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The variable-range-hopping (VRH) resistance of n- and p-type neutron-transmutation-doped (NTD)
Ge was measured at temperatures down to 30 mK and in magnetic fields up to 7 T. It is shown that the
temperature dependence of the VRH resistance can be reduced to a universal curve for all samples and
fields, from which one can determine the density of states (DOS) near the Fermi level. Temperature-
dependent measurements show that VRH conductivity at low energies is in agreement with the existence
of a soft Coulomb gap at the Fermi level. The tendency to a constant DOS at higher energies is shown:
the so-called crossover phenomenon in VRH conductivity which reduces the effect of the Coulomb gap
at higher magnetic fields and temperatures is discussed.

INTRODUCTION
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where x is the dielectric constant, e is the electronic
charge, C2=2. 8, and

go=3/vr(e /~) (4)

There are many observations of VRH resistivity in both
of these regimes: p =

—,
' and —,'. Recently attention has

focused on crossover phenomenon and the transition
from the first to the second regime with increasing tem-
perature (see, for example, Ref. 3 and references therein).
The Coulomb interaction can perturb the DOS only near
the Fermi energy. Far from the Fermi level

It is well established' that the resistance of an Ander-
son insulator at low temperatures follows Mott's law for
variable range hopping (VRH):

R =Roexp[(To/T) ],
where To and the exponent p depend on the density of
states (DOS) g(E) close to the Fermi energy E~. For a
constant or slowly varying DOS, g (E)=g (EF), we have

p =—,', To:—T, &4
=C, [g (E~)a ]

where a is the localization radius of the electron wave
function and C& =21.

Taking into account the Coulomb interaction between
localized carriers, a parabolic "soft" gap appears at the
Fermi energy: g(E~)=0; g(E)=go(E EJ;) =goE . I—n
this case we have the Efros-Shklovskii law'

(~E E~~ =
~E~

—&&E~) the DOS returns to its unperturbed
value, which is approximately equal to g (EF). Hence, the
half-width b, of the Coulomb gap (CG) can be determined
from the equality

At low temperatures (T «b, ) the "T '~ law, "Eq. (3),
must be observed. In the opposite limit (T »b, ) p must
be equal to —,'. The transition between these two regimes
as the temperature or magnetic field is varied is the so-
called crossover phenomenon. In Ref. 3 the crossover
phenomenon was studied in n-type germanium in strong
magnetic fields. In this paper we show that one can
determine the shape of the DOS in n- and p-type Ge from
measurements of the resistance and magnetoresistance in
the VRH regime.

EXPERIMENTAL RESULTS

Four samples of crystalline Ge were doped by the
neutron-transmutation-doping (NTD) technique, which
allows one to control the concentration of impurities and
the degree of compensation with high accuracy. In the
NTD method three of the five stable isotopes of Ge:

Ge, Ge, and Ge are transmuted by nuclear reactions
with thermal neutrons into the impurity atoms 'Ga
(shallow acceptor), As (shallow donor), and Se (deep
donor). The concentration of impurities in the NTD
method is proportional to the thermal-neutron dose or
time of irradiation in the case of a constant neutron Aux.
The degree of compensation K is determined by the
thermal-neutron cross section and the abundance of the
isotopes which transform into dopant impurities. For
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TABLE I. Isotopic composition of Ge samples.

Isotope
Natural Ge (%%uo)

Ge-2(%%uo)

70
20.5

1.7

72
27.4
2.4

73
7.7
1.0

74
36.9
93.9

76
7.7
1.0

isotopically natural Ge the NTD technique leads to the
creation of p-type Ge with K between 30% and 40%.
This variation is due to the different dependences of the
cross sections on neutron energy and hence E depends on
the specific neutron energy spectrum used for irradiation.
In order to obtain n-type Ge with small E a specially
grown crystal, Ge-1, was previously used, enriched to
98% of the isotope Ge. In this present work another
crystal, Ge-2, was used, enriched to 93.9% of Ge. The
isotopic compositions of natural Ge and of the Ge-2 crys-
tal are shown in Table I.

As a result of the NTD of Ge-2 a series of three n-
Ge(As) samples (numbers 6, 350, and 8) were obtained
with small EC. This compensation is connected with the
existence of the small amount of the isotope Ge (1.7%),
which transforms into gallium acceptor atoms. Accord-
ing to Ref. 6 the cross sections for Ge and Ge are 3.25
and 0.52 b. For thermal neutrons this would give
K =11% for samples made from Ge-2. However, we es-
timate a slightly smaller compensation, K =9%, because
of corrections based on the actual energy spectrum in the
nuclear reactor used. After irradiation the samples were

annealed at 420'C for 24 h at 10 Torr. This relatively
low annealing temperature protects against the diffusion
of Cu and other rapidly diffusing impurities. Ohmic con-
tacts to the n-Ge were prepared by alloying with In+2%
As at 300 C in a vacuum of 10 Torr for 5 min. Sample
H19 was processed and supplied by Professor E. E. Hail-
er. It was prepared by the neutron irradiation of isotropi-
cally natural Ge using ultrapure starting material (with
residual donor and acceptor concentrations, N~,
N~ (10" cm ). Electrical contacts to the p-Ge were
made by implanting with B+ ions to a depth of 200 nm.
The Aux of B+ was about 3 X 10' cm, enough to cause
the implanted layers to become metallic. After the boron
implantation, a layer of Pd about 20 nm thick was sput-
tered, followed by a Au 61m 400 nm thick. Finally the
implanted layer was activated by annealing at 250 'C for
1 h. The Ohmic behavior of the contacts was checked at
low temperatures.

The samples were mounted carefully to minimize
stresses and strains. The natural Ge sample was in the
form of a rectangular plate, 3 X 3 X0.3 mm. The plate
was mounted horizontally in a slit copper rod on a thin
sheet of paper with GE varnish to provide electrical iso-
lation on a mechanically weak substrate. The plate
overhung the edge of the slit so that 20-pm gold leads
could be bonded to the gold plating on the top and bot-
tom faces. The enriched Ge samples were in bar form
(typically 1 X 1 X9 mm) and were held on a pure silicon
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FIG. 1. The resistance of
samples 350 (a), 6 (b), 8 (c), and
H19 (d) in the VRH regime in
zero magnetic field (6) and in
magnetic fields of 1 (V), 3 ( ), 5

(0), and 7 (o) T. The solid lines
show the fit to the T ' law in
the low-temperature, zero-field
limit. The dashed lines show the
center of the crossover region at
T, as discussed in the text.
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substrate with GE varnish and paper over part of the
lower face or free mounted with the leads acting as sup-
port. The samples were thermally anchored via the leads
to copper strips anchored in turn to a copper rod screwed
into the mixing chamber of a dilution refrigerator.

The resistance was measured by the four-probe method
using both ac and dc techniques. For samples 6 and 350
a constant current source was used with Keithley 195 and
199 multimeters and an AVS-45 AS (25 Hz) resistance
bridge. For samples 8 and H19, the electrical system was
improved by using twisted pairs for the cryostat leads
and a Keithley 236 voltage-current source-measure unit.
As a result, resistances ) 10 Q could be measured in
high magnetic fields.

Figures 1(a), 1(b), 1(c), and 1(d) show the temperature
dependence of the resistance of all four samples in zero
field and in magnetic fields of 1, 3, 5, and 7 T. One can
see a large positive magnetoresistance. At first sight all
the data are in reasonable agreement with a "T ' law, "
Eq. (3). From this approach the magnetic field increases
T, &2 while the factor Ro in Eq. (1) remains approximately
constant. However, further analysis showed that the ex-
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FIG. 3. Dependence of the parameter Bo on T for sample 8.

The solid shows the T' dependence.

R(B) B
R (0) Bo

(6)

ponent p in Eq. (1) shifts to lower values, particularly at
higher temperatures, with increasing B. For samples 6
and 350 p shifted from —,

' to almost —,', while for sample 8
the change is smaller. For sample H19 p remains close to
—,
' even at strong fields, as also observed by Schoepe for a
Ge therrnoresistor. We shall see below that the "T
law" is only strictly valid in the low-temperature limit in
zero magnetic field.

In weak magnetic fields the magnetoresistance (MR) of
all the samples studied is closely proportional to
exp((B/Bo) ) or

0.0

0.3

a(T)

Sample 8

as shown in Fig. 2(a) for sample 8 and in Fig. 2(b) for
sample H19 at several temperatures. The temperature
dependence of the parameter Bo is shown in Fig. 3 for
sample 8. This dependence can be described as Bo —T
where m =1.5 in the low-temperature limit as shown by
the solid line in the figure. In intermediate and strong
magnetic fields the power in Eq. (6) decreases continuous-
ly from 2 to 1 or lower, as discussed below (see Fig. 4).|
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FIG. 2. (a) Magnetoresistance in weak magnetic fields for

sample 8 at different temperatures: 1.037 K (o), 0.720 K {Q'),
0.500 K ( ), 0.320 K (V), and 0.101 K (E). (b) Magnetoresis-
tance in weak magnetic fields for sample H19 at different tem-
peratures: 1.00 K (o), 0.700 K (Q), 0.500 K ( ), 0.250 K {'7),
and 0.120 K (A).
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FIG. 4. Magnetoresistance of sample 8 as a function of mag-
netic field at different temperatures: 1.037 K (o), 0.720 K (0),
0.500 K ( ), 0.320 K (V), and 0.101 K (E). The solid line shows
ln(R ) ~ B and the dashed line shows ln(R) ~ B .
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DISCUSSION

It has been shown in Refs. 9 and 10 that measurements
of the VRH resistivity in the CG regime, Eq. (3), com-
bined with the magnetoresistance in weak fields allow one
to determine many important parameters concerning the
structure of the electronic wave function and the DOS
near E~, such as the localization radius a, the dielectric
constant K, and gp. First the low-temperature limit of the
zero-field data is fitted to the "T ' law" to obtain
values of T, iz and Rp as shown in Table II. The geome-
trical factor L used to convert resistance R to resistivity
p=LR was 0.03 m for the disk-shaped H19 sample and
(2+0.5) X 10 m for sainples 6, 350, and 8.

The localization radius a can be extracted from the
slope of 8p vs T in the low temperature, or Coulomb
gap, limit:

C g2 '3/2
2=Bo=

2 4e a

where the numerical factor C3 =660 (Ref. 1) or 288 (Ref.
8), depending on the theoretical assumptions used. A
knowledge of T, i2 in zero field and a then allows one to
determine a from Eq. (3) and go from Eq. (4), as shown in
Table II.

Near the metal-insulator transition (MIT) these values
of a and K are much larger than the Bohr radius for an in-
dividual shallow impurity center ap and the static dielec-
tric constant Kp in undoped Ge because of the nearness to
the transition

a =ao[1 (N/N, )] ', —a.=ro[1 (N/N, )] &,—(8)

where X, is the critical concentration of the MIT, and v
and g are critical indices. Assuming that so=16 for Ge
one can determine the scaling factor z =a/ao. According
to scaling theory" ' and experimental observation'
g/v=2 and consequently we have ao=a/z'i which en-
ables the efFective Bohr radius ao to be determined for
our samples, without explicit knowledge of X or N, . The
results of this analysis are presented in Table II. We used
C3 288 as the more reliable value for weak and inter-
mediate magnetic fields (if C3 =660 is used the values of
a and ao would be increased by 23%). For the enriched
Ge samples, the values of N were in the range from 2.7 to
3.2 X 10' cm while N, =(3.4+0.2) X 10' cm has
been estimated previously. '

It is interesting to note that for all three samples with
As as the majority impurity the values of the Bohr radius

I(E, )= I g(s)«=2 J g(E)dE .
C

(9)

On the other hand, r(T)=a/, /2 (Ref. 1), and the
average hopping volume around each site is

3

V(g, )= (10)

The number of sites within N(g', ), which is the critical
one for the formation of a percolation path, is given by

n, =I(E, ) V(g, ),
where n, has the value 7.66 from percolation theory. '

For a constant DOS at the Fermi level I(E, ) is a linear

ao obtained by this analysis are the same. It was a
surprise that ao for the acceptor impurity Ga (sample
H19) was smaller, only 4.0 nm, because for lightly doped
Ge(Ga)ao=9. 0 nm. ' This can be explained as follows.
According to Ref. 14, the value of a in the tail of the
wave function 4(r) in p-Ge is determined by light holes.
The exact wave function of holes localized on shallow ac-
ceptors in Ge is not known but, at high acceptor concen-
trations, the overlap integral has a maximum closer to
the central part of the wave function, where the effective
mass of heavy holes determines the value of a (the con-
centration of heavy holes is 97% of the total concentra-
tion; in the limit a =3 nm). It is interesting that the
value of ap=4. 0 nm was found by Schoepe for a Ge
sample with unknown doping, which suggests that that
sample was also p-type (though Schoepe suggested As
doping as the most likely). The absolute values of the
above parameters depend on the numerical constants C2
and C3. However, the correlation between the values for
different samples are good and support the theoretical
calculations.

Let us turn to the determination of the DOS, based on
the analysis presented by Schoepe. In contrast with
nearest-neighbor hopping conductivity the VRH mecha-
nism involves only some of the localized states around
the Fermi level, the so-called "optimal band. " The lower
the T is, the narrower is this "optimal band" whose half-
width E, is given by E, —T' ~=Tg, (Ref. 1) where

g, =(To/TP is the critical percolation parameter. The
value of g, (T)=ln[R (T)/Ro] can be obtained from the
experimental data. The mean hopping distance
r(T)=[I(E, )] ' where I(E, ) is the integrated density
of localized states:

TABLE II. VRH parameters for Ge samples.

Sample Ro (Q) T&/2 (K) a (nm) K Qo (nm) go (cm K ) 5 (K) g(E~) (cm K ')

350

H19

1.5

0.6

1.4

0.03

6.9

9.5

12.1

15.7

26.6 254

24.0 205

21.9 176

14.4 206

6.7

6.7

6.6

4.0

3.5 X 10'

1.8 X 10'

1.2 X 10'

1.9 X 10'

1.7

2.0

2.6

4.0

10X 10'

7X 10'

8X 10"

30X 10'
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function of E, :

I(E, )=2g(E~)E, . (12)

In the opposite case, within the CG, g(E)=gpss which
leads to a cubic dependence:

I(E, )=—,'g()E, . (13)

I (E, ) =2gc b, I (E, /6 ) —arctan(E, /b, ) J,
which in the two limits gives

I(E, )=-,'g, E,', E, «6,
I(E, )=2g()b, I(E, /b, ) —(vr/2)I, E, »5 .

(15)

(16)

(17)

One can see that Eq. (16) is equal to Eq. (13) and also
Eq. (17) is equal to Eq. (12) minus a term mg~h because
of the existence of the CG at the Fermi energy. The gen-
eral expression Eq. (15) demonstrates an extended cross-
over phenomenon: a smooth transition from a cubic to a
linear dependence of I(E, ). [Other expressions for g(s)
could be selected; Eq. (14) is essentially an interpolation
formula between the constant DOS and CG regimes. ] In
Ref. 3 the crossover phenomenon was characterized by a
critical temperature T, determined from the equality of
the "optimal band" width 2E, and the width of the
Coulomb gap 25: b, =E,(T, )=T,(,. From this condi-
tion the CG regime must be observed at T (T, and the
regime of constant DOS at T & T, (note that T, will, in
general, be field dependent). It is clear, however, that the
crossover is a continuous process, depending on the
sharpness of the transition from a CG to a constant DOS
and therefore the value of T, corresponds approximately
to the rniddle point of this phenomenon. If the half-
width 4 of the Coulomb gap is known, then a simple
graphic method can be used for the determination of T,
and to demonstrate its field dependence due to magne-
toresistance. Let us introduce a critical resistance
R, =R (T, ) at a given temperature T, . Since
g, ( T, ) =ln(R, /R&&) we obtain R, =R~exp(b /T, ).
Hence a plot of R, versus T, is a parabola on a graph of
lnR or log, + versus T '~, as shown as a dashed line in
Figs. 1(a)—1(d) for each sample, using values of b, ob-
tained as described below. The crossing points of this pa-
rabola with the experimental data for R (B,T) indicate
the values of T, and R, for each magnetic field. Data
which lie above this line are in the constant DOS regime
while data below the line are in the CG regime. It can be
seen that the crossover temperature effectively decreases
with field as g, increases due to magnetoresistance, as dis-

The general form of the DOS must have two limits, de-
pending on the relation between the energy of the "op-
timal gap" 2E, and the width of the CG, 2A: for
E, «b„g(c)-.c, , and if E, »b„g(e)=g(E~). Let us
assume an expression of the form

2
gpEg(s)= (14)

1+(s/b, )

where b, is determined from Eq. (5). Substituting Eq. (14)
into Eq. (9) one obtains

cussed in Ref. 3. An extended crossover effect was also
suggested in Ref. 15.

In order to obtain I(E, ) from the experimental data of
R(T) in zero field we proceed as follows. The low-
temperature limit of the data is fitted to the Coulomb gap"T ' law" to obtain TI&z and Rp as in Table II. Hence
we can find g, (T) =ln[R (T)/Rz] at any temperature T.
The integrated density of states I (E, ) is then given by

on,
I(E, ) = a' (g, (T))' '

2Ep
V(g, ) =8m

Pl CO

3/2

F (philo/4E() ), (19)

where Ep=A /2ma is the binding energy of a localized
site, co =eB /m is the cyclotron frequency, and

where a is given in Table II. This expression is valid
within this model at all temperatures, not just in the low-
temperature limit. The energy scale is given by
E, = Tg, ( T) and hence we can now plot I (E, ) versus E,
near the Fermi level. Finally we can then compare the
experimentally derived I(E, ) with a theoretical expres-
sion such as Eq. (15) to obtain the only adjustable param-
eter, the width 6 of the Coulomb gap, as shown in Table
II. Note that 6 is not used in the analysis to obtain
I(E, ); it is a parameter to quantify the width of the
Coulomb gap and the density of states. A knowledge of
b, also allows one to calculate g(E~). Note that the
values of g(E~) are fairly similar for the three samples
processed from the Ge-2 boule, as might be expected
since the carrier concentration varies only slightly be-
tween them. Let us estimate g(E~) from other con-
siderations. If we assume that all impurities with a con-
centration X are distributed randomly and uniformly
within an energy interval 8, where 8'is the width of the
impurity band, then g (Ez) =X/W. In our case, close to
the MIT, the value of 8'is comparable with c„the ener-

gy of ionization of localized electrons to the bottom of
the conduction band. Near the MIT in Ge, the value of
cl is SX10 eV. ' Since 1V=3X10' crn, this gives
g(E~)=6X10' cm eV ' or 5X10' cm K ' which
is close to the values in Table I. The errors in the esti-
mates of g(E~) are about 10%%uo and the difference be-
tween the three n-Ge samples is probably not significant,
given that the carrier concentration is similar and close
to the metal-insulator transition. For sample H19 (p-Ge)
the value of g(E~) is distinctly higher; for intermediate

compensation close to 0.5 the energy distribution of im-
purities increases outside the Coulomb gap. '

The method described above was used also for data in
nonzero magnetic field, using g, (B,T) =ln[R (B,T)/Rr, ].
However, we have now to take into account that in
strong magnetic fields the electron wave function %(r)
changes its shape from a sphere to a double paraboloid,
as studied by Ioselevich. ' He showed that the critical
volume around each site V(g, ), which in zero field is
given by Eq. (10), should be changed in a magnetic field
to
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we obtain Eq. (19) in a form which is more convenient to
compare with Eq. (10):

'3

V(g, )= X(3/*8') .
3 2

(22)

From a comparison of Eqs. (10) and (22) it follows that
the deviation from the spherical shape of the wave func-
tion can be taken into account by using the function
X(s), which is plotted in Fig. 5. According to Eq. (11),
I(E, )-1/V(g, ), therefore in a magnetic field we obtain
I (E, ) from the experimental data using

FICz. 5. The function X(s).
6n,

g3 (g, (B,T)) X(3$'*8 )
(23)

F(s)= f [tanh(x/2)(sinhx +x —2s)+(s —x)x]
gs)

(sinhx +x —2s)'~ x sinhx

(sinhx —x)

where r(s) is the solution of

sinIUc +~—2s =0 .

(20)

X(s)=6I' (s)/s (21)

Following Schoepe, ' Eq. (19) can be rewritten using the
reduced variables g' =g, (8, T) /g, (0, T) and 8 =8 /8„
where 8,=6A'/ea g, (O, T). By introducing a new func-
tion X(s),

where, as before, the energy scale is given by
E, =Tg, (B,T). Note that large values of E, correspond
to high temperatures and magnetic fields and it is this re-
gime, rather than the low-temperature limit, which must
be investigated for evidence of crossover phenomena.
The results of this procedure are shown in Figs. 6(a)—6(d)
where the integrated density of states is normalized as
I'(E, )=I(E, )/2goh and is plotted against E, /6=x.
With this normalization procedure the integrated density
of states for a pure Coulomb gap is given by
I*(E,)=x /3 while with a finite gap, half-width 6, this
becomes I*(E,) = [x —arctan(x) ] from Eq. (15). By plot-
ting the integrated density of states normalized in this
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FICx. 6. The normalized in-

tegrated density of states I (E,)

for samples 350 (a), 6 (b), 8 (c),
and H19 (d), plotted versus
E, /4. The symbols correspond
to zero magnetic Geld (4) and
fields of 1 ('7), 3 ( ), 5 (0), »d 7
(o) T. The solid line shows Eq.
(15), the dashed line Eq. (16),
and the dot-dashed line Eq. (17).
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350
6
8
H19

5 T
a (B)/a (0)

0.93
0.95
0.95
0.96

7 T
a (B)/a (0)

0.88
0.91
0.91
0.92

TABLE III. a (B)/a (0) for Ge samples at 5 and 7 T. the DOS is close to the parabolic CG is more extended.
These ideas can be used to explain why the exponent p in
the resistivity, Eq. (1), remains close to 0.5 at all magnetic
fields.

Finally we would like to comment on the field depen-
dence of the magnetoresistance as expressed in the ex-
ponent q in the expression

way it is possible to describe the VRH conductivity in all
magnetic fields and for all samples by a universal curve
I*(E,).

In order to fit the experimental data at the highest
magnetic fields (5 and 7 T) we had to slightly reduce the
values of a (8) as shown in Table III, while keeping Ro
and 5 constant. This effect could be explained as a result
of the shrinkage of the electronic wave function in strong
magnetic fields. Decreasing a means that the magnetic
field moves the sample further from the MIT and there-
fore the values of ~ are also changed according to the
scaling relation a(8)/a(0)=[a(8)/a(0)] . Hence go is
decreased as follows from Eq. (4) and this is allowed for
in the normalization. The variation of a(8) is in good
agreement with that proposed by Schoepe. A final point
here is that 5 may also scale as some power of a (8) and
hence depend on the magnetic field. We have tried using
various empirical scaling relations of the form
&(8)/b(0) = [a (0)/a (8)]' in the data analysis. For
z &0 good fits to the universal function can also be ob-
tained but only by introducing a slightly increasing and
field-dependent Ro(8).

One can see also from Fig. 6 that the stronger the mag-
netic field the further from the CG regime are the experi-
rnental points. This is in agreement with the conclusion
in Ref. 3 that strong magnetic fields reduce the
effectiveness of the Coulomb gap. However the devia-
tions from the CG regime depend on the values of 6 as
can be seen by comparing samples 6 and H19. A
knowledge of go and 6 allows us to calculate the DOS
around the Fermi energy. The DOS for all samples are
shown in Fig. 7. One can see that for sample H19 with a
large CG and large g (EF) the interval of energies where

10

8
I

CO

4

ln
R(8) 8
R (0) 80

(24)

At low fields q =2, as shown in Figs. 2(a) and 2(b). In
the high-field limit, q should ultimately decrease to a
value of —,

' for a constant density of states or —,
' for a

Coulomb gap. ' According to the sub-barrier scattering
model, proposed by Shklovskii, ' T»2=B' in strong
fields. One can see that all theoretical models predict
values of q less than unity. Nevertheless, experiment
shows that q= 1 in high fields (Fig. 4). The reason for
this is not yet clear but the field dependence of a (8) gives
increased rnagnetoresistance and hence increases q as
defined in Eq. (24).

In Ref. 20 an interpretation of the nonlinear behavior
of lnR versus T ' in NTD Ge was suggested in terms
of the possible influence of spin-spin interactions which
would lead to a T ' law in the low-temperature limit as
observed in irradiated polymer films and amorphous al-
loys. It is now clear that the low-temperature limit in
NTD Ge (at least down to 30 mK) is determined by the
Coulomb gap at the Fermi level and deviations from the
T ' law with increasing temperature are due to the
crossover to a constant DOS. Very similar data to that
reported here have recently been published by Dai,
Zhang, and Sarachik ' in Si:8, showing all the features of
a crossover from a constant DOS to the CG regime,
though in the low-temperature limit they observed an ac-
tivated conductivity with lnp ~ 1/T. An alternative
analysis following the procedure described here is given
in Ref. 22.

In conclusion we wish to discuss the previous observa-
tions of the crossover phenomenon in VRH conductivity
which were claimed in a number of publications (see Ref.
10 in Ref. 3). In some of these works deviations from a
straight line lnR vs T '~ to lower resistance values (i.e.,
below the straight line) with increasing temperature have
been observed. In our opinion, deviations to higher resis-
tance (i.e., above the straight line) must be observed, be-
cause the DOS in the crossover regime is less than for the
"pure" parabolic gap (see Fig. 7). Just such deviations
were observed and discussed in the present work.
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