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Enhancement of the third-order nonlinear optical susceptibility in Si quantum wires
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Recent observation of efficient light emission from porous silicon has attracted much attention and
renewed interests in the study of nonlinear optical properties of nanometer-sized quantum systems. In
this paper, we study the third-order nonlinear optical susceptibility of semiconductor quantum wires.
The quantum wires are taken to be circular columns with a cross section size of —1 nm. The excitonic
effects are taken to be the major electronic excitations. We find that the quantum confinement of the ex-
citons greatly enhances the third-order optical nonlinear susceptibility in a quantum wire. The source of
the enhancement is primarily the confinement-induced localization of excitons. The large enhancement
of the third-order optical nonlinearity estimated here is consistent with the recent observation of the
eKcient infrared-up-conversion luminescence in porous silicon.

I. INTRODUCTION

In the past few years, the nonlinear optical properties
of semiconductor quantum wells and nanostructures have
attracted much attention. ' One of the most important
features in these structures is that excitonic spectrum
persists even at the room temperatures. ' This is due to
the enhancement of the excitonic binding energy caused
by the quantum confinement effect in these structures. It
has been known that the effect of confinement sensitively
depends on the relative size of the sample and the Bohr
radius of the excitons in these structures. '

Recently, visible light luminescence from porous sil-
icon (PS) has been observed. A great amount of research
activities are devoted to a better understanding of the
basic mechanism of efficient light emission from silicon
nanostructures. A general consensus is that the quantum
confinement in the free-standing nanometer silicon quan-
tum wires formed by the chemical etching process is re-
sponsible for the efficient light emission. ' A blueshift in
the absorption or emission spectrum as the porosity in-
creases has been observed, "which is characteristic of the
quantum-size effects arising from the confinement of exci-
tons to a volume smaller than that in the bulk materials.
Further detailed studies' of photoluminescence (PL) un-
der different temperatures and various excitation intensi-
ties also support the idea that confined excitons may be
involved in the radiative process. However, there are still
considerable debates as to the precise origin of the visible
luminescence in porous silicon. Possibilities other than
confinement have been suggested. '

It has been shown primarily' that the nonlinear op-

tical polarizability may be greatly enhanced for an assem-
bly of multiple-quantum-we11 structures and semiconduc-
tor micr ocrystallites, which have one- and three-
dimensional confinement, respectively. It is expected,
therefore, that an optical nonlinearity enhancement of PS
would exist if the hypothesis of quantum wires does
indeed work. As a matter of fact, recent experimental ob-
servation ' of efficient infrared-up-conversion lumines-
cence in PS suggests a strong enhancement of the third-
order nonlinear optical response. In this paper, we
present a study of optical nonlinearity in Si quantum
wires with a geometry of columns with a circular cross
section. We find a large enhancement of optical non-
linearity in silicon nanometer-sized wires having a diame-
ter of around —1 nm. The source of the enhancement
has been identified as quantum-confinement-induced lo-
calization of excitons in the quantum wires.

The paper is arranged as follows. In Sec. II we de-
scribe the electronic states in a quantum wire. The basic
electronic excitations are taken to be excitonic states with
a weak average Coulomb interaction between the elec-
trons and holes. In Sec. III we study the oscillator
strength of the basic optical transitions in the quantum
wires. In Sec. IV the third-order optical susceptibility in
quantum wires is calculated and the enhancement respect
to the bulk Si is estimated. A brief summary is given in
Sec. V.

II. ELECTRONIC EXCITATIONS IN QUANTUM WIRES

There are several energies characteristic in quantum
wires. The first are the size-quantization energies of the
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'I' =+W,"(r;) .electrons and holes, denoted by hE, and hE, respective-
ly. The second is the average Coulomb attraction be-
tween an electron and a hole in the quantum wire, V„.
The third is the interaction energy V;„, between two exci-
tations when they are formed in the quantum wires. The
exciton-exciton interaction will cause the excitons to
derivate from an ideal boson. In silicon nanometer-sized
wires, the quantum confinement greatly enhanced the ex-
citon binding energy and makes the exciton binding ener-

gy much bigger than the size-quantization energy of the
electrons or holes. In the following, we will assume the
condition V„,))AE„AE . The electronic excited state
in a quantum wire can then be described as

For the parabolic conduction and valence bands with
effective mass m, and m&, respectively, the size quantiza-
tion is governed by the relationship among the sample
size Ro=Nu, and the effective Bohr radii of electrons

a, =A' /m, e and holes ai, =Pi /mi, e . The size-
quantization energies can be expressed for the electron
and the hole, respectively, as follows:

'
2mn A'

R0 2m,
2

Q2

4„=g R„(j)WJ'(rJ) g W, (r;),
j {i%j)

2m'

The exciton energy V„, is given by
where 8". and 8" are Wannier functions of the valence
and the conduction bands, respectively, and R„(j) is the
envelope function in a quantum wire of circular cross sec-
tion, given as

e

Eo(a3+a~)
'

2

Vexc
0

where a is the Bohr radius of the exciton. By taking into
account the average Coulomb interaction between the
electrons and holes, the excitation states in (1) should be
modified to

2 m IIP 1 imp 1 k~~
(2)

(k )

0 m+1
II

0

4„=g QR„(j )p(j„)WJ'(rJ)+W,. (r;),
IW)where p=uj, u is the unit-cell size, j is the site index and

its value is chosen from positive integers between 1 and
X, Ro is the radius of the wire (Ro=uN), and J is the
Bessel function. The quantity kII is given by

where R„(j ) is the envelope function given in (2), describ-

ing the center-of-mass motion of the exciton with

j=(m,j +mh j')/(m, +mi, ), and p(j ) describes the
electron-hole relative motion with j„=j—j'. For the
lowest state of the exciton, the center-of-mass motion of
the exciton can be written as

m, n

II

where 1, „ is the zero of the Bessel function
1/2

—r jae
~a

(10)P),(r)=J (A, „)=0. (4)

The excitation energy spectrum of the conduction elec-
trons can then be expressed as where r =u (j —j'), is the electron-hole separation.

2 III. OSCILLATOR STRENGTH IN QUANTUM WIRESAkE= +
2m~ 2m~ The transition dipole moment to the excited states 4„

from the ground state 4~ in the quantum wire can be
evaluated as the following:The ground state of the system is

&+„IP~+,&= yR„(j)y(j, )& W;(r, )lpJIW (rJ )&

Ro

J kIIR0 0 2~ I

where P is a compound of the dipole moment operator P,

(12)P= gp;,
and & W'(rJ)~p ~WJ', (rJ, )&=p, 5",. We see that the dipole matrix element will be zero unless m=0. Setting m =0, we

have
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k, L
sin

2
~pn

(16)

k,

X pdp
+o Q2 Jo(k~~ p)

R, J, (k~~R, )

Taking k, ~O, we have

&2 2

tl
L

k,L
sin

2

where k(~ =Ao„/Ro and Jo(AO„) =0.
The oscillator strength f„ is given by

(13)

Notice that f„ is independent of the dimension of the
quantum wire.

IV. THIRD-ORDER OPTICAL NONLINEARITY
IN QUANTUM WIRES

In this section we will study the third-order optical
nonlinearity y' ' in quantum wires. The second-order op-
tical nonlinearity would be zero in these structures due to
the inversion symmetry. The third-order optical non-
linearity is not zero and we shall show that there is a
large enhancement of g' ' in quantum wires of size
—1 nm. This enhancement originates from the quantum
confinement effect of the excitons in the quantum wire.

The third-order optical polarizability g' ' in a quantum
wire can be evaluated as the following:

g fi e x „x„„x„.„x„g[ ], (17)
The oscillator strength per unit volume f„can be ob-
tained by multiplyir. g (15) by a factor of 1/(m. R0L ), and
is given by

nag n' n "&g

where x„„=(nlxln') and the terms in the brackets
[ . . ]are

1'']=
(3co—co„s )(2co co„g )—(co —co„s )

1

(co —co„-g )(2co —co„s )(co+co„g )

1

(3co+co„g )(2co+co„g )(co+co„s )

1

(co+co„, )(2co+co„)(co+co„~ )

Here we consider only the resonant case in which the en-
ergy of the incident photon fico is nearly equal to the first
exciton energy Scop, and neglect contributions to the non-
linear polarization from the other levels. The nonzero
contribution of the terms in Eq. (17) can be represented
by the Feynman diagrams in Fig. 1. The contribution
comes from two terms given by

COO

[co —coo] [(3co) —coo]

e &olxll && llxl2&&2lxll && llxlo&

(20)

(0lxll&& llxl2&&2lxll&& llxl0) .
(19) COO 4'

[co coo][(3co) coo] co coo
(21)

These correspond, respectively, to diagrams (a) and (b) in
Fig. 1. Here we denote the ground state, the excited state
with an excitation and with two excitations, respectively,
by IO), I

1 ), I2). The two terms in Eq. (19) can be evalu-
ated separately as

where

(22)

Combining Eqs. (17), (19), (20), and (21) we get the fol-
lowing expression for g' '.

(a)

2

[co coo][(3co) coo] co coo
(23)

FICx. 1. The Feynman diagrams of the contributing terms in
the y&" expansion series.

Assume close-packed quantum wires; then the g for the(3)

unit volume is given by
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COp 4'
[co coo][(3co) coo] co coo

(24)

The large enhancement of y' ~ comes from Pt, (0). Due
to the exciton confinement in the quantum wire, the exci-
ton size ap decreases with respect to the bulk value.
From Eqs. (10) and (24) we see that the third-order non-
linear susceptibility sensitively depends on the Bohr ra-
dius ap as the inverse sixth power of ap, y' '-1/a p; a de-
crease in ap will lead to a large enhancement in g' '.

The effective of the exciton confinement in Si
nanometer-sized wires may be attributed to an enhance-
ment in the effective mass of electrons and holes. It has
been known in quantum wells that there is a large
enhancement in the effective mass of the electrons in the
direction parallel to the well. Enhancement of electrons
and hole effective masses is also expected to occur in
quantum wires. According to realistic band-structure
calculations done for nanometer-sized Si wires, ' we es-
timate a 2.5-time enhancement of the effective mass over
the value in bulk Si in wires around —1 nm wide. This
estimation is consistent with the temperature measure-
ments of the exciton spectrum ' which are presented in
terms of the binding-energy enhancement of the exciton.
The enhancement of the effective mass will lead to a
reduction in the Bohr radius by the same factor. If we
denote the exciton Bohr radius in the bulk Si to be a pb,

then ap/apb 1/2. 5. Therefore we estimate an enhance-
ment in the third-order nonlinear susceptibility to be
around (2.5) =2.4X10, about two orders of magnitude
higher than the bulk Si. Recently, effective infrared-up-
conversion luminescence in PS has been observed ' and
the effects are attributed to a large enhancement in the
third-order polarizability in PS. The order of magnitude
of the enhancement estimated from the luminescence
spectrum in Ref. 21 is consistent with the value obtained
in this work.

V. SUMMARY

We present a simple and straightforward study of the
third-order optical nonlinearity in nanometer-sized Si
wires. We demonstrate that quantum confinement-
induced exciton localization indeed leads to a large
enhancement in y' '. For Si wires of size —1 nm, the
enhancement for y' ' is estimated to be around two or-
ders of magnitude larger than that in the bulk Si. The
third-order linearity is found to be very sensitively depen-
dent on the exciton confinement. Under different condi-
tions with large excitation density and reduced effective-
mass enhancement, other factors, such as exciton-exciton
interaction and size quantization of the electron and the
hole states, can also contribute to nonlinearity in the
quantum wire. A different source of enhancement of
nonlinearity related to the dimension of the system has
been put forward for quantum wells and microcrystal-
lites. ' A more elaborate study may be needed for a
quantitative estimation of the optical nonlinearity under
these conditions.
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