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We study edge states in the integral quantum Hall effect on a square lattice in a rational magnetic
field P = p/q. The system is periodic in the y direction but has two edges in the z direction. We
have found that the energies of the edge states are given by the zero points of the Bloch function on
some Riemann surface (RS) (complex energy surface) when the system size is commensurate with
the Qux. The genus of the RS, g = q —1, is the number of the energy gaps. The energies of the edge
states move around the holes of the RS as a function of the momentum in the y direction. The Hall
conductance o „ is given by the winding number of the edge states around the holes, which gives the
Thouless, Kohmoto, Nightingale, and den Nijs integers in the infinite system. This is a topological
number on the RS. We can check that o „given by this treatment is the same as that given by the
Diophantine equation numerically. Effects of a random potential are also discussed.

I. INTRODUCTION

A problem of electrons in a magnetic field is an old
problem and studied extensively in relation to the quan-
tum Hall efFect. Even if the electron-electron inter-
action is absent, this problem is highly nontrivial when
we consider the system of lattices. ' In this case,
there is no ambiguity such as the Peierls substitution.
It provides many fundamental results including both ef-
fects of the periodic potential and the magnetic field ac-
curately. This problem was also focused in the study
of the high-temperature superconductivity. Some mean-
field Hamiltonians of the high-temperature superconduc-
tivity are given by those of the lattice fermions.
Recently there have also been some studies for the three-
dimensional quantum Hall efFect and related topics.

The Hall conductance of the system has a fundamental
meaning which was first found by Thouless, Kohmoto,
Nightingale and den Nijs (TKNN). s A tight-binding
Hamiltonian of electrons on a square lattice under a uni-
form magnetic field is given by

m i fL

—t& em ~+i '"+'
m ~ + .C. ,

mi A

where cm is an annihilation operator of a lattice fermion
at a site (m, n) and P & „,«0„- = 27t P. In this paper, we
assume the magnetic Beld is rational P = p/q with mutu-
ally prime integers p and q. When the boundary condi-
tion is periodic or the system size is infinite, the problem
is well investigated and the Hall conductance is quantized
as some integral values when the Fermi energy lies in the
energy gap. ' This is the famous TKNN integer and it is
a topological invariant (the first Chem number) on the
magnetic Brillouin zone which is a torus. '

The free boundary condition was treated on the lattice
by Rammal, Toulouse, Jaekel, and Halperin. They per-
formed numerical studies and concluded that the number
of the edges states is related to the Hall conductance of'
the system even if there exists a periodic potential. This
is an extension of Halperin's treatment of the edge states
without the periodic potential. There are also some nu-
merical studies for the edge states.

In this paper, we treat the problem analytically using
techniques in the one-dimensional nonlinear lattice. Fur-
ther we performed extensive numerical studies based on
the analytical results. We found that there is a funda-
mental relation between the Hall conductance 0 & and
a new topological number on a niemann surface This.
topological number is diferent from the first Chem num-
ber of the TKNN by definition. This means we relate
the TKNN integer to the other topological number. It is
also known that the TKNN integers are given by the Dio-
phantine equation. ' ' ' Here we can confirm that our
topological numbers coincide to those of the Diophantine
equation for rational flux P = p/q cases with rather small
q (( 13). Some analytical arguments are also included.

In Sec. II we reduce the problem in two dimensions to
that in one dimension to use a nonlinear lattice theory
in one dimension. In Sec. III we discuss energy bands
(bulk states) and edge states in detail. Some parts of
Secs. II and III are a review of the previous works '

and new results are their relation to the edge states. In
Sec. IV we prove that the energies of the edges states give
zero points of the Bloch function on the Riemann surface
(complex energy surface) where the genus of the surface
is the number of the energy gap. We perform detailed in-
vestigations about the I aughlin-Halperin argument ' on
this lattice system. We find the Hall conductance is given
by the winding number of the energy of the edge state on
the Riemann surface. This winding number is given by
the intersection number of two curves on the Riemann
surface. In this section, we treat a commensurate case.
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In Sec. V we treat an incommensurate system and also
discuss the randomness. Section VI is a summary of the
work.

II. REDUCTION TO A ONE-DIMENSIONAL
PROBLEM

In the Hamiltonian Eq. (1.1), we take a Landau gauge,
that is, 0 +i . ——0 and 0 +i, ——2vrgm. The
Hamiltonian in this gauge is given by

c ) e'"""c (ky), (2.2)

direction and impose a periodic boundary condition in
2m%

the y direction. The factor e' ~~ represents flux C (in
a unit of flux quantum 4o ——hc je) through the hole

(Fig. 1). We assume that the system is finite for the
x direction. This is the Laughlin-Halperin geometry
(Fig. 1). There are two edges and the number of sites is
L —1 in the x direction.

We use a momentum representation in the y direction

0 = t~) —c~+, „c
m ) fL

't i 2' Pm27r 4—t e ) c +ie c +Hc. ,
miA

(2.1)

where we assume that the system size is I„ in the y
I

where k„ takes discrete value ky = 2' &, ny

1 Ly Let us consider a one-particle state
!@(k„,C)) = g i' (k„,4)c~ (k„)!0). Inserting it into
the Schrodinger equation II!@)= E!4), the problem is

reduced to the one-dimensional problem with parameters
A:y and C as

C—t (@ +i(ky, C)+ @ &(ky, C)) —2t„cos! k„—2vr —27rgm! @ (ky, 4) = EC' (k„,C).
Lw

(2.3)

This is the Harper equation. ' ' Equation (2.3) is
represented in the following matrix form:

+i(, k„,4))! —

( k @)!t' @ (,k„,C')

(ek„,C) ) ' "' q@ i(e k„,4)y '

(2.4)

one-dimensional problem with parameter k„and C. This
is a problem of the discrete Hill equation and there
are several studies in the context of nonlinear lattice
models. Here we use and extend it to study the prob-
lem of the two-dimensional electrons under the magnetic
field. 45

M (e, k„,4)

f —e —2r cos(k„—2vr &
—2vrgm) —1'l!, (2 5)

where e = —is a reduced energy and r = ~ represents an
anisotropy of the hoppings. (We do not explicitly write
k„and 4 dependence in the following. ) We assume that
the system size in the x direction is commensurate with
the Aux, that is, we assume I = ql with some integer l.
(We also discuss the incommensurate case later. ) Then
we get a reduced transfer matrix of the form (1,Ly )

V,

(L-1,L )

(2.6)

M(e) = M(e)~M(e)q i .M(e)2M(e)i

(Mii(e) Mi2(e) )
M2i(e) M22(e)) ' (2.7)

where Mii(e), Mi2(e), M2i(e), and M2q(e) are polynomi-
als of e with degree q, q —1, q —1, and q —2, respectively.
All kinds of solutions are obtained by different choices of
40 and 0 &.

By this procedure, the problem of the two-dimensional
electrons in a uniform magnetic field is reduced to the

(L„-1,1)

FIG. 1. The Laughlin-Halperin geometry which is used in
our work. We assume that the system is on the square lattice.
The system is periodic in the y direction and there are two
edges x = 1 and x = I —1.
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III. ENERGY BANDS AND EDGE STATES

In this section, we investigate the spectrum of the one-
dimensional problem given in the preceding section with
special attention given to the edge states. The boundary
condition of our problem is p —A(e) p+ 1 = 0, (3.9)

This should be compared with Eq. (3.7). We have to
choose other set of 4'p and 41 in this case. By applying
this equation for m = 0 and 1, we know that p is an
eigenvalue of M and p is a solution of

Cl, —4p ——0. (3.1) where

The eigenvalue problem Eq. (2.3) is replaced with an
algebraic equation by choosing 4p ——0 and 41 ——1 for
this boundary condition. The spectrum of the problem is
discrete and given by the roots of the algebraic equation
[see Eq. (2.6)]

= [M(e)']» —0. (3.2)

From a direct calculation, we know that [M(e) ]2i is a
polynomial of e with degree I —1 and has L —1 real
roots since they are eigenvalues of the Hermitian Hamil-
tonian.

First we point out that solutions of

A(E) = Tl'M = Mll(e) + M22(e). (3.10)

We used a fact

det M(e) = Mii(e)M22(e) —Mi2(e)M2i(e) = 1, (3.11)

since det M (e) = 1 for all m.
There are several works about the spectrum of this

periodic problem and we know that it consists of q energy
bands ' ' ' (continuous spectrum)

e C [Al, A2], . . . I [A2j ii A2j]). . . ) [A2g ii A2g]y

(A; & A, , i & j). (3.12)

M2i(e) = 0 (3.3) The energy bands are determined by the condition

satisfy Eq. (3.2), since a product of tridiagonal matrices
is also tridiagonal. We write the solutions of Eq. (3.3) as

p~ (p; & y~, i & j ), which are energies of edge states
as we see just below.

In fact, Eq. (3.3) determines the energies of the edge
states. From Eq. (2.6), we get

[~()1'&4 (3.13)

On the other hand, the energies of the edge states p~
satisfies MiiM22 = 1 by Eqs. (3.3) and (3.11). Then we
have by Eq. (3.10)

~.~+i(&~) = [M»(p. )]" . (3.4)
( 1

[&(p~)1' =
I
M»+

I

) 4.
Mii )

(3.i4)

If we use a usual normalized wave function
(P i & i ~@

~

= 1) and the number of sites I —1
is suKciently large, the state is exponentially localized at
the edges as

~Mii(p~)~ & 1, localized at T = 1 (left edge) (3.s)

4'q ——4'p ——0. (3.7)

This is essentially a g(=q —1) sites problem with
Eq. (2.3). The eigenvalues of the g x g matrix determines
the energies of.the edge states completely.

Here let us consider the problem in the periodic bound-
ary condition for a while. There is an important relation
between the spectrum of this fixed boundary system and
that of the periodic system with an infinite size.
If we consider that the system is infinite in the x di-
rection, our one-dimensional Hamiltonian Eq. (2.3) has a
translational invariance with a period q. Then the Bloch
(Floquet) theorem requires that the wave function of this
infinite-size system satisfies

(3.8)

~Mii(p~)~ ) 1, localized at x —I —1 (right edge) .

(3.6)

It proves that p~ is the energy of the edge state. When
~Mii(p~)

~

= 1, the energy of the edge state degenerates
with that of the extended bulk state at the band edge.
In this case, the edge state is not localized exceptionally.

Equation (3.3) means that the wave function satisfies

It means p~ lies in the energy gaps or at the band
edges. Further we know that each gap has only one edge
state41, 42,44

p,, e [A„,A„+,], j = 1, . . . , g(= q —1), (3.is)

[Ai, A, ], . . . , [Az, i, A2, ], . . . , [A21,. i, A2L,.]. (3.i6)

However, the whole spectrum should remain un-
changed. Thus the succeeding l bands should touch each
other and compose one band as

~2l (i—1)+2 ~2l (i—1)+3)

~ ~ ~

~2l (i—1)+2j ~2L(i —1)+2j+1)

~2L(i —1)+2l—2 ~2l(i —1)+2l—1

i= 1, . . . , q; j =1, . . . , l —l. (3.17)

where [A2~, A2~+i] is the jth energy gap from below.
Here we have to notice that the boundary condition of

our problem is not Eq. (3.7) but Eq. (3.1). Equation (3.1)
has many solutions other than the solutions of Eq. (3.3).
But we can show that these extra solutions are in the
energy band regions. They are not the edge states but
bulk states as shown in the following.

In the above, we consider the infinite-size system with
period q. But it is also possible to consider that the
period of the infinite system is I (= lq). In this picture,
the spectrum is composed of L bands as
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Using the same argument for Eq. (3.15), the energies of
our boundary condition Eq. (3.1) are given by these de-

generate energies A2~~, ~~+2~, i = 1, . . . , q, j = 1, . . . , l —1
(which are in the energy bands and those of the bulk
states) and the energies of the edges states, y~,
1, . . . , g(= q —1). Counting the number of the roots,
the above are all the solutions of our boundary con-
dition Eq. (3.1) and all the edge states are given by
pj) j = 1)-.. ~9'

When L is sufficiently large, the discrete spectrum of
the 6xed boundary condition should converge to the con-
tinuous energy bands and those of the edges states. Thus
the spectrum is asymptotically given by the energy band
Eq. (3.12) and isolated edges states p~ in the L —+ oo
limit. In the following, we discuss the Hall conductance
of the system with edges in the L,L„—+ oo limit. We
should notice that even in this limit the spectrum is dif-
ferent &om that of the usual infinite system due to the
eKect of the edge states.

IV. WINDING NUMBER OF THE EDGE STATE
ON THE RIEMANN SURFACE

Let us consider the Bloch function at site q. The
Bloch function is obtained by a diBerent choice of 40
and 4z from those for the Axed boundary condition dis-
cussed above. For the Bloch function, @i and 40 com-
pose an eigenvector of M with the eigenvalue p [see
Eqs. (2.4), (2.7) and (3.8)],

Also we have to use two sheets or Riemann spheres (B+
and B ) to define the Riemann surface (Fig. 2). (The
Riemann spheres are obtained by compactifying the ~z~ =
oo points to one point. )

Finally, the Riemann surface is obtained by gluing the
two Riemann spheres at these q branch cuts along the
arrows in the Fig. 2. After this gluing operation, the
surface is topologically equivalent to the surface given in
Fig. 3. The genus of the Riemann surface is g = q —1,
which is the number of the energy gaps. In this way,
the wave function is defined on the genus g (= q —1)
Riemann surface (which is a complex energy surface ).

The branch of the function is specified as

QA(z)2 —4 ) 0 ( z ~ —oo on the real axis of B+).
(4.5)

Then if z lies in the jth gap from below on the real axis
(notice that there are two real axes),

n( —l)~ QA(z)2 —4 ) 0, z (real) on R (n = +, —).
(4.6)

At the energies of the edge states p~, MiqM22 ——1, and
—4 = (Mii+M22) —4 = (Mii —M22) . By Eq. (4.6),

it means

&(y,,)' —4 = ~(—1)'~M»(V&) —M22(V&) I

(4.1) (p, c R, n =+, —). (4.7)

This equation is for real energy e. In the following, let
us extend the energy to a complex energy by an analytic
continuation to discuss a wave function of the edge state.
We use a complex variable z for the energy in this section.

We get from Eq. (4.1)

and

1
S (z) = -[&(z) —

V &(z)' —4]
2

(4.2)
2Q+2

Mii(z) + M2z(z) —QA(z)2 —4
g Z Mzi (z,—Mii(z) + M22(z) + QA(z) —4

(4 3)

where we used a normalization convention as 4q ——1.
Since the analytic structure of the wave function is de-
termined by the analytic function cu = QA(z)2 —4, let
us discuss the Riemann surface of a hyperelliptic curve

A(z) —4. To make the analytic structure of
w = QA(z)2 —4 unique, we have to specify the branch
cuts of the function which are given by A(z)2 —4 & 0
at Bz = 0. Since this condition is the same as that of
the energy bands Eq. (3.13), the branch cuts are given
by the q energy bands. Thus A(z)2 —4 is factorized by
using energies of the band edges A~, j = 1, . . . , 2q as

gluing

+1 g
2g+2

V A(z) —4

(z —Ai)(z —Az) . (z —A2~ i)(z —A2 ). (4 4)

FIG. 2. Two sheets (Riemann spheres) with q = g + 1
cuts which correspond to the energy bands of the system.
The Riemann surface of the Bloch function is obtained by
gluing the two spheres along the arrows near the cuts.
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R

FIG. 3. Riemann surface of the Bloch function under the
rational flux P = p/q. The number of the gaps g is the genus
of the Riemann surface. n~ and P~ are the canonical loops
(generators of the fundamental group) on the Riemann sur-
face.

By Eqs. (4.3), (4.6), and (4.7), we get

+.(»+~) =- M„+M„—n( —1)~ ~M„—M22~
M2i—M» + M» + ~(—I)' IM» —M»

I

A(e) ( —2 for j odd,
& 2 for j even, (4.9)

where e p [A2~. , A2~+z] (on B+) when the energy e is in
the jth gap.

When 4q(») = 0 for pz C R, 4'q(») g 0 for
p~ E R in general because M2q(z) and the denomi-
nator of Eq. (4.8) vanish linearly at the point on this
B Riemann sheet. In the following, we use a con-
vention that p~ denotes one of two p~ E B+ on the two
Riemann sheets which gives the zero point of 4q.

From Eqs (3.5), (3.6), (4.8), and (4.9), we get the fol-
lowing results.

The energy of the edge state p~ gives a zero point of
the Bloch function on the genus g (P = p/q, g = q —1)
Riemann surface. When the zero is on the upper sheet
of the Riemann surface, the edge state is localized to the
left, x 1, edge. When the zero is on the lower sheet
of the Riemann surface, the edge state is localized to the
right, x = L —1, edge.

The above considerations are all for the fixed ky and
4. As seen from Eq. (2.3), the spectrum is a function of
k„—2vr4'/L„. Allowed values of k„are discrete since our
system is finite in the y direction. But we can change it
almost continuously when Ly is sufIiciently large. Even
if Ly is small, we can extrapolate between difI'erent ky
by changing C. In the following, we consider k„as a
continuous variable for a while.

In Fig. 4 we show asymptotic energy spectrum of the
two-dimensional tight-binding electrons with two edges
under the rational flux P = p/q. The shaded areas are
the asymptotic (L, ~ oo) energy band regions and the
lines are the spectrum of the edge states. The solid line
means the edge state is localized at x 1 and the dotted
line means that it is localized at 2: —L —1 [Eqs. (3.5)
and (3.6)].

(p, e B ), (4.8)

where ~8~ (( 1.
By simple calculation, we can also show

I(~, , P~) = ~~1. (4.10)

Any curves on the Riemann surface are spanned homo-
topically by n~. and P~. We can observe that » moves
t times around the jth hole with some integer t, that is,
homotopic ally

(4.11)

where t is an integer. This means that

I[ng, C(p,, )] = tbg, , (4»)
even if the movement of p~ is not monotonic. The inter-
section number is a standard mathematical object on the
Riemann surface and a topological number. It is essen-
tially a winding number of the edge state around the jth
hole.

Here we get the main results.
The winding number of the edge state p~, which is

The Riemann surface of the Bloch function is given by
the fixed ky. In the following, let us consider a family
of the Riemann surfaces parametrized by ky. The sur-
face is generally modified by changing ky. However, the
topology of the Riemann surface cannot be changed un-
less the energy gaps close. In other words, the topology
of the Riemann surface does not change if there exist
g = q —1 energy gaps in the two-dimensional problem of
the tight-binding electrons under the magnetic field with-
out boundaries. We know that there is a degeneracy at
the zero mode in the even q case. ' ' ' Further, the
gap closing phenomena occur when we include nearest-
neighbor hoppings. In these cases, the topology of the
Riemann surface changes at some value of k„and that
brings an ambiguity of the quantized Hall conductance
cT&y since 0» is given by a topological number on this
Riemann surface, as we show in the following. For exam-
ple, we show the result for the q = 6 case in Fig. 4(d). It
clearly shows the degeneracy at the zero energy.
The number of the degeneracies is 6, as expected. At
these degenerate points, one of the holes of the Riemann
surface collapses and the topology of the Riemann surface
changes. We will comment on the efI'ect of this topology
change in relation to cr „ later.

First of all, the spectrum is a periodic function of k„
with a period 2'. This means that the zero points of 4q,
that is, the energy of the edge state p~, form closed loops
C(») on the Riemann surface by changing k& from 0 to
2'. When p~ moves to the difI'erent sheet of the Riemann
surface, we get M»(p~) = M22(») = +I, that is, ». has
to be at the band edge. Using the above discussions,
we can trace the movement of the p~ on the Riemann
surface in Fig. 4. The interesting fact is that this move-
ment on the Riemann surface is not always monotonic
[for example, see C(ps) in Figs. 4(a) and 4(b)].

On the genus g Riemann surface, the first homotopy
group is generated by 2g generators, n~ and P~, j
1, . . . , g with the defining relation Q. &(n~P~n. P ) =
1. See Fig. 3. The intersection number of these curves
(including directions, Fig. 5) (Refs. 41 and 43) I(n~, Py)
is given by
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(z) p= 2,q= 7, r=1.0 (b) p= 3,q= 7; r=1.0

3.0- 3.0-

2.0- 2.0

1.0- 1.0

CA

~+ 0.0
m

~4

-1.0 -1.0

-2.0 -2.0

-3.0- -3.0-

(c) p= 2,q= 5; r=1.0

0.0
p= 1,q= 6; r=1.0

3.0- 3 0

2.0

1.0 1.0-

-1.0 -1.0

-2.0 -2.0

-3.0- -3.0

0.0 ky 0.0

FIG. 4. Asymptotic energy spectrum of the taro-dimensional tight-binding electrons arith edges under the rational Aux

P = p/q. The number of sites in the x direction is I —1 oo, but we assume that the size is commensurate with the 8ux
P as I = ql, where 1 is an integer. The shaded areas are the (asymptotically L —+ oo) energy bands and the lines are the
spectrum of the edge states. The solid line means that the energy of the edge state is on the upper Riemann surface R+ (the
state is localized near x = 1) and the dotted line means that it is on the lower Riemann surface R {the state is localized near
z —L, —1). (a) p = 2/7, r = 1.0 C(p, ) —= p, ') C(p2) = p2, C(ps) —= ps ') C(p4)—:p4, C(ps) =—p, ', C(ps) =—ps) (b)
p —3/7~ r 10~ C(pi) —pi, —C(pz) —p2, C(p3): p3) C(p4) = p4, C(ps) = ps, C(ps) = ps., (c) p = 2/5, r = 1.0,
C(pi) = P, , C(pz) = P2, C(p3): Ps ', C(p4) = P4, (d) P = 1/6, r =, 1.0, C(pi) = P,', C(p&) = P~, C(ps) = P3) x

C(p4) = P4, C(ps) = Ps . (At the third gap, the gap closes at some values of k„. Then the topology of the Riemann
surface changes and we cannot define the winding number without ambiguity. ) (e) P = 3/7, r = 0.5; compare with (b).
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Then we get an expression for 0 „as Eq. (4.13).
As shown by Kohmoto, the Hall conductance o „ is

given by the first Chem number of the U(1) fiber bundle
on a torus (the magnetic Brillouin zone) (Ref. 8) and it is
a topological invariant. ' Mathematical treatments are
also given by several authors. Here we can relate
o „as a difFerent topological number I[o.~. , C(p~)] on the
Riemann surface of the Bloch function by investigating
the edge states.

For an infinite system, we know that o „ is given by
the solution of the following Diophantine equation for
integers t and s:

j = sq+ tp =—tp (mod q), ~t~ & q/2. (4.15)

In this equation, we assume that the Fermi energy lies
in the jth gap. The Hall conductance is quantized to
—t(e2/h). ' ' Here we get another method to calcu-
late the o. „by calculating the winding number of the
edge state. This means that I[n~, C(p~)] satisfies the
Diophantine equation

TABLE I. Solutions of the Diophantine equation corre-
sponding to Fig. 4. Compare with the winding numbers in
Fig. 4.

0 =p/q

P = 2/7

j = sq+tp
jth gap t: o. „=(e'/h) t

-3
1

-2
2
-1
3

P = 3/7 -2
3
1
-1
-3
2

1
-1
0
1
2

0

-2
1
-1
2

j = sq+ I[a~. , C(p~ )]p—:I[n.~, C(p~)]p (mod q). (4.16)

(See Table I.)
We have performed extensive calculations for many

cases (q + 13) and confirmed our integers obtained from
counting the intersection number are the same as those
given by the Diophantine equation. The Diophantine
equation is originally derived in the anisotropic limit us-

ing perturbation theory. ' For this anisotropic case,

we also performed several numerical calculations. In
Fig. 4(e) we show one example for the anisotropic case.
Comparing it with the isotropic case (b), we know that
the winding number is the same. Further, we know that
the movement of the zero point on the Riemann surface
is monotonic. It seems possible to derive the Diophan-
tine equation directly from our treatment for the Hall
conductance. Here, we give a rough argument about this
fact in the Appendix.

Here we comment on the degeneracies of the energy
bands which occur in some situations. ' ' One of the
examples is at the third gap in the P = 1/6 case [see
Fig 4(d)]. Except for the third gap, we can define the
winding numbers safely. For the third gap, however, one
of the g (=5) holes of the Riemann surface collapses at
these degenerate points. At the points, the topology of
the Riemann surface changes and the winding number
is not well defined. It corresponds to the ambiguity of
0 „. At the degenerate points, two energy bands de-
generate and, further, the energy of the edge state also
degenerate. If we include next-nearest-neighbor hop-
pings, this degeneracies are removed and we will get a
well-defined winding number for this case. ' "' In gen-
eral, the Hall conductance can only be changed by this
topological change of the Riemann surface.

V. INCOMMENSURATE CASE
AND RANDOM POTENTIAL

In Sec. IV we considered the commensurate case L
ql. In this section, first we treat incommensurate cases
and discuss efFects of the randomness later.

For the incommensurate case, we do not have good
methods to obtain the asymptotic spectrum. We have to
solve the one-dimensional Schrodinger equation Eq. (2.3),
under the boundary condition 4o ——41, ——0. In Fig. 7,
we show results for the case p = 2, q = 7, and L = 126.
Let us compare Fig. 7 with Fig. 4(a), which corresponds
to the commensurate case. The system size is not so
large in Fig. 7, but the energies in the energy band re-
gions seem to converge to the same one. It suggests that
the bulk states do not depend on the commensurability.
On the other hand, the behavior of the edge states in
Fig. 7 differs from that of the Fig. 4(a). We cannot iden-
tify the energy of the edges states as that of the zero
point of the Bloch function in this incommensurate case.
However, there still exists a similarity between these two
results. If we shift the energies of the edge states as a
function of k» it seems that we can get the same shape of
the spectrum as that of the commensurate case. For the
Hall conductance o. „,we can get the same results as that
of the commensurate case by investigating the wave func-
tions of the edge states numerically (investigating which
side the edge state localizes). We can confirm that the
number of the carried states during the adiabatic process
(discussed at the end of Sec. IV) is the same as that of
the commensurate case. This means that the edges states
are sensitive to the commensurability, but the Hall con-
ductance is the same as that of the commensurate case.

Next we discuss the eBect of the randomness. As is well
known, the existence of the randomness is necessary to
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p= 2,q= 7 p= 2q= 5

3.0- 3.0 -=—~

2.0- 2.0::

1.0-

-1.0
-&.0-

-2.0

-3.0- -3.0-

0.0 0.0

FIG. 7. Energy spectrum of the two-dimensional tight-
binding electrons with two edges under the rational flux P =
p/q. The system size in the z direction is incommensurate
with the Qux q. p = 2, q = 7, I = 127, and t = t„= 1.
Compare with Fig. 4(a).

FIG. 8. Energy spectrum of the two-dimensional tight-
binding electrons with two edges under the rational flux &P

=
p/q where we include an effect of a one-"dimensional" random
potential t = t„= 1, V„g ——0.5, p = 2, q = 5, and I = 125
for the commensurate case. See the text, and compare with
Fig. 4(c).

explain the quantum Hall effect. ' however, it is very
dificult to completely include effects of the randomness
in the large system. Here we introduce rather artifi. —

cial one-dimensional randomness in the two-dimensional
system. The Hamiltonian is given by

H + ) V(m)ct „c
A)m

(5.1)

where we assume V(m) is a uniform random number be-
tween [

—V„g, V„~d] and H is defined in Eq. (2.1). This
potential is random in the x direction, but uniform in
the y direction. We consider that bulk properties such
as the localization are really crucial to the dimensional-
ity. However, as far as the edges state is concerned, we
hope that the artificial one-dimensional randomness still
includes some effects of the true two-dimensional ran-
domness. We can perform a Fourier transformation in
the y direction and the spectrum of the system is ob-
tained almost similarly to the previous incommensurate
case.

We show the spectrum of the system for p = 2, q = 5,
and I = 125 with randomness V„g ——0.5t in Fig.
8. Let us compare Fig. 8 with Fig. 4(c). It seems that
there still exist edge states in this random system. For
the second and third gaps, we can clearly distinguish the
edge states from the bulk states. When the Fermi energy
lies in these gaps, we can do the same argument as that
of Sec. IV and obtain the quantized value of the Hall

conductance.
In the first or fourth energy gaps, however, there are

several level crossings. Thus we cannot perform the adi-
abatic process discussed in Sec. IV. This means that 0 „
is not well quantized when the Fermi energy is in these
energy gaps. By this argument, we believe the quantiza-
tion is more accurate when the Fermi energy lies in the
larger energy gap.

The point of the above argument is that we have
to treat one (macroscopic) Schrodinger equation even if
there is a randomness in the system. We consider that
usual averaging procedures to treat the randomness are
not suitable to discuss the quantized Hall conductance
especially for the edge states.

VI. SUMMARY

In this paper, we consider the edge states of the two-
dimensional electron systems on a square lattice under
a rational magnetic field P = p/q. The system is peri-
odic in the y direction and there are two edges in the x
direction. This is the Laughlin-Halperin geometry. Due
to this geometry, there are several edge states. We have
studied the behavior of edge states carefully. Perform-
ing a Fourier transformation in the y direction, we can
reduce this problem to the problem in one dimension.

We found that the zero points of the Bloch function
give the energies of the edge states. The Bloch function
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is defined on the Riemann surface (complex energy sur-
face) with the genius g = q —1, which is the number of the
gaps as a two-dimensional problem. The energy of the
edge state moves around the hole of the Riemann surface
when we change the momentum in the y direction. When
the Fermi energy lies in the jth gap, the winding number
of the edge state around the jth hole (energy gap) gives
the Hall conductance of the system. The winding num-
ber is given by the intersection number of two curves on
the Riemann surface. One is the trace of the energy of
the edge state and the other is a canonical curve on the
Riemann surface. It is a topological number on the Rie-
mann surface. In this sense, we can express the Hall con-
ductance as a new kind of the topological number. The
efFects of the randomness is also investigated using a kind
of artificial one-dimensional random potential. The sta-
bility of the quantization of the Hall conductance is also
mentioned. Since the edge states are stable to the weak
disorder, we expect that the present topological consid-
eration of the Hall conductance is relevant in the realistic
system.
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(Ho)V = —(~*,~+i + ~*+i,~)

(Hi);, = —2rb;, cos(ky —27rgj ).

(A2)

(A3)

The energy of the jth edge state, pz, is the jth eigen-
value of the H, . In zeroth order in r, the energies of the
edge states p~ are given by

p,, = —2cos~ —j ~,
(o)

&q )
(A4)

where a normalized vector corresponding to the jth en-

ergy U~ is given by

(U, )k = sin/ —jk f.)
(A5)

Using this vector it is easy to calculate a first-order cor-
rection to the energy of the edge state. It is given by

p,. = (U, , HiU~)

p ~= (
—2r) ) —sin

( gk
~

cos—
~

k„—2~ —k
~) 0 q )

2r '- 2~) cos —(j —p)k+ k„
q qk=p

27r
+cos —(j+p)k —k„

j = j~ = +p+sq, (A7)

with some integer s (1 ( j~ & g). Then the energies of
edge states are given up to the erst order by

+ 2p cos ktI )

—j otherwise.
q

(A8)

= 2r cos(k&) [b(j —p—:0) + 8(j + p—:0)], (A6)

where = is in [mod q]. It means that the first-order per-
turbation contributes only to two cases,

APPENDIX: DIOPHANTINE EQUATION

In this appendix, we show rough arguments for the
Diophantine equation by investigating the edge states.
Using a perturbation theory, we will argue that the in-
tersection numbers discussed in this work coincide with
the solutions of the Diophantine equation in the absolute
values. To determine the sign, we have to investigate the
wave function more carefully.

I et us consider an anisotropic limit r = t„/t (( 1. As
discussed in Sec. III, the energies of the edge states are
determined by the g x g matrix since it is essentially a
g = q —1 site problem [see Eq. (3.7)]. The g x g matrix,
which determines energies of the edge states, is

const
&,„=(~ „,(U'+* HiU~+, )ggt +~. ~t—i

p,", =o (t &t),

(A9)

(A1o)

This means that the winding number (or) the intersection
number I[nz~, C(p~~)] is +1 or —1 if the movement of
p~~ is monotonic on the Riemann surface [see Fig. 4(e)].
To determine its sign (direction of the winding), more
detailed investigation is necessary. For j g j+, we have
to consider a higher perturbation.

We assume that the perturbation Hamiltonian first
contributes the energy p~, in the tth order. Then we

estimate the contributes to the energies very roughly by

H = Hp+Hg,

where

(Al)
where Ae~~, is a contribution from an energy denomina-
tor.

Then we know that the following terms contribute to
the energies pz~, first in tth order:



48 EDGE STATES IN THE INTEGER QUANTUM HALL EFFECT. . . 11 861

g
(~) 2'tt. =constr . +cos —(jos —ttt)tt-t ttt„)

k=o

is defined by

g~&
——+tp+ 8q, (A12)

2'+ cos —(j~, + tp) k —tku

const r cos(tk&) [h(j~t —tp—:0)

+&(j~, + tp =—0)]+, (A11)

where ( .) does not contribute to to the ps+, . Here j~t

(7r .
ps~, ——2 cos

~

—j~t
~

+ const r cos(tk„).
)

(A13)

Equation (A13) shows that the intersection number

I[ot~~, , C(pi~, )] is +t or t if—the movement of ps~, is
monotonic on the Riemann surface. [See Fig. 4(e).]

with some integer s (1 & j~t & g). Then up to tth order
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