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Kink walls and critical behavior of magnetization
near the lock-in transition in layered superconductors
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We consider the behavior of a layered superconductor in a magnetic field applied at very small angles
with respect to the layers. The penetration of the field component perpendicular to the layers occurs as
a result of the phase transition (lock-in transition) ~ The boundary of the locked phase is calculated ex-
actly. We argue that the penetration of the transversal field occurs by the formation of separated kink
walls. The structure of field in the wall and the behavior of magnetization depend essentially upon the
value of the field along layers B„. At small B„akink wall is composed of separated magnetic flux tubes.
Each tube contains flux that depends upon B and smaller than a flux quantum. At large B„ these tubes
overlap and form a magnetic flux wall. The behavior of the magnetization near the transition is studied
in detail. At large separations between kink walls they interact exponentially and their concentration
sharply increases in the narrow region above the lock-in field. This leads to the appearance of a tiny
peak in the field dependence of the magnetization, which can be used to indicate the lock-in transition.

I. INTRODUCTION

The discovery of high-T, superconductors triggered
new development in the phenomenological theory of lay-
ered superconductors. It is well established at present
that high-T, superconductors can be described phenome-
nologically as a stack of two-dimensional (2D) supercon-
ducting layers weakly coupled by Josephson interactions.
Each superconducting layer consists of one or several
Cu02 planes. The strength of the Josephson coupling
varies in wide limits depending upon the compound.

Layered superconductors have a very peculiar behavior
in a magnetic field applied almost parallel to the layers
(the geometry is shown in Fig. 1). The expected behavior
in an ideal superconductor (i.e., without pinning centers)
at low temperatures can be described as follows. When
the magnetic field is applied exactly parallel to the layers
the stretched triangular lattice of the Josephson vortices
appears. At small tilting angles of the external field with
respect to the ab plane the vortex lattice remains oriented
along the layers and the z component of the external field,
H;"', is completely screened ("locked-vortex-lattice"
phase). The penetration of H;"" occurs as a result of the
phase transition when the z component of the internal
field H, exceeds the critical value H„,„;„("lock-in"tran-
sition). The penetration of field occurs through the for-
mation of kinks in the vortex lattice (the kink is a point
defect that separates two pieces of a Josephson vortex
shifted at a distance of one interlayer separation in the z
direction). The z component of the field starts to
penetrate when the gain in energy due to the penetration
of the field exceeds the loss in energy due to the forma-
tion of kinks.

This physical picture was proposed by Feinberg and
Villard. ' The model used in these papers gives a correct
qualitative picture but it is too rude to provide a quanti-
tative description of the transition. The reason is that the

authors neglected nonlocality in the tilt stiffness of the
lattice and took into account the layered structure by in-
troducing phenomenologically the cosine periodic poten-
tial. A more quantitative approach was elaborated in the
later papers, where the energy of the kinked lattice
and the field dependence of the magnetization were es-
timated using the 3D anisotropic London model ' and
the Lawrence-Doniach model. ' It was shown in Ref. 2
that the "lock-in" field H„,k;„ is determined by the ener-

gy of kink and with logarithmic accuracy is estimated as

@o ydH„,k;„= ln + Ck
4~A, '

~

here y is the anisotropy coefficient and k is the London
penetration depth, d is separation between layers. It was
argued in Ref. 3 that the indication of the transition
should be a kink in the field dependence of the c com-
ponent of the magnetization M, (H, ) at H, =H„,i, ;„.
The important feature of this dependence is that —M,
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FICx. 1. Layered superconductor in the tilted magnetic field.
Choice of the axes.
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keeps growing after penetration of H,'"' into the super-
conductor and reaches a maximum of at some field H „
above H&„k;„.

In spite of considerable progress a complete descrip-
tion of the transition is still absent because in Refs. 3—5
only the region of high density of kinks has been con-
sidered. There a particular structure of the kinked lattice
is unimportant and the energy is just determined by the
averaged c component of the magnetic induction 8, (i.e.,
concentration of the kinks). The main purpose of this pa-
per is to consider the structure of the kink lattice and the
critical behavior of the magnetization near the "lock-in"
transition.

To understand the most favorable configuration of the
kink lattice at small concentration of kinks it is impor-
tant to realize that a single kink cannot exist in the ideal
lattice of the Josephson vortices. The reason is that its
creation is always accompanied by the creation of linear
defect in the lattice, which costs infinite energy [Fig.
2(a)]. This means that at very small densities of kinks
they should be collected in separated walls aligned along
the yz planes [Fig. 2(b)]. Such a configuration preserves
the ideal lattice of Josephson vortices in the regions be-
tween the kink walls. The density of the kinks in a single
wall is fixed by the density of the Josephson vortices
while the separation between the walls I is determined by
the z component of the magnetic induction B,. At large
enough I. (small 8, ) the kink walls can be treated in-

dependently. It means that the kink wall rather than a
single kink represents the elemental object for field
penetration.

The behavior of the magnetization near the transition
is determined by the interaction energy between the kink
walls. We will show that at large distances kink walls in-
teract exponentially. This means that the density of the
kink walls sharply increases with the internal field H, in
the narrow region above the transition. This leads to a
sharp drop of the magnetization. However, kink walls
interact exponentially only in the narrow region above
the transition. As the exponential interaction breaks
down, the magnetization starts to increase again as it was
described in Ref. 3. It means that there is a tiny peak in
the field dependence of the magnetization M, near the
transition. The amplitude and the width of this peak de-
pend upon the value of the field along the ab planes.
There is a typical value of the field Bo along the layers at
which the behavior in the peak region changes
significantly, Bo =&3@0y/2(2~A, ) . In the high-field re-
gion B ))Bo a fast decrease of —M, breaks down when

B, reaches the typical value B,o=dB /X. Then a region
of weak field dependence of the magnetization follows.
The magnetization starts to increase again when B,
reaches another typical field B,I =(d/A, )(8 ~ /Bo~ ). In
the low-field region, B„&BO,a pronounced minimum in
the dependence —M, (8, ) occurs when 8, becomes of the
order of B„.

As was pointed out in Ref. 4, a kink-mediated penetra-
tion of H,'" takes place only if the Josephson coupling be-
tween layers is not too weak. The natural measure of the
strength of coupling is the anisotropy y of the London
penetration depth. At large enough y the z component of
the field starts to penetrate by means of formation of the
Abrikosov Aux lines in the direction of the c axis. This
leads to the creation of two coexistent lattices of Abriko-
sov and Josephson vortices ("combined" lattice). The
kink-mediated penetration becomes unfavorable when
the energy of a kink exceeds the energy of a vortex per
unit layer. For exact determination of the critical anisot-
ropy it is important to know the exact value of the nu-
merical constant Ck in Eq. (1). To determine this con-
stant we calculate numerically the energy of kink and ob-
tain Ck= —0.17. This gives the following value of the
critical anisotropy y„:

z,
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FIG. 2. (a) Single kink in the lattice of Josephson vortices.
(b) Single kink wall.

y„=1.95k, /d . (2)

II. ENERGY OF A KINKED VORTEX LATTICE

We consider a layered superconductor composed of
Josephson coupled superconducting planes separated by
the distance d. The strength of the coupling can be
characterized by the anisotropy ratio y, y =A,, /A, , A,, and
A, being the screening lengths for supercurrents Rowing
along the c axis and along the layers correspondingly.
We suppose that inequality yd & A, holds. The
Lawrence-Doniach model gives the following expression
for the energy of a layered superconductor in magnetic
field B «B,2.-
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d 2
C'02F(B)=—g fd'r, VP„— A

2e
V „7r(4irA, )' " c

(p2
+ 1 —cos

m. (4~A, , ) d

2

1 B+ f—d'r
V 8~

(3)

The first term in this expression represents the energy of
supercurrents in superconducting layers, the second one
gives the energy of the Josephson coupling between the
layers, and the third one gives the magnetic energy, V is
the total volume of superconductor.

We consider the layered superconductor that contains
a vortex lattice (i.e., the magnetic induction 8) tilted at
small angle 8 with respect to superconducting ab planes.
The choice of the axes is shown in Fig. 1. The lattice is
composed of finite pieces of vortex lattice oriented along
the layers (see Figs. 3 and 4). Subsequent pieces are
separated by the kink walls. Each piece has length L,
L =d/0. The energy of such vortex configuration was
estimated in Refs. 2—5 for not too large L. Here we give
the expression for the energy valid for large L. The
derivation of this expression is given in Appendix A. In
the region B )N0/XA, „yO(1, the result for the kink
contribution to the energy, 5F(B)=F(B„,B, ) F(B,O)—,
is the following:

Bx d 1+exp( L /1,)—
8~ 2LA, 1 —exp( L /A, )—

y d 2Q 2 B,+ g G(LK, Q, ) + E„k,
g~p 2(AK) d@o

(4)

here the sum is performed over the reciprocal-lattice vec-
tors of the triangular lattice, Q = ( Q, Q, ),
K(Q)=(yQ +Q, /y)'~, the dimensionless function
G (LK, Q, ) is given by

2 sinh(LK/&y ) /(LK/&y )

[2 sinh(LK/2&y ) ] + (dQ, )

and has the following asymptotics:

G (K, Q, ) = 1+cos(dQ, )exp
LK

at LK/i/y»1,

G (K, Q ) = at LK /+y (( 1 .1/L
Q +(y +0 )Q,

In the following we consider mainly the situation when
nonlinear cores of the Josephson vortices do not overlap,
i.e., x component of the induction B„ is smaller than
crossover field in parallel direction B~~„B ((B~~ „
B li =i/3@0/2d~y.

At the end of this section we discuss briefly the deriva-
tion of magnetization from Eq. (4) and influence of the
sample geometry. The dependence of B on the internal
field H=B —4aM can be obtained by minimization of
the energy F(H),

F(H) =F(B)—
4~

with respect to B. It is well known that obtained in such
a way dependencies of H and the magnetization M on B
are internal properties of the superconducting material
while the relation between H, B, and the external field
H'" depends upon the sample geometry. Experiments
are usually performed on thin slabs elongated along the
layers. In the field range II„'"'))40/A, y the demagnetiz-
ing efFects in the parallel direction can be neglected, i.e.,
B =H„=H'". On the other hand, at small tilting angle
of H'" the demagnetizing efFects are very strong in the z
direction. The standard way to treat this problem is to
approximate the shape of the sample by the ellipsoid with
the demagnetizing factor D, (1 D, ((1) for w—hich the
fields B„H„and II,"' are connected by the exact rela-

FIG. 3. Kinked vortex lattice. FIG. 4. Stretched lattice of Josephson vortices.
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tion

(1 D—, )H, +D,B,=H;"' .

4p
H, i

= [ln(A, /g)+0. 5] .
4~A,

III. BOUNDARY OF THE LOCKED PHASE.
STRUCTURE OF SINGLE KINK WALL

At small B, a rarefied lattice of the kink walls is real-
ized and the main contribution to the angular-dependent
part of the energy 5F arises from energies of separated
kink walls

This condition means that the energy of the kink should
be smaller than the energy of the Abrikosov vortex per
one layer. Comparison shows that the kink-mediated
penetration is favorable as the value of the anisotropy is
smaller than the critical anisotropy given by Eq. (2).

In the region B„)B„,the kink interaction energy be-
comes comparable with the contribution coming from
separated kinks. In this region H&„k;„depends logarith-
mically upon B:

'6F =O.
k /I. . Np yB,2H = lnlock in (13)

o.
k is the energy of single kink wall per unit area. This

energy should be compared with the gain of energy due
to the penetration of field, B,H, /—(4m). Comparison
shows that the formation of the kink walls becomes
favorable when the internal field exceeds the critical
Value Hlock in&

4~a.k
lock in dB

(8)

Extracting from Eq. (4) the linear term on 1/L we obtain

B2d2 3gP g2
o.„= 1+ g + E k . (9)

16m A, A, o [&(Q) ]3 @o

This energy can be represented as

B
~kw @ ~k+~int

p

c,k is the energy of the kink in a single vortex line,

(10)

d 4&o ydln +Ck
(4' A, )

This expression is obtained from Eq. (9) as a sum of the
second term in the parentheses with changing summation
over Q to integration and the last term. The numerical
constant Ck can be obtained by the numerical calculation
of the phase distribution induced by a single kink. This
calculation is performed in Appendix B. It gives
Ck = —0.17. o.;„t is the kink interaction energy,

1—
16m',

at B (Bll

Np a„
1 — ln

16nA, ~d A,B yd
at B.&Bll,

(12)

C;n, —1. At small magnetic fields, B (B„, the main
contribution to o.

k comes from the energies of separated
kinks. ' This leads to the field-independent "lock-in"
field given by Eq. (1). The kink-mediated penetration
remains favorable as far as H&„k;„remains smaller than
field H, &

connected with the penetration of the Abrikosov
vortices along the c direction,

As the kink wall represents an elemental object for the
field penetration it is interesting to calculate the distribu-
tion of field near it. Fourier transform of the z com-
ponent of the induction is given by

+'oS, (k)
B,(k) =

1+1, k
(14)

with S,(k) =d g exp(ik R' '+ik, d/2), R~~
' are the po-

sitions of the Josephson vortices. The resulting field dis-
tribution can be represented as a sum of contributions
from the kink chains that form a kink wall (we call a kink
chain a row of kinks elongated in the z direction):

B,(x,y) = g Eo2~X' . p —p. ~

(15)

Ko(x) is a modified Bessel function of zero order. Field
distribution near the kink chain occurs to be essentially
the same as for the vortex line, however, the value of
magnetic Aux through the chain 4k is smaller than No.
The reason is that the concentration of kinks in the kink
chain is smaller than the concentration of the pancake
vortices in a vortex line. Periodicity in chain arrange-
ment is determined by periodicity of the Josephson vor-
tex lattice in the y direction. The field distribution de-
pends significantly upon the relation between the field
along the layers B and the typical magnetic field Bp,

V'3eoy yd
2(2m. A, ) 2m'X

The estimate for this field is

/ 100
(A, /2 X 10 cm)

(18)

As field B is smaller than Bp the distance between
chains a /2 is larger than A, and field B, is concentrated
in the well-separated tubes of the radius A, [see Fig. 5(b)].
At high fields B &)Bp the tubes overlap and the field dis-
tribution is represented by the fiux wall [Fig. 5(a)]:

here p = (0,a m /2) are the chain's coordinates,
p=(x,y),

o =4o+B /Bd =
o2b,
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FIG. 5. (a} and (b} Field distribution near the kink wall at
different values of B .

B,(p) = exp( —x/A, )
dB
2A,

ay+ cos(4~y/a~)exp( —4m.x/a~)
2%k,

(19)

Such a structure of the field, in principle, can be observed
in the decorations or other imaging experiments.

IV. KINK WALL INTERACTION ENERGY:
BEHAVIOR OF THE MAGNETIZATION

NEAR THE LOCK-IN TRANSITION

Consider the region close to the lock-in transition,
where concentration of the kink walls is small, L »k ay.

In this case kink contribution 5F(8) to the lattice energy,
6F(g) =F(g)—F(0), can be represented as

5F(8)=o „ /L+E;„,(L) . (20)

The behavior near the transition is determined by the in-
teraction energy E;„,(L) between the kink walls. From
Eq. (4) one can obtain

B„d

LQO

V'y
3v'y+ exp
LQO

(21)

From the latter equation one can see that there are two
contributions to the interaction energy. The first term
represents interaction mediated by the averaged z com-
ponent of the magnetic field induced by the kink walls
(15). This term coincides with the interaction energy be-
tween vortex rows. The second term represents interac-
tion mediated by the oscillating perturbations of the
current and field induced by the kink wall. Relation be-
tween these terms depends upon the relation between the
magnetic induction B and the typical magnetic field Bo.
The first term dominates at B ))Bo and vice versa.

Weak interaction between kink walls leads to fast in-
crease of their concentration as field H, exceeds the field

Hi„i, ;„. This leads to the appearance of the sharp peak
in the field dependence of the z component of magnetiza-
tion M, (H, ). This peak is analogous to the peak in the
field dependence of magnetization in isotropic supercon-
ductors at the field H„.' However, it has much smaller
amplitude and the field dependence of the magnetization
above the peak is nonmonotonic. Experiments are usual-
ly performed on thin slabs, which have z components of
the demagnetizing factor D, close to one. For such sam-
ples above the transition z component of the magnetic in-
duction B, is connected with the z component of the
external field H,"' by the simple relation
B,=H;"' (1 D, )H&„—;„k.

—It means that the depen-
dence M, (B, ) rather than M, (H, ) can be directly ex-
tracted from the experiment. The behavior of M, can be
easily obtained from Eq. (21):

2B,o
4vrM, (B, ) =4~M, (0)+B,— exp

Z

B,o
B,

B,i+3 exp B,

(22)

Here M, (0)= —H&„";„/4' is the value of the magnetiza-
tion at the transition,

B,O=B„d /A, ,

B„=B,O(B„/Bo)'
(23)

The exponential interaction between kink walls breaks
down when the z component of the magnetic induction
reaches the smallest of the fields B,o, B„,i.e., distance L
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~F= lock in z +H B
4m.

38 oB,
7T zl

B,B,o/8m

exp(B,o/8, )
—1

B,l

B,
(24)

between the kink wall equalizes with smallest of the
lengths A, and a~/2. Two types of behavior above the
peak are possible depending upon the ratio of the induc-
tion 8 and the field Bo (i.e. , upon the ratio of B„and
B,o). Consider the region 8 & Bo (8„&B,o). In this re-
gion exponential interaction between kink walls breaks
down when 8, exceeds B,o. From Eq. (4) it is possible to
obtain the expression for lattice energy valid in the whole
region B, & B,l..
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Field dependence of the magnetization in this region is
given by

4mM, (B., ) =4r/M, (0)+8,
B,o exp(B,o/8, )(1+8,o/8, )

—1

[exp( 8, o/8, )
—1]

3B,p+ exp
B,

B„
B,

(25)

It follows from the latter expression that the field depen-
dence of M, has plateau in the field range B,p & B, &B„.
The magnetization in the plateau region is given by
4'(B, ) 4~M(0) =—B,o/4. M, (B, ) st—arts to increase
again when the field reaches B„. The field B, '" where
minimum of M, (B—, ) occurs can be obtained from the
relation

/ln
360B Bmin

Bo
(26)

In the region B,)B p B l but B &B /p the magnetiza-
tion increases almost linearly:

BOB,
M, (8, ) = —M—,(0)+

4 38„
ln +0.16

B
B,l

(27)

The maximum of M, (B, ) occurs—at 8, &8, /y. It is
noteworthy that the behavior of M, (B,)+M, (0—) near
the transition [Eqs. (22), (25), and (27)] is determined by
wave vectors k, ))m/d and therefore is not influenced by
the nonlinear Josephson contribution to the lattice ener-

gy
Crossover between the regions B„&B,l and B„)B,l

can be obtained only numerically. A series of the numer-
ically calculated curves —M(8, )+M(0) at different
values of B is represented in Fig. 6.

—0.30
0,00 0.20 0.40 0.60

(3z/Eczo

0.80
—0.30

1.00

FIG. 6. Dependencies of the magnetization 6M, =M, (0)
—M, upon the magnetic induction B, near the lock-in transi-
tion at dift'erent values of B . The inset shows a schematic field
dependence of the magnetization in the z direction in a large
field scale. The box restricts the region represented in the main
figure.

/

/

QUASI —2D
REGION ,

' Bx /'I(
( NO KI NKS)/

/

/

/

field near the wall and the behavior of the magnetization
depend upon ratio of the field along the layers and the
typical field Bo [Eq. (17)].

A schematic phase diagram at low angles is represent-
ed in Fig. 7. At fixed B„ the low-angle behavior is
characterized by three typical fields along the c axis
B,o(B ), B„(B ), and 8„/y [see Eqs. (23)]. In the region
B & B o B l layered structure of superconductor
inAuences essentially on both structures of individual vor-
tices and intervortex interaction. This region corre-
sponds to exponentially weak interacting kink walls and
sharp decrease of magnetization with H, . In the region

B„,B„&B,&B /y vortices preserve their kinked struc-

V. CONCLUSIONS

We studied in detail the behavior of layered supercon-
ductors in a tilted magnetic field at small values of the z
component of the magnetic induction. We argue that
penetration of this component occurs by means of the
formation of kink walls. The distribution of the magnetic

0
Bx

FIG. 7. Schematic phase diagram at low angles.
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ture but the intervortex interaction energy coincides with
one given by anisotropic Ginzburg-Landau theory. This
region corresponds to almost linear increase of the mag-
netization. In the region B,-B /y the layered structure
inAuences weakly on the behavior of the superconductor.

The most natural way to detect the lock-in transition is
to perform precise measurements of magnetization or
torque at small tilting angles of the external field (in high-
ly anisotropic superconductors the torque gives the com-
ponent of the magnetization along the c axis). The
"fingerprint" of the transition is a tiny peak in the field
dependence of the magnetization, which is followed by its
further increase. However, in published papers devoted
to the precise angular measurements of the magnetiza-
tion '' in BizSr2CaCuzO& (BSCCO), and the torque"
(BSCCO), ' (T12Ba2CaCu207) these features were not ob-
served. There are several possible explanations for this.
First, the tiny peak above the transition exists in a very
narrow range 50 of the tilting angles of B, 50 ~ d/A. . For
BSCCO (d =1.5X10 cm, A, =3X10 cm at T=77 K)
this gives 60+0.3'. This means that the peak can be ob-
served only in very precise measurements performed on
high-quality single crystals. Usually the low-angle intrin-
sic behavior is smeared out by misorientation of the c
axis. Second, recent torque measurements performed on
high-quality single crystals' ' show that the value of an-
isotropy in BSCCO is much larger than it was reported
earlier" and it may be quite possible that in the consider-
able temperature range the value of anisotropy y is larger
than the temperature-dependent critical anisotropy y„
given by Eq. (2) (for BSCCO at T=77 K the critical an-
isotropy can be estimated as y„=400). In this case

penetration of H,"' should occur by means of formation
of the Abrikosov vortices. Third, the transition seems
to be observable in a limited temperature range because
at high temperatures it is destroyed by thermal Auctua-
tions while at low temperatures it is smeared out by the
pinning potential. For BSCCO the temperature range
within which observation of the lock-in transition can be
expected at B& 1 T can be estimated as 50—70 K.
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APPENDIX A: DERIVATION
OF THE EXPRESSION

FOR THE KINK CONTRIBUTION
TO THE LATTICE ENERGY [Eq. (4)]

With logarithmic accuracy the energy of the vortex
configuration can be obtained within linear approxima-
tion, i.e., by expanding the cosine term in Eq. (3) with
respect the gauge-invariant phase difference. This ap-
proximation breaks down at distances -yd from the
cores of the Josephson vortices. Within the linear ap-
proximation the energy can be calculated exactly with
use of the Fourier transform. ' The exact expression for
the energy can be represented as a sum of linear and non-
linear contributions:

@o d k IS„l'+
I (I+&2k')/(&+X'k')]~S, '

F(B)= +F„t(B) .s~v l+g2k 2+g2k2 (Al)

Here k, =(2/d)sin(dk, /2), k, ~
&~/d, kf =k, +k,

k =k, +ki,
dR

S(k)= g f dx ' exp[ik R (x)],
J dx

R (x)=[x,Y,Z, (x)] are the coordinates of the vortex
lines (Fig. 3). Each vortex line is composed of the por-
tions of Josephson vortices separated by kinks (Fig. 3).
The first term in Eq. (Al) represents a linear contribution
to the energy, while F„&(B)gives the nonlinear Josephson
contribution. In the region @0& 1 the latter contribution
can be represented as

B B,
F„)(B)= e„,+ s„„.

Here e„J and c.„k are the nonlinear Josephson contribu-
tions to the line energy of a Josephson vortex and to the
energy of a kink correspondingly, e„J=aJ&0/(4m. ) A, A,„
E„q=akd&50/(4vri, ) . The numerical constants az and ak
can be estimated from the energies of a Josephson vortex

S, =d g exp[ik RJ~ '+i(k, d +k,L)(n + —,')] .
(A2)

The separation between the kink walls L is connected
with the tilting angle 0 of the field with respect to ab
planes by the simple relation L =d/0, i.e., the z com-
ponent of the magnetic induction is given by B,=B„d/L.

Summation over index j corresponds to summation
over the sites R' '=( Y'. ', Z' ') of the triangular lattice of
the Josephson vortices which is stretched along the y axis

and a kink, which are numerically calculated in Appen-
dix B, aJ = —0.53, o, & =0.33. Nonlinear contribution
from the normal cores of the kinks can be taken into ac-
count by the right choice of the upper cutoff in the in-
tegration over k j, k~ & 1.65/g.

For the kinked vortex lattice (see Fig. 3) ZJ(x) are
given by Z (x)=Z' '+nd at (n —

—,')L &x &(n + —,')L
and the components of the vector S are reduced to

sin( k„L /2)
S = gexp[ik R' '+i(k, d+k, L)n],

(k /2
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(see Fig. 4),

&,'"=(A+ ,'J2-)a, ,

z(p) —
~

a =a+y, b, =(+3/2)a/&y, a =(2@o/&38)'i is the
averaged parameter of the vortex lattice. In the region
ye& 1 one can neglect the change with 8, of the lattice
parameters a and b, .

Substituting Eqs. (A2) into Eq. (Al) we obtain a useful
intermediate result:

[(1+A,,k )/(1+A, k )]8 +sin (k„L/2)/(k„L/2)F(8)= L g 3 exp[ik R,' '+i(k L+dk, )n]
" +F„i .

8~ 1+g2k 2+g2k2

(A3)

Using the identity g. exp(ik R'. ') =(8/4&o) g& 5(k —Q), where Q are the reciprocal-lattice vectors

3
2

m2go/&y,

g.=(~ i+ ,'m2—)gov'r

go =2'(28/&3@o)'i, and performing integration over k„, we finally obtain the following expression for lattice energy
in the range 8 & 4 p/AA, &0 & 1:

F(B)=FJ(B )+5F(B) . (A4)

g 2 B
F~(8)= 1+ g + GnJ

qwo )'[ (Q)]
(A5)

is the energy of the lattice of the Josephson vortices, the kink contribution to the energy, 5F(B)=F(8,8, ) —F(8„,0),
is given by Eq. (4).

APPENDIX 8: NUMERICAL CONSTANTS FOR VORTICES IN LAYERED SUPERCONDUCTORS

1. Energy of a Josephson vortex

22' 1+
2 1 —cos P+, —P„—

@o (yd)'

The energy of a Josephson vortex in the layered superconductor is determined by the minimum of the functional

d@p dP„ 2nd g2
, y fdy. — .+f fdydzn(4nk ) „2 dy 4p 8~

(81)

with respect to the phases P„(y) and the vector potential
A(y, z) under the conditions

0 at y~~,
„y (82)

with logarithmic accuracy the energy of the Josephson
vortex is given by'

g)2
[1n(A, /d)+CJ ] .

(4+A. ) y
(83)

Here we give the estimate for the numerical constant Cz.
The same problem has been considered in a recent paper
of Clem, Coffey, and Hao. ' However, we find that the
trial phase distribution used in this paper yielding
Cz =1.12 is not sufficiently accurate. Below we represent
a variational solution that gives a better approximation to
the exact phase distribution and give the corrected value
of CJ.

(85)

r=y fdy—1 dP„

A,
2

+ fd'-b' .
2d2

2

—a +1—cos(P„+,—P„—a, )

(86)

After introducing dimensionless variables

y =y/(yd),
z =z/d,
a =2mydA~/Np,

a, =2nd', /@p,

the energy can be represented as

(p2
E

m(4m', ) y
with
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To estimate the constant CJ in Eq. (B3) we use the
method of the intermediate scale. We chose the dimen-
sionless distance ro within interval 1 «ro «A, /d and the
energy e is represented as a sum of contributions from
the regions r ) r0 and r &r0, e=z, +ez. In the region
r ) r0 both nonlinearity and discreteness can be neglected
because they give an error of order d/r0. The contribu-
tion to 8 from this region is the same as for Abrikosov
vortices' and is estimated as and

ai =0.350,

a2 =0.615,

bi =8.806,

b2 =1.420,

b, = —2.775,

ei =vrKO(droll) =m[ln(A Idro)+0. 116] . (B7) C2=1.43 . (B13)

On the other hand, in the region r &ro, screening (i.e.,
the vector potential a) can be neglected. This gives a
mistake of the order of (ro/A, ) . Contribution to the en-

ergy from this region is given by

r2 =77[in( rQ ) + C2 ]

Hence,

CJ=C2+0. 116 .

(B8)

(B9)

d2y(J)
+sin(tI)'„+, —P'„')+sin(P'„', —P'„')=0 (B10)

under the conditions analogous to (B2). Because of sym-
metry properties of the solution it is enough to find P„(y )

in the region n ~ 1, y ~0. The constant C2 is determined
by the minimum value of the functional C [P„(y )],

An estimate of the constant Cz is the most difficult
part of the problem because it is determined by the phase
distribution P'„'(y) in the nonlinear core of the vortex.
The latter is given by the solution of the set of nonlinear
di6'erential equations

B5$„
Bt

a'5y
+ + sin(P'„'+, P'„'+5/—„+,—5P„)

By By

+sin(P'„"', P'„'+ 5P—„,—5P„) (B14)

within the interval 1 ~ n ~ 6, y & 5. The correction
5$„(y ) is obtained as a limit of the solution of Eq. (B14)
at large t. The obtained deviation 5$„(y) never exceeds
1.5X10 . This confirms that expression (B12) gives a
good approximation to the exact solution. The obtained
phase distributions P'„'(y ) are plotted in Fig. 8 together
with their variational approximations. The correction to
Cz induced by 5$„(y ) occurs to be only in the fourth
significant digit.

Expression (B12) gives a better approximation to the ex-
act phase distribution than the one used in Ref. 16. This
can be checked by direct substitution of both expressions
into Eq. (B10).

On the second step the difference 5$„(y ) between the
exact solution P„' ~(y) and the variational approximation
P'„'(y ), 5$„(y ) =P'„'(y ) —P'„"'(y ), was found by numerical
solution of the relaxation equation:

C[$„(y)]=—g j dy — +1
7T „ i 0 2

1.5

—cos(P„+,—P„)

——[1—cos(P, —Po) ]
—1n(%),2

[~2 (
] )2]1/2

(Bl 1)

under the conditions P„(0)=sr/2, Po(y)= —P, (y). ~e
chose the scale r0 to be equal to the integer number X.
We find the phase distribution in two steps. First, we find
the approximation for P„(y) using the variational ap-
proach. As a variational ansatz we use the expansion in
the solutions of the two-dimensional Laplace equation
cut at small distances:

0,5

I i i & i I i i I i I

a, s;n(2g) b, sin(28)[cos(20)+b3]
—2+a 2 2 (p 2+b2 )2

'„'(y ) =0+ + 0.0 1.0 2.0 3.0 4-.0 5.0 6.0 7.0 8.0

(B12)

with 9=tan '[(n —
—,')/y], r =+(n —1/2) +y . Nu-

merical minimization of C [P„(y ) ] for X= 15 with
respect to the five constants a, 2, b, z 3 gives

FIG. 8. Phase distributions in the core of a Josephson vortex
for the four first layers. Dashed lines represent the variational
solution given by Eq. (B12). Solid lines represent the exact
phase distribution obtained by the numerical solution of Eq.
(B1O).
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7
/0

LINES OI: CONSTANT PHASE

FIG. 9. Kink on the Josephson vortex.

0.0
0.0

(p2
E'=

(4m A, ) y
ln

d
+1.55 (B15)

Finally, using Eqs. (B5), (B7), (B8), (B9), and (B13) we
obtain for the energy for the Josephson vortex FIG. 10. Lines of the constant phase in the central layer of a

kink: the x and y axes correspond to PoI"'=rr/2 and 0, respec-
tively. The lines of the current are directed perpendicular to
these lines.

ce,
8~22y d

(B16)

Numerically calculated solution gives

(dP', '/dy )(y =0)= 1.105

and the maximum current can be represented as

The constant CJ=1.55 should be compared with the
value 1.12 given in the Ref. 16.

Using the exact phase distribution we can also estimate
other parameters characterizing the properties of the
Josephson vortex. The maximum supercurrent, Aowing
in the superconducting planes, j,„,is estimated as

2. Energy of a kink

The kink separates two parts of a Josephson vortex
shifted in the z direction by one interlayer spacing (see
Fig. 9). We consider the kink located at the point r~=0
of the plane n=0. It means that the phase distribution
for the kinked vortex P'„"'(r~) has the following asymptot-
1cs:

P'„+',(y) at x ))yd,
P'„'(y) at x « —yd .

(B19)

Here P'„'(y) is the phase distribution for a Josephson vor-
tex found in the previous section. On the other hand, at
small distances in the plane n=0 the phase distribution is
essentially the same as for an Abrikosov vortex

j,„=2.87 j, ,
yd '' (B17) Po"'(rt) =tan '(x/y) at x «yd . (B20)

r,„=0.826yd

from the position of the core.

(B18)

here j,=c@o/12&3rr A, g is the depairing current. '

Maximum Josephson current between the central lay-
ers of the vortex Rows at the distance

The kink energy is determined by distances r —yd and
planes with

I nI —l. On the other hand, screening of the
supercurrent becomes important at distances r -yi, and
n -I,/d. It means that the contribution to the energy
caused by perturbations of the vector potential can be
neglected. Hence, the energy is given by the minimum
value of the functional Ek [P„(rt)],

d@o
d I'g

(4 g)& ~~x~ (l.
f )cpg

2

+ [1—cos(P„+,—P„)] 2LeJ—1

pd
(B21)

under conditions (B19). The constant co in the cutting distance at small scales should be the same as for the Abrikosov
vortex. The latter can be estimated from the energy of an Abrikosov vortex' '



1190 A. E. KOSHELEV 48

(822)

This estimate gives co =0.68.
The main contribution to the energy of the kink comes from the kinetic energy of supercurrents Aowing in the plane

n =0 in the region g « r « yd. With logarithmic accuracy the energy of the kink is given by '

d C'o ydek=
~

ln +Ck (823)
(4m.A, )

Here we give the estimate for the numerical constant Ck.
After introducing dimensionless variables (84) and x =x/(yd), the constant Ck can be determined as a minimum

value of the functional C [P„(rt ) ],

1 d(t „
C [P„(rt)]=—g J de — + 1 —cos(P„+&

—P„) —2L EJ —ln(co/r;„)
7T x (L

n
r&r min

with r;„«1. The phase distribution P„(ri ) which gives the minimum to this functional obeys the set of nonlinear
equations

(824)

gy( )+si (ny(k) y(k))+sin(y(k) y(k)) ()

In the region x,y ))1, Eq. (825) reduces to a 3D Laplace equation and the asymptotics of P(„'(F~) in this region can be
found exactly:

(826)

r = t/x +y +n

To find the phase distribution we use the same scheme as for the Josephson vortex. First, we find a rude approximation
for P(„")(i'~) with use of the variational approach. As a variational ansatz we use the function (t '„""'(F~),

y(»~)(g )
—y(J) (y)+ i [y(J) (y) y(&)(y)]

r j+(n+b)

1 AI"(y )
—

( o"(y ) 2aPo(""'(Ft)=(()' )(y )+— tan '(y /x )+y
2 a +y 7T

at nXO,

—1

Qr +b

(827)

Substitution of (827) into Eq. (824) and numerical
minimization with respect to the variational parameters a
and b gives

a =0.057, b =0.10,
and

C'""'=—0 10k

I

the relaxation method (see previous section) using the
variational solution (827) as the initial approximation.
The numerical solution was performed within the interval
0&x, y&3, —2&n &2. To visualize the solution we
present in Fig. 10 the lines of the constant phase for the
central plane n=O, Po"'(x,y)=const. Numerical integra-
tion of (824) with the obtained solution gives

On the second stage we solve numerically Eq. (825) by Ck = —0. 17 . (828)
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