I+/ f(b)l Ub I+' f( —b )I'

'
[Ubl+;(b)+f(b)l —U. lq';(&)+f(&)l]

COfI.

[(p p )1/2 ( )1/2]

(14)

x

FIG. l. Energy-band diagram of (a) a single asymmetric QW
and of (b) a double QW structure.

where i and f belong to the same doublet and, hence,
have different parity.

For T~O, a;f~P;f [see (11)] and, at the same time,
cof ' ~0. To the first order in T, there are no corrections
to 0', (+b) and p;=p;/2, where the index "0" means
characteristics found in Sec. V for a single asymmetric
QW. To obtain corrections to q/;(+a) and find a;, we
shall use again the virial theorem. Since for x & b,
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4, =%,(b)exp[ —~b(x —b)],
and for ~x ~

(a,

exp(ir, x )+exp( —i~, x )
4; =4;(a)

exp(i~, a )+exp( —a.,a )

(the + and —signs correspond to the symmetric and an-
tisymmetric states), then Eq. (12) gives the relation deter-
mining a;:

=m 0
dm

dX

mo dU
m dx

icof;(8 )f;=—pf', 8 ]f,

i cof; (8 )f; =—[&,8 ]f;

2

&—U(x)—
2m

E, P, [b—+(sb ) ']/2=a, . [
—a [1+-4exp( —2ai~, )]

i d= ——pmo m
2 dx

dm

dX

+i~, '[1+2exp( —2ai~, )]j .

(15)
dm

m
dX dX

In the same way

E, f = [(b —a )+(a, ) '+(xi, ) ']P, /2+%'cof;/2,

A'cof, =4aP, exp( —2aic, ),
which, after substitution into (14), gives

(16)

which allows us to calculate the matrix elements

imo
(8 )f;= g%;(x )%f*(x )

COfi

X AU m +km U-—Cf +Bi
2

;g exp( —2ai~, ) iA cof;(b —a+~, '+~i, ')
(P )f;= 4 (a —i~, ') 32as;(a —ic, ')

(17)

+p m~

%Pm 0(8 )f, =g b, m ' (x )%f(x )2'

f�.
m

(20)

VI. EFFECTIVE-MASS MISMATCH

2

m '(x) + U(x)+
2 BX BX 2m (x)

(18)

where p is the momentum in the yz plane. Contrary to
all previous results, the variables in the corresponding
Schrodinger equation do not separate even in the absence
of magnetic field.

If the effective mass is coordinate dependent, then the
optical transitions will be caused by the symrnetrized
Hermitian operator [P, m (x ) ) ] [where
I A, B]—:( AB+BA )/2] rather than P. Therefore, in-
stead of (P„)f,, we shall calculate matrix elements of the
operator 8—=mo[P, m '(x)], where mo is some constant
value, say, the free-electron mass.

Using Eq. (18), one can prove the identities

So far, we have considered the problem assuming the
effective mass m to be the same across the whole struc-
ture. But generally this is not the case and at the inter-
faces x =x not only the potential energy but also the
effective mass may be discontinuous. In this situation our
calculations (2) are incorrect, but they can be generalized
to take into account the effective-mass mismatch.

A system with the one-dimensional potential U(x) and
the effective-mass profile m(x) is characterized by the
Hamiltonian

gy g

(x )4;(x, )
m

(21)

generalizing (7) to the case of nonconstant effective mass.
Here

U =[U(x, +0)+ U(x —0)]/2,
m ' = [m '(x +0)+m '(x. —0)]/2,
b, m. '=m '(xj+0) —m '(xj —0) .

Note that both iIi and (4'/m ) are continuous at the in-
terfaces.

We see that the effective-mass mismatch causes an ad-
ditional term in the optical matrix element (8 )f;. It can
be considered as some renormalization of the band offsets
b, U. and for the light polarization normal to the QW
plane does not cause any quantitatively new effect. In
particular, the asymptotic behavior of the QW photoion-
ization spectrum a(co)-co ~ remains the same.

For the parallel light, polarization transitions between
different quantum size levels become possible only due to
effective-mass mismatch at the heterointerfaces' and are
described by the matrix element (8 )f; which is propor-
tional to the electron momentum parallel to the interface.
Note that here, contrary to the case of x polarization, op-
tical transitions in a symmetric QW will occur between
states of the same parity.
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Comparing Eqs. (20) and (21), we see that (8 )f; con-
tains the products of one wave function with its deriva-
tive rather than those of two wave functions. For delo-
calized states above QW this derivative is proportional to
the wave vector, or to the square root of the energy of
these states. In the case of the QW photoionization by
high-energy photons, this means that 4f /4f -co' . As
a result, the absorption coefficient will have an additional
factor co compared to the case of x polarization, which re-
sults in the QW photoionization spectrum having the
high-frequency asymptotics a(co) -co

U(x) = U(x)+men, (x —xo) /2,
Z; =s; —(p, )'/2m,

xo=cp /(eH),

which allows us to reduce the Schrodinger equation to
the standard form with kinetic and potential energies:

%,"+U%, =c., %,

and to apply the virial theorem to this transformed equa-
tion:

VII. OPTICAL TRANSITIONS
IN PARALLEL MAGNETIC FIELD —(x+a /2) =Z; —( U ); .1 dU

2 d
(25)

The next problem to be calculated is the interlevel light
absorption in the magnetic field parallel to the QW plane
(H~~z). For simplicity we consider a QW with infinite
walls at x =+a/2. We restrict ourselves to the case of
not very high fields:

With the help of Eq. (8), the last formula can be
transformed to the following expression:

I +,'(+a /2) I'= 8; — '
4m ' ' 2m

2/2
E,o= )AQ)

2ma
(22) m co+ ' [x,(3(x ),+I)

2
In this case the energy spectrum of the system can be
determined by considering the magnetic field as a pertur-
bation:"

s(n, p,p, )=n Eo+
me@ a

24
61—

7T n
r

p me@,a+ 1+
2m n po 3

2
pz

2m

(23)

A cof;
(P, )f;= i — 'P,'(x )%f*(x ),

2m ( cof; ci) ~ )

(24)

One can see two effects of magnetic field on the energy
spectrum: (i) a quadratic level shift and (ii) anisotropic
dispersion in the y-z plane due to the effective-mass
change along the y axis (note that the effective mass in-
creases for the ground subband and decreases for the ex-
cited subbands).

For an infinite QW where Eq. (8) takes place, the ma-
trix elements given by Eqs. (5) and (7) can be written in
the following form:

&x'), = 1—
12 7T n

As to (x ), in this limit it vanishes, whereas in the next
order in H, (x );-a p /A'A, , where A, is the magnetic
length. In our further calculations we shall assume the
electron concentration n, to be not very high so that only
one quantum subband is occupied and ~p~ ~a (R. In this
case the exact value of a numerical factor in (x ), is of no
importance since for the condition (22) the terms —(x );
appear to be negligibly small.

Substituting the expressions for (x) and (x ) into
(24) and (26), we obtain the expressions for the matrix ele-
ments describing the transitions between the lowest quan-
tum levels n =1,2, 3:

—2(x );+a(x),. /2] . (26)

Comparing Eqs. (24) and (26), we conclude that the
matrix element we are interested in can be expressed in
terms of average values of x and x . In the case of rela-
tively low magnetic field (22), (x ); can be calculated as-
suming 0 =0, which gives

(P )f, =i (P, )f; .
Ct)f;

. 8 A'

(P ) =ix 21 (27)

This means that any transition can be caused either by x-
or by y-polarized light, but the ratio of the absorption in-
tensities for these two polarizations is equal to (cof, /co, ) .

To calculate the matrix elements, one determines the
wave-function derivatives at the interfaces. As in Sec.
IV, the most convenient way to do it is connected with
the virial theorem. This theorem in its standard form
(12) is not valid in magnetic field, but we can reformulate
it to include the effect of the field. In so doing, we intro-
duce the notation

5 espy a
(P, )3, —i—

12~ Ac
(28)

The latter matrix element is seen to have a small numeri-
cal factor. As a result, all corrections proportional to
mes, a /co appear to be very small and can be neglected
even on condition (22) without the requirement of a
strong inequality Acu, «eo.

We use Eqs. (27) and (28) to calculate the interlevel ab-
sorption spectra:
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7T e
a(co) =

cn m coak

X f dp f dp, i Pf; ~ 5(Ef —E; —fico )f(8; ) . (29)

Here, n is the refraction index and f(E, ) is the Fermi
function. The spectra will have a finite width since the
energy versus p dependences are different in different
subbands [see Eq. (23)]. We shall consider a(co) for x-
polarized light. As we have already mentioned, the spec-
tra for y polarization will differ only by a constant factor
(cof; /co, )'.

For transitions 1 —+n in the degenerate electron gas,
the absorption band is characterized by the low-
frequency edge

mco~a (n2 —1)(fico);„=so(n —1)+
4m.

and the bandwidth

(30)

b, (fico) =iii(co,„—co,„)= iln—,a m co, , (31)

where

1024~ cA
a(co) =

9gn„H a rom

~IIIaX
(32)

The integral absorption in the band jdco a(co) is propor-
tional to n„which seems quite natural for intraband
transitions. In the second case,

100
a(co) = [(co,„—co)(co—co;„)]'

7j'n a H co
(33)

rl= —2(1 n) ——'—(1 —n )
7T

3

is the numerical factor equal to 0.22 for 1~2 transitions
and 0.20 for 1~3 transitions. In our calculations we
have used the relation between electron concentration n,
and Fermi energy EF valid for the limiting case A~, && Eo.

Ez =Eo+ irfi n, /m.
The a(co) dependence inside the absorption band is

considerably different for allowed (n even) and forbidden
(n odd) transitions. In the first case,

1/2

For this case the integral absorption is proportional to n,
rather than to n, . This is caused by the fact that absorp-
tion in the parallel polarization is possible only for elec-
trons with nonzero p and, therefore, has an additional
proportionality to EF, that is, to the electron concentra-
tion. The ratio of total allowed and forbidden absorption
is of order A, /(n, a ) and depends dramatically on the
QW width a since the matrix element (P )z, decreases,
whereas (P, )3, increases with a [see Eqs. (27) and (28)].

The a(co) dependences are shown schematically in Fig.
2. One can see that the band of allowed transitions is
strongly asymmetric, having a divergence at the low-
frequency edge. The band of forbidden transitions has a
symmetric, ellipselike shape.

VIII. QUANTUM WIRES AND DOTS

In conclusion, we consider optical transitions in elec-
tron systems confined in more than one direction. The
general expression (5) is valid for any dimensionality of
the system, and the only problem is to calculate matrix
elements of F. Let the surface St~ be the boundary be-
tween domains with different potential energies V& and
V. Then the matrix element (F)f, is determined by in-
tegration only over SI where V'U differs from zero:

(F)f, = —g f dS(V, —VJ)+, (r)@f(r) . (34)
Ij 1J

Here, the sum is taken over a11 interfaces, and dS is the
vector of elementary area oriented along the normal to
the interface.

If some potential step is extremely high (V&~ac ),
then, by analogy with Eq. (8),

W, (r) 8%f*(r)f dS( V&
—V~)%, (r)+f"(r)= f dS

2m Bn dn

(35)

where derivatives are taken along the interface normal.
To illustrate this approach, let us calculate optical ma-

trix elements for a cylindrical wire with the radius R and
infinitely high potential walls. The wave functions of
electron motion normal to the wire axis are

Q) 1-+ 2
min QI 1~2 1~3

max min
1~ 3
max

FIG-. 2. Schematic view of the interlevel absorption spectra in the parallel magnetic field.
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Jk(yk„p/R }exp(iki)t )

&tr&~k+ i(7'k. }
(36)

where JI, is the kth-order Bessel function and y&„ is its
nth zero. The corresponding energy levels

E
2

k
2 ~2 Vk (37)

Using Eqs. (9} and (34)—(37), we obtain the expressions
for optical matrix elements between the states i = (k—, n)
and f=(k', n'):

gal Pkn V k n'
x fi g 2 2 k', k+1

) k'n' Ykn

One can see that optical transitions are allowed only be-
tween quantum states with azimuthal numbers k differing
by unity. Our procedure is much simpler than direct cal-
culation of the integrals determining matrix elements.

IX. CONCLUSION

We have presented a general expression for the matrix
elements describing interlevel absorption in various size-
quantized systems in the presence of uniform electric and
magnetic fields. For a wide class of rectangular and tri-
angular confining potentials, this approach considerably
simplifies the problem. The method does not require de-
tailed knowledge of the wave functions and, hence, is
much simpler than the standard procedure of solving the
Schrodinger equation followed by integration of matrix
elements. As a result, selection rules and analytical ex-
pressions for the matrix elements are obtained for many
cases where the standard procedure is much more corn-
plicated and/or can be fulfilled only numerically. Qur
approach is also very convenient for numerical calcula-
tions since the Schrodinger equation is to be solved only
for several points. As examples, some particular shapes
of QW's as well as the problem of interlevel transitions in
the magnetic field have been considered.
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