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In this paper a mechanism for the generation of a squeezed state of light is theoretically presented.
Due to coupling with excitons and via exciton-exciton interaction, a light beam propagating within a
finite-size semiconductor sample is shown to evolve into a squeezed state. Based on an effective bosonic
Hamiltonian, which is obtained from the original fermionic one, a detailed derivation of the photon
quadrature variances is presented and dependences of the photon squeezing on both the extrinsic and in-

trinsic parameters are analyzed.

1. INTRODUCTION

Heisenberg uncertainty relations prevent the simul-
taneous exact measurements of any two physical quanti-
ties, whose operators do not commute, such as momen-
tum and coordinate, field phase and particle number, two
quadratures of a field, etc. There exist different states in
which physical quantities are observed with errors. In
chaotic states the product of squared errors of any pair of
such quantities is always greater than L. The coherent
state proposed by Schrodinger right after the birth of
quantum mechanics and developed in the early 1960s by
Glauber, Klauder, Sudarshan, and others (see, e.g., Ref.
1) is the state in which each of the two above-mentioned
quantities share an equal amount of noise so that their
squared error product reaches the shot-noise limit, . It
had been considered the “best” state until Stoler? suggest-
ed and mathematically formulated a “hypothetical” state
that would allow one to ‘“squeeze” the uncertainty
domain of either of the two above quantities to zero, or
more acceptably, to carry out precise measurements
beyond the shot-noise limit (see also Ref. 3). This impor-
tant state was later called the squeezed state.* However,
it took 15 years before it was observed experimentally.’~°
Because the squeezed state provides the potential capabil-
ity of circumventing the limitations set by quantum noise
in such applications as high-precision interferometry, op-
tical communication, ultrasensitive laser spectroscopy,
atomic spectroscopy, and gravitational wave detection,
its subject as a major theoretical, experimental, and prac-
tical activity in quantum optics has been firmly estab-
lished and studied with growing attention. Recently,
squeezed states have been extended to solitons,'®~!2 po-
laritons,!® phonons,'*!3 excitons,!® biexcitons,'” and so
on. Of particular interest has been the investigation of
squeezing in the elements of SU(1) and SU(2) alge-
bras.!®!! The subject is thus of importance not only in
quantum optics but also in quantum field theory, in
condensed-matter physics, and in other areas of physics.

From a theoretical point of view squeezed states result
from nonlinearities. The physical mechanisms of their
generation should therefore be sought in nonlinear in-
teractions. Since in a vacuum light-light coupling is ab-
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sent, squeezed states of light must be realized in a materi-
al medium where light may indirectly interact with light
via its interactions with the elementary excitations of the
medium. Schemes for such material media are two-level
or multilevel Jaynes-Cummings models and a variety of
nonlinear optical systems of different geometrical
configurations where light-squeezed states are produced
due to second!®*™%2 or higher23 harmonic generation,
four-wave mixing,?*~% parametric amplification,?>3%31
optical bistability*"3273* and collective resonance fluores-
cence.’* 37 Fabricated optical-fiber media’® can also
squeeze light via a Kerr-type nonlinearity.’*~*! In Ref.
42 a metal was used as such a medium, where initially
“linear” photons interacting with the electron plasma
may become ‘“‘nonlinear” and evolve into squeezed states.
The present paper addresses semiconductors, which ex-
hibit resonance-enhanced optical nonlinearities in the
spectral range close to the band gap. In this energetic
range the semiconductor exciton plays a key role in
bringing about a good deal of interesting and new phe-
nomena. Light propagating within a semiconductor can
resonantly be coupled with excitons to become polari-
tons.*> Because of their excitonic content, polaritons are
strongly coupled to each other inside the semiconductor.
Making use of the polariton picture, we evaluate the
quadrature variances of photons as functions of linear
(=< g) and nonlinear ( < f and /) light-matter interactions.
Also, externally tunable parameters, such as the initially
prepared state and the size of the semiconductor sample
as well as the frequency detuning between the exciting
light beam and the exciton, enter our formulas in a quite
compact fashion. This enables us to easily analyze the
optimal conditions for detecting squeezed photons behind
the semiconductor sample. We apply our analytic results
to real semiconductors with well specified characteristics
and perform necessary graphical illustrations which show
the possibility of generating photon squeezed states
through our exciton-induced mechanism. This squeezing
mechanism seems to be among candidates for semicon-
ductor operational devices.

Besides the introduction and conclusion sections, (Secs.
I and V), this paper consists of three more sections. In
Sec. II an effective bosonic Hamiltonian is obtained from
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the original fermionic one. Section III is devoted to the
photon quadrature variance evaluation. Section IV ana-
lyzes the dependence of the photon squeezing on the
relevant parameters. There is also an Appendix which
presents the detailed derivation of the main formula in
Sec. III.

The system of units used throughout this paper is that
with Zi=c =1 where # and c are, respectively, Planck’s
constant and the speed of light in vacuum.

__keq+k+h;_h;h

where o, €,, and g, are the photon, electron, and hole en-
ergies. For parabolic bands ¢,(k)=E, +k2/(2m,) and
ey (k)=k?/(2m,) with E, the band gap and m, (m,) the

effective mass of the electron (hole).
w(k)=—V2m(e/m)l,,[€w(k)V] /? with m (e) the

free-electron mass (charge), €, the static dielectric con-
stant, II_, the interband matrix element of the momen-
tum operator, and ¥V the volume of the sample.
U(k)=4me?/(ek?). ¢ (cT), e(e™), and h (h™) denote
second quantization operators of photons, electrons, and
holes, respectively. At not too high optical excitations
into the spectral range near but below the band edge the
final-state electron-hole Coulomb interaction is of impor-
tance which likely makes electrons and holes bound in
pairs called excitons. At finite density, excitons are not
ideal bosons because of the residual Coulomb interactions
among excitons as well as the effect due to the Pauli ex-
clusion principle acting between the constituent particles
belonging to different excitons. One of the possible ap-
proaches to the many-exciton system is to work out an
effective Hamiltonian in which excitons appear as ideal
bosons and at the same time the above-mentioned nonbo-
son characteristics must be accounted for properly. To
construct such a Hamiltonian we define one- and two-
exciton state vectors in terms of both bosonic excitons
and fermionic charged particles as below:

lex;vk)=aX]0)

Z—‘/l—; S euk—Bple_ph; [0) (2)
p

Heﬁ'=2

=

*22

pq vués

q—khq+k -
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I1. EFFECTIVE BOSONIC HAMILTONIAN

Consider for simplicity a two-band semiconductor with
direct band gap and allowed interband transition. If the
semiconductor is excited optically, there appear a num-
ber of conduction electrons which leave behind holes in
the valence band. Treating the light inside the semicon-
ductor as photons, the Hamiltonian of the resulting
photon-electron-hole system has the form:

2e;h;—hq—keq+k) N (1)

[
lex,ex ; vk, vk') =P, ,eahah.10),

(3)

_kavk

v E%(k Bp)e, (k' —pBp’)
Xe phyed _yhil0) .

In (2) and (3), a,, (a ) denotes the bosonic operator of an
exciton in a quantum state characterized by vk with
v=nlm, @, is the wave function describing the electron-
hole relative motion in the momentum space, B=m, /M
with M =m,+m;, and P, ,, =1+(1/V2—1)8,,8.
For the one- and two-photon states we have, as usual,

lv;k)=c/[0), 4)
lyv;k k') =Py.ciel 10) (5)

Py =1+(1/V2—1)8,, while the state containing one
exciton and one photon is

0)

lex,y;vk, k') =afcd
:_72 (k——Bp)e:_ph:czf o) . (6)
)

The effective Hamiltonian of (1), H 4, can now be formu-
lated through bosonic exciton operators @ and a * as

w(k)e ey + 3 [E (klajga,+g,(k)a ke tedan)

wige (K P> Q)@ 75840 @ q i T e (K P, ) 0 ig@ g Cq i+ Hec. ] M

The exciton energy E (k) and the effective interactions g, (k), f week,p,q), and 1,,.(k,p,q) are determined from a hy-
drogenlike equation (8) and matrix elements (9)—(11) of H between the corresponding fermionic initial and final states
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{ee[(1—B)p+q]+sh(ﬁp+q)}¢v(q)—%, ? Ulq—q)e/(q)=E,(plp,(q), ®)
g (k)={vk;ex|H|y;k) , )
fvuee(k,p,q)={vp,uq;ex,ex|H|ex,ex ;6p—k,5q+k) , (10)
1,6k, p,q)={vp,uq;ex,ex|Hlex,y;Ep—k,q+k) . (11)

The solution of (8) yields ¢,(q) in the form of hydrogenlike wave functions, and E,(k)=E, —Ry /v*+k?/(2M) for
v=12,3,..., and E (k)=E, +v%/(2m,,)+k?/(2M) for v being a continuous number Ry is the exciton Rydberg and
my,=m,my /M. Substltutmg (1) and the RHS of (2)-(6) into (9)—(11), we get

gﬁk):y%)‘.%(p), 12
P
6 .

foeep,@)=3 fle(k,p,q), 13)

i=1

where £V for i =1,2,3 depends only on k and describes the direct Coulomb interactions between the constituent parti-
cles belonging to different excitons, while f” for i =4,5,6 depends also on the difference Q=p—q and describes ex-
change interactions caused by the Pauli exclusion principle,

U(k)

[l (k)= ——Efpv <P;<k1> 2% 2 —BRPE(ky) (14)
[ (k)= y—‘k—zwkﬁk Bk)qaz(kl) zqo#(kz k+Bk)pi(k,) , (15)
7it0== 208 5 0.6~ gt ) 3 ks —k+BOPK) 16
1 k2
fv'ugé-(Q,k)——“— E U( k )‘Pv(k2 kff‘k*ﬁk)
kk
X @,(k, +BQ+BK)pt (k,—k; +BQ+K)pl(k,) , (17)
FReQI=——> 3 Ulk)p,(k,—k;—Bk)
V l(lkZ
X @,(k;—k—Q+BQ+Bk)p(k,—k; —Q+BQ+k)g} (k) , (18)
F&(Qk)=—" 3 Ulk,)p,(k,—k;—Bk)
kk2
X @, (k;—Q+BQ—k+Pk)p;(k,—Q+BQ—k)p; (k,) . (19)

Note that our analytic expressions for the exciton-exciton interaction are, in fact, the same as those derived, e.g., in
Refs. 4449 by different methods. The influence of the particle spin was considered in Ref. 50 both analytically and nu-
merically. Concerning the /,,,, term, it describes a kind of collective response of the many-exciton system to the light:
a photon can be absorbed (emitted) to generate (by destroying) an exciton with the assistance of another exciton coexist-
ing in the medium with the former (see Fig. 1). These processes*”>! can occur only due to the exchange effect between
the fermionic constituent particles of two excitons simultaneously participating in one and the same event with a pho-
ton. This kind of process allows excitons with many angular-momentum combinations (not only S ones) to interact
with light. Their expressions read as

k+gq
Lue(k,p,q)=— wl v ) 2 ep—Bk){ pla+B(p—k—k;—q)]
kl

X p2(p—k—PBk,+@,la—Bk,—k)lpt[p—k—Bk,—k)]} . (20)
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FIG. 1. Feynman diagrams showing the exciton-assisted
exciton-photon transition, i.e., the / interaction in (24). Electron
(hole) lines are solid (dashed). A solid line going in parallel with
a dashed line represents an exciton. A crossing of solid (dashed)
lines represents an exchange of two electrons (holes) belonging
to two different excitons. Wavy lines are for photons. No ar-
rows are indicated: each diagram can be read both from left to
right (photon emission) and from right to left (photon absorp-
tion).

To further simplify the model Hamiltonian let us consid-
er only one mode of photons with wave-vector k and fre-
quency o very close to the lowest v=18 exciton energy
level. Since the 1S exciton has the strongest oscillator
strength and is most actively coupled with the photon, we
are interested only in these excitons which have the same
momentum k. Because of the smallness of the photon
wave vector, k can then be put equal to zero and we do
not write it any more in what follows. If only k=0,
v=1S§ excitons exist, then (12), (14)—(19), and (20) can
analytically be integrated to give>?

cohrr 172
fEfls15151s(0’0’0):2‘%RW3 ) (22)
1=1,5515(0,0,0)= —Tmgr} . (23)

In (21)-(23) E =E5(0), Ayt is the exciton longitudinal-
transverse splitting, and r, is the exciton Bohr radius.
The simplified effective Hamiltonian now becomes

Hgi=wc c+Eata+g(ate +c+a)+ia+a taa
eff 14

+LV(a+a+ac +ctataa). (24)
In (24) we put the dependence on the sample volume in
clear evidence through ¥ that, in fact, is the volume of a
finite-size sample over which the coherent excitons and
photons exist. We shall show that this ‘“coherence
volume” is essential in the squeezing phenomenon to be
considered here. Such a feature was omitted in Ref. 53.
Also, Ref. 53 did not yet take into account the so-called
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exciton-assisted exciton-photon transition proportional to
lin (24) and described by Feynman diagrams in Fig. 1.

III. PHOTON QUADRATURE
VARIANCE EVALUATION

To study photon squeezing one needs to analyze the
time-varying behavior of the normally ordered quadra-
ture variances denoted by

X()=(N[Ax()]*), P(t)=(N[Ap(1)]*) (25)

where the average ( ) is understood in the quantum
sense, the N symbol normally orders all the operators
standing after it, Ax =x —(x ), Ap=p —(p ), and

x(=4c O +e], p(=Slc O—c®]. 26

As is well known, in a squeezed state one of the two vari-
ances is negative while the other is positive. The more
the state is squeezed the greater is the absolute value of
the negative variance. To see whether a variance may be
negative during the time-evolution we need solving (24)
for c(¢) and ¢ *(¢). For this aim, we perform the follow-
ing Bogolubov transformations into new operators a,(t)
and ;' (¢) with v=1 or 2:

a(t)=u,c(t)tv,al(t),
(27)
af(t)=u,ct(t)+v,at (1) .

The as yet unknown real functions «, and v,, will then be
determined so that the new operators a,(t), &' (¢) will be
bosonic and the transformed quadratic part of (24) will be
diagonal. For the former, u, and v, should obey the
orthonormalization condition

uu,tv,vd,=8,, . (28)
In particular, the normalization condition is
ul+vi=1. (29)

For the quadratic part of (24) to be transformed into a di-
agonal form, u,, and v, should be related to each other as

_ 8u,
vy, = QV_E ’ (30)
where Q, is given by
Q,=Ho+E+(—1)[(0—E)?+4g2]'/?} . 31

Making use of (31) we can establish an useful expression
as follows:

(QI_E)(QZ_E)Z'—gz . (32)
Combining (29) and (30) we get
R (Q,—E)?
S a i (33)
(Q,—E)+g
Now, the orthogonality condition
ujuy,+vv,=0 (34)
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is easily provable with the aid of (30) and (32). Using
(29), (30), (32), and (33), we can also check the following
relations:
Su2=3v2=1and >u,v,=0. (35)
v v v
Note that so far we have used only %2 in (33) but not u.,.
There is an uncertainty regarding the sign of u,. This
uncertainty, however, does not affect the conditions (28)
and (35). Therefore we can choose the sign of u,, so that
it is positive, i.e.,

"y |, —E| _ 1
v [(QV_E)Z_*_gZ]l/Z g2
1+—E

(Q,—E)

o . (36)

The original operators a (¢) and ¢ (¢) can be expressed in
terms of the new ones, a,(¢), with the help of (27) and
(35)

a®=3Fv,alt), at ()= v,a} (1), (37)

c(H)=F u,a,lt), c+(t)=2 u,at(t). (38)

Relations (37) and (38) allow us to rewrite the whole H ¢
in (24) in the form

— +
Heff_ 2 Q’vav a,
v

1

+
V

> [fvoveve+ I veuetu,v,v0)]
vugl

Xayalaa,, (39)
where each of v, u, &, and § takes a value of either 1 or 2.
The new operators «,, aj’ are interpreted as operators of
a new two-branch quasiparticle called the polariton.43
v=1 (2) corresponds to polaritons of the lower (upper)
branch. The second quadruple sum in (39) describes
scatterings among the polaritons. There are two scatter-
ing channels. One channel conserves the polariton num-
bers 05 each branch. It corresponds to the terms

OCaf a,a,a,. All the remaining terms are responsible

for the other scattering channel which changes the polar-
J

a(t)=exp{—i

0+ 3 (FyutF)af (0)a,(0)

at(t)=a}(0)exp li

1
Q,+ 7% (F,+F,)a,f (0)a,(0)

Substituting (47) and (48) into (38) gives immediately the
time dependence of the photon operators. Nevertheless,
c(z) and c¢*(¢) obtained in such a way still contain in
themselves the products a, (0)a,(0). Although these
products are time independent, the evaluation of X (¢)
and P (t) remains nontrivial and, hence, will be done now
in detail. Suppose at t =0 the excitons and photons are

t’aV(O) ,
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iton number of a branch. Since there is an energy gap be-
tween the two polariton branches [see (31)], the latter
scattering channel is energetically less probable and, in
what follows, we will keep only the terms corresponding
to the first scattering channel. This is referred to as secu-
lar approximation.’* Let us now open (39) within the sec-
ular approximation to have the following form:

H = Q10‘1+0‘1'*‘920‘2+0‘2

1 + o+ + o+
+—[Fpaia) e +Fpai a) axa

vV
+Fy a0 af aja,+ Fpaiaf aa,], (40)
where
Fy=vi(fv,+2lu,), 41)
Fu=v03(fvo,+2lu,), 42)
Fy=viv,(fv,+2lu,) , (43)
Fyp=0v3(fv,+2lu,) . (44)

Note that the form of (40) is reminiscent of a model

Hamiltonian for two modes of light coupled to each other

via a lossless nonlinear medium.>> However, here in (40)

the coupling constants F,, are specific. They depend ex-

plicitly on semiconductor parameters through f and [ as

well as on the photon frequency detuning, @ —E, and on

the direct light-matter interaction g through the Bogolu-

bov transformation coefficients u,, and v,. Using (40) we

set up the Heisenberg equation of motion for the number

operators a, (t)a,(t) and see, indeed,

d .

E[aj(t)a”(t)]=' [Hepay (Ha,(t)]=0, (45)

ie, af(t)a(t)=a](0)a,(0)=const. The equations of

motion for a,(?),

Eav(t)=i[Heﬂv,a,,(t)]
. 1

==i |0+ S (Fy, +Fy e (Day(t) e,

n

(46)

are then easy to solve because the products a,f ()a,(1) in
the square brackets are constant. The solutions read as

(47)

t ] . (48)

[
in their coherent states characterized, respectively, by

complex numbers z, and z,,
z,=V'N,exp(i6,), z,=1/Nexp(i6,), (49)

where N,, 6, and N,, 0, are any real numbers. N, and
N, represent average exciton and photon numbers, re-
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spectively. The initial state of the coherent exciton-
photon system can be written as

|z,,2,)=D,(z,)D(z.)|0) , (50)

where the displacement operator D,(z,) has the follow-
ing form for any bosonic operator b

Dy(z,)=explzybt —z}b) . (51)

As seen from (38), (47), (48), and (26), X (¢) and P(t) in
(25) are fully determined by the operator behavior at
t =0. Thus, we can write

(Y=(0ID}(z.)D; (z,) - - D,(2z,)D.(2,)]0) . (52)

Making use of (51) and (26) and of the fact that a,, a;

are bosonic operators, we establish the following relation-
ships:

D,(z,)=D, (v12,)D, (v,2,) , (53)

J

P(t)y=1{u?[{ai (t)ay(t)) —Re{ai(t)) —2[Im{a,(#)) ]*]
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D (z,)=Dg, (u,z,)D, (u,z,) . (54)
With these at hand, we cast (52) into
{ )=(0|D;Lz(uzzc)Djl(ulzc)D;:(vzza )D;;(vlza)
X Dy (012,)D ¢, (v52,)
XD g (112.)D 4, (y2.)|0) . (55)

For definiteness from now on we shall be interested in
P (t) only. In terms of photon operators P (t) is

P()=1[{cM(t)c(2))—Re{c*t))—2[Im{c(2))]*] .
(56)

Putting (38) into (56) we can express P(?) in terms of po-
lariton operators as

+2u uy[Rea) (1)ay(t)) —Re{ay(t)a(t)) —2 Im{ay(t) Y Im{a,(2)) ]
+u[{af (t)a,(t)) —Re{ad(t)) —2[Im{ay(t))1*]} . (57

The various averages entering (57) are understood in accordance with (55). Assuming for simplicity 8, =60,=0, we

have obtained the final result which is formulated in the form

22
u
P(t)= ——lzgl{1——cos(r;(z)-l-x”t)exp(s%)—2sin2(r{(2) Jexp(2s13)}
+u,u,Q,0,{cos(ri?)exp(si?)—cos(ri2 | +x,t)exp(s 2| )—2 sin(713)sin(r3} exp(s i3 +s32))}
u303 1 1 . 2021 2
+ {1—cos(r3) +x,,t)exp(s3y)—2sin’(ri}lexp(2s3))} , (58)
where

Q,=u,V'N,+v,V'N,, x,,=(F,+F,)/V,

rve=(nQ,—mQ,)t —Q2sin[(mx,, —nx,,)t]—QZsin[(mx,,, —nx )], (59)
s,}’,ﬁ‘,-‘—‘—Z[Q%,sin2 (mxm—nxw)é +Q72sin’ (mx'u#—nxw)é }

Equation (58) is analytically exact within the secular approximation. Its detailed derivation will be given in the Appen-

dix.
For x,,,t <<1, s,%. can be put equal to zero, while

Pam —> (1D, —mp,,)t
with

Py =9, T 0%, +Qix,, .
Then (58) becomes

P(t)= u?iQ?sin )

X1
2pp+—— |t |sin

t |sin

. X12
+2uu,Q,Qsin | |p;+pyyt+ )

(60)
61)
P X X
let]-i-u%Q%sin 2p21+—§£}t sin —232—t (62)
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IV. APPLICATION TO REAL SEMICONDUCTOR

Formula (58) for the photon P-quadrature variance
displays several interesting features concerning the role
of different kinds of interactions and the dependence on
controllable parameters. Already from (40)—(44) we saw
that the true interactions g, f, and / [see (24)] manifest
themselves not explicitly separately but rather in com-
binations through the effective interactions F,,. These
F,, enter (58) through x,,. Using the asymptotic expres-
sion (62) we can immediately conclude that no squeezing
will occur if all of the x,,=0, i.e., all of the F,,=0, be-
cause then the second s1nuous functions on each line of
(62) exactly equal zero. Returning back for a moment to
(41)—(44), we find out that all the F,,, will vanish in either
of the two following cases: (i) f=I1=0 and (ii) all the
u,=0. The former is easy to understand since it means
no nonlinearities. The latter takes place when g =0 [see
Eq. (30)]. Squeezing again is absent because, physically,
g =0 means no light-matter interaction. Thus, the neces-
sary conditions for squeezing to occur are simultaneous
nonvanishing of g and of at least one of the two f and !/
(not necessarily of both of them). These are intrinsic pa-
rameters, i.e., material-dependent ones. The extrinsic
controllable parameters are the frequency detuning
(w—E), the initial average numbers of excitons and pho-
tons N,, N,, and the volume V of the sample. To make
visual the dependence on the extrinsic parameters we fix
the intrinsic ones by choosing a concrete semiconductor,
say, CdS. The parameters for CdS are E, =2.586 eV,
E =2.553 eV, ALT—I meV, €,=8 and r, =25.5 A.
These values give g=—101 meV, f~1 5x107Y
meV cm® and / =~3.7X 107 meV cm>. In Fig. 2 we draw
P as a function of Et for N,=N,=100, V /v, =4X 10,
where v, is the volume of an exciton (for CdS
Ve ®7X107% cm?), and different scaled detunings in
terms of the ratio w/E =0.9, 0.95, and 1. We see P de-
velops negative parts indicating the occurrence of the
photon squeezing. The smaller the detuning, i.e., the
nearer the ratio w/E to 1, the deeper the negative peaks,

0.04¢

0.02}
o
0.00

-0.02

FIG. 2. P-quadrature variance of CdS vs scaled time Et.
N,=N,=100, V/v,,=4X10> and w/E varies. The dotted
(solid and dashed) curve corresponds to w/E =0.9 (0.95 and 1).
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0.06

0.03}
L

0.00

—-0.03

£t

FIG. 3. Same as Fig. 1 but w/E =1, ¥V /v,=4X10°> and
N,=N_.=50, 100, and 150 corresponding to the dotted, solid,
and dashed curve.

i.e., the better the squeezing. The perfect resonance de-
tuning, w/E =1, causes the best squeezing. Figure 3
plots the same P=P(Et) with fixed w/E =1,
V /v, =4X10* and varying N,=N,=50, 100, and 150.
Clearly seen that a better squeezing corresponds to a
larger initial numbers of excitons and photons. Figure 4
shows the variation of squeezing in dependence on V
(V /vy =4X10% 8X10% and 2 X 10*) when w/E =1 and
N,=N_,=100. One seces that smaller sample volume
more favors the squeezing process. Qualitatively similar
behaviors hold as well for GaAs whose parameters are
Eg——l 5 eV, E=1.495 eV, A t=0.1 meV, =12 and
100 A which give g~ —30 meV, f=~1.4X10716
meV cm?® and [ =~6.6X 1071 meV cm’.
To see the dependence on the intrinsic parameters, we
shall proceed as follows. Namely, let us forget the con-
crete analytic expressions (21)-(23), and treat g, f, and /
as varying parameters representing a change from one to
another semiconductor. We then analyze the squeezing

0.04 ¢

FIG. 4. Same as Fig. 1 but w/E=1, N,=N,=100 and
V /vex varies. The dashed (solid and dotted) curve corresponds
to ¥ /v, =4 X 10% (8 X 10° and 2 X 10%).
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phenomenon as a function of such intrinsic variables.
For that purpose it is convenient to deal with scaled
quantities such as g/E, f/E, and [/E. From the above
specific parameter values we have g/E = —0.03696
(—0.0200), f/E=~5.8149X10"2! cm® (9.1014X10~%°
cm®) and I /E ~1.4426 X107 % cm® (4.6183 X107 cm?)
for CdS (GaAs). We therefore can let g/E vary from
—0.06 to 0, and F and L vary from O to 100 where
f/E=FX107?" cm’ and I/E=LX10"%* cm’ A
three-dimensional (3D) plot in Fig. 5 illustrates an imagi-
nary situation when f =0 and /0. For L =0 there is
no squeezing. For increasing L the valleys become
deeper meaning stronger squeezing. The importance of
the interaction term proportional to /, the / interaction, is
emphasized by the fact that squeezing can happen even in
the case of f =0. Generally both the f and the / interac-
tions must be included since they are of almost the same
order of magnitude at least for CdS and GaAs as seen
from their values above. It is worth noting at this mo-
ment that the f interaction results from a dipole-dipole-
like nature of the exciton-exciton interaction. In low di-
mensions, though the exciton Rydberg increases, the
exciton-exciton interaction decreases because of more
“neutralization” of each exciton. On the other hand, the
I interaction is due to the interaction between a photon
and an electron-hole pair and to the Pauli exchange effect
acting between the electrons (holes) of two excitons (see
Fig. 1). This / interaction is not influenced by the exciton
neutralization and is expected to be of more importance
in low dimensions than the f interaction. Our considera-
tion of the [ interaction from the very onset is thus neces-
sary. In Fig. 6 we analyze the dependence on the cou-
pling constant g when f/E=I/E=10"" cm3,
V=10"" cm3 N,=N,=100 and »/E=0.95. As
analytically noticed before, here we see graphically that
squeezing can occur only for g70. Figures 5 and 6 indi-
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FIG. 5. P-quadrature variance vs scaled time Et and L (for L
see text). The other parameters are taken as g/E = —0.04,
o/E=1,N,=N,=100, V=10"'° cm? and f =0.
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FIG. 6. P-quadrature variance vs Et and G=—g/E. The
other parameters are taken as w/E =0.95, N,=N_,=100,
V=10""%cm? and I/E =f/E =10"" cm®.

cate that for the squeezing process, semiconductors with
larger interactions are desirable.

V. CONCLUSION

It is well known that excitonic nonlinearities have
brought about a lot of interesting physical phenomena re-
lated to nonlinear coherent propagation of light in semi-
conductors such as nutation, Bose condensation, biexci-
ton and multiexciton formation, bistability, self-induced
transparency, photon echo, optical excitonic Stark effect,
giant polariton, chaotic self-pulsation, etc. In this paper,
we have shown one more effect caused by both the
exciton-photon and exciton-exciton interactions which
we call the exciton-induced squeezing of light. Among
analyzed dependences on the extrinsic and intrinsic pa-
rameters, the dependence on the sample volume needs
some more discussion. From the text (and see Fig. 4) we
saw that the smaller the sample volume the better the
squeezing. In plotting the figures we have chosen either
V /v, =4X10%, 8X10%, and 2X10* (for CdS) or
¥ =10"1 cm3. Such volumes are somewhat intermedi-
ate between bulk crystals and very large microcrystal-
lites.>3¢ One may think that further reducing the
volume should lead to better squeezing. However, for
smaller volume, the sample becomes a quantum box or a
quantum dot and then the quantum size effect will need
to be accounted for properly. Although formally for a
microcrystallite one can still use an effective bosonic
Hamiltonian®! like (24), the analytical expressions for E,
g, f, and I are much different from those given by (8) and
(21)=(23). Their calculation is even numerically a for-
midable task. Since nowadays semiconductor microcrys-
talitte samples are in a good stage of fabrication, the
above-proposed exciton-induced mechanism of generat-
ing photon squeezed states in them is worth to be con-
sidered. As a rule, nevertheless, this requires further
more accurate investigations.
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APPENDIX

This appendix is to derive Eq. (58). For this we need the following operator identities:

D, (2)bDy(z)=b +2z, D, (2)bTD,(z)=b"+z*, (A1)

D,(2,)Dy(z,)=Dy(z,+2,)e ™0 | (A2)

eMteD, (z)=D,(ze*)e?**t | (A3)

(0|D,"(z))D,(z,)| ) =exp[ —L|z; —z,|*+i Im(z}z,)], (A4)

=3 -“’xn%”"(bﬂ"b". (A5)
n=0 :

While the first four identities are properties of the displacement operators, the last one can be found, e.g., in Ref. 57.
For convenience, we define two auxiliary functions Q(z,z,) and S(z,z,;A) which are useful to compact the formulas

(0|...bD,(z,)D,(z,)|0)

Q(z1,2)= (0]...Dy(z,)Dy(z,)[0) (A6)
where . . .” may be anything, and

S(zy,2,;A)=(0|D; (z,)D;" (z|)exp(Ab Tb)D,(z,)D,;(z,)|0) . (A7)
Double applying (A1) yields at once '

0(z,25)=z;+2z, . (A8)
Concerning the function S (z,,z,;A), the use of (A2) gives

S(z1,2,;A)=(0|Dy (z;+2,)e** 2D, (2, +2,)]0) . (A9)
Then the use of (A3) gives

S(zy,29;0)={0|D; (2, +2,)D, [(z, +2,)e*Je* " 4|0) , (A10)
and, the use of (AS) gives

S(z1,293A)= f‘, —(exn;'l)n(me“L(zl+22)Db[(zl+z2)e}‘](b+)”b"|0) . (A11)

n=0 :

.In (A11) all the terms with n =1,2,3, . . . vanish due to the action of » on |0). There remains only the term with n =0,
ie.,

S(z;,25;8)=(0|D; (z, +2,)D;[(z; +2,)e*]|0) . (A12)
Now the use of (A4) yields the final expression for S(z;,z,;A),

S(z;,z550)=exp[(e*—1)|z; +2,]?] . (A13)
Having Q(z,,z,) and S (z,,z,;A) at hand, it is easy to find by applying (47), (48), and (55) that

(ay(1)) = exp(—iQ)Q (v,2,,, z.)

xS ulzc,ulza;——%—jF“t S uzzc,vzza;—%/(F12+F21)t , (A14)
Fy
(a?(t))=exp | —2i 0+ t]Qz(vlza,ulzc)
XS ulzc,vlza;—iljF“t S uzzc,vzza;~—2%(F12+F21)t , (A15)
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F,+F
Ql+92+—‘2V 21

<a2(t)a1(t)>= exp | —i

XS

ulzc,vlza;——;/-(ZF“ +F+Fy)t

(aj ()ay(t)) = exp[ —i(Q;—Q,)t]Q*(uy2,.,0,2.)Q (u,2,,0,2,)

XS

U1Z,y012,; LV(F12 +F, —2F )t

(ai (e (1)) =Q(u,z,,v,2,)]? .

11 741

tlQ(vlza,ulzc)Q(vzza,uzzcv)
uzzc,vzza;—LV(2F22+F12+F21)t ) (A16)
uzzc,uzza;iV(zez—Fn—Fﬂ)t , (A17)
(A18)

As for {ay(t)), {a3(t)), and {a; (t)a,(t)), they are obtained, respectively, from (A14), (A15), and (A18) with an ex-
change of the subscript 1 (2) by 2 (1). Taking the necessary real and imaginary parts of (A14)—(A18) and putting them
into (57), we have arrived at the formula (58) which is the main result of our paper.
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429 Boho, Hanoi 10000, Vietnam.
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