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Nonlinear optical response of semiconductors in the independent-particle approximation
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We present a formalism for the calculation of the optical response of semiconductors in the
independent-particle approximation. The unphysical divergences at zero frequency that plagued earlier
approaches are eliminated by a careful treatment of interband and intraband motion, yet the calculations
can be made in a way very analogous to usual perturbation theory. The general formalism is illustrated

by deriving an expression for the response coefficient for second-harmonic generation.

I. INTRODUCTION

The simplest treatment of the optical response of a
crystal, at the level of a full band-structure calculation,
proceeds via an independent-particle approximation. In
the so-called "long-wavelength limit, " where the varia-
tion of the macroscopic Maxwell field over distances on
the order of the lattice spacing is neglected, the Hamil-
tonian is taken to be

p; ——A(t)
C

2

+ V(x;)

&=&o+&)+%2,
where

(1.2)

~o= y~o;

with

&o;= + V(x;),P1

and

where as usual e = —
~
e

~
and m denote the electron

charge and mass, the subscript i labels the electrons in
the crystal, x; and p; are, respectively, the coordinates
and momenta, and V(x) is the efFective periodic crystal
potential. Equation (1.1) is written as

momentum, and u the band index; in terms of the Bloch
states the many-particle eigenstates of &o can be con-
structed. In the long-wavelength limit the efFect of &2 is
only to introduce a time-dependent phase factor for all
the eigenstates, so it may be neglected; perturbation
theory may be employed to treat &&, and at the end of
the calculation E= —c A(t) is identified as the macro-
scopic Maxwell field. Although local-field e6'ects are ob-
viously neglected in such a treatment, results in good
qualitative and often even good quantitative agreement
with experiment over a wide frequency range can be ob-
tained for a host of semiconductors. '

Yet even at the reasonably simplistic level of such a
treatment, calculations of nonlinear response coefficients
of semiconductors are plagued by unphysical divergences
as co—+0, where co is the frequency of the incident
light. A number of years ago, Aspnes discussed such
a divergence in the calculation of the nonlinear
response coefficient for second-harmonic generation,
g' '( —2';co, co). He was able to show, for crystals with
cubic symmetry, that the divergence is indeed only an ap-
parent divergence: a factor multiplying the divergent
term in fact equals zero. It is only recently that this has
been verified for arbitrary crystal class by the derivation
of a new sum rule.

The source of the apparent divergences can be illustrat-
ed by the derivation of an expression for the linear sus-
ceptibility g( —co; co). Applying straightforward pertur-
bation theory in &&,

" we calculate the expectation value
of the current density operator

A(t). g p, ,
e

NZC

2

N A2(t),
2%iC

(1.5)

J= g p,
——A(t)Qm, . ' c

in the presence of an electric field

E(t)=E(co)e ' '+c.c. ,

(1.6)

(1.7)

where N is the total number of electrons in the normali-
zation volume 0 of the crystal. The eigenstates of &o;
are the Bloch states P„(k;x;), where k labels the crystal

where we assign a small positive imaginary part to co to
describe turning the field on from zero at t = —~. Writ-
ing the expectation value of the current density as dP/dt,
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where P is an efFective polarization, we find P(t) is of the
form (1.7). Denoting Cartesian components by super-
scripts, we write

A' = — g f„(k)
Q

[
m„*(k)

ab

(1.14)

P'(co) =g'"( —co;co)E (co), (1.8)

where repeated Cartesian components are summed over,
and identify the linear susceptibility y( —co;co); we find

Now for a clean, cold semiconductor we have

f„(k)=f„=O or 1, independent of k. We refer to this
situation, of primary interest in this paper, as the special
case of "filled bands. " Since

f„,(k)p„', (k)p,"„(k)
m'co'A & „,i, co., (k) —co

I

m„*(k) & c)k'c)k"
(1.15)

2e 7l ~gb
Pl CO

(1.9)

+ab( . )
—2 A ab+ —1Bab+ C ab( (1.10)

where

f„,(k)p„', (k)p, „(k)C' (co)=—g 2 2& „„z firn co„„(k)[co,„(k)—co]

where 5' is the Kronecker delta. Here n =—XjQ is the
electron density; p„,(k) is the matrix element
(uk~p~uk), where (x~uk) =f„(k;x); co„„(k)=—co„(k)—co„(k), where irico„(k) is the single-particle energy ei-
genvalue of g„(k;x); f„„(k)=f„(k)—f—,(k), where

f„(k) is the Fermi factor of band u at crystal momentum
k. The term involving n in Eq. (1.9) results from the term
involving A(t) in Eq. (1.6).

Certainly Eq. (1.9) appears to diverge as co~0; in fact,
with a bit of algebra Eq. (1.9) can be written so as to
display the nature of the divergence:

1

m„*(k)

f„,(k)p„', (k)p„'„(k)
& „„„A'm' co',„(k)[co,„(k)—co]

in the case of filled bands, the integral over the Brillouin
zone that (1.14) becomes, in the limit of an infinite crys-
tal, vanishes because co„(k) is periodic in the Brillouin
zone. Thus y'"( —co;co)=C'"(co), which, in fact, yields
the usual result for the susceptibility of a clean, cold semi-
conductor (see Sec. III).

For a metal, of course, A'" in general does not vanish,
and y' (

—co; co) does diverge as co~0, simply because free
electrons have a resonance at co=0 and no scattering is
included in this simple perturbation treatment. But in a
clean, cold semiconductor, where the bands are filled,
there are no "free" electrons, no resonance at co=0, and

y( —co;co) is finite there. More generally (recall B'b=0),
we have [cf. Eq. (1.10)]

1
ab

y' (
—co;co)= — —g f„(k)2 N „Q

, e'f„(k) p„'„(k)p,'„(k)+p„„(k)p„',(k)
co,„(k)

e n&~b (1.12)

f„,(k)p„'„(k)p„„(k)
& „,i, m A co,„(k)

where the prime on the sum in the first of Eq. (1.12) indi-
cates that terms for which f„(k)=f, (k ) are to be exclud-
ed.

Of the two "dangerous" coefficients g' and B', it is
easier to dispose of B'. Using time-reversal symmetry
[p„„(—k)= —p,„(k), co„(k)=co„(—k), f„(—k)=f„(k)]
a change of dummy indices shows immediately that
B' =0. To treat A', we substitute the expression for
the inverse effective mass,

1

m„*(k)

ab ~~b p„'„(k)p„„(k)+p„„(k)p,'„(k)

UWD
A'm co,„(k)

(1.13)

where [1/m„*(k)]'b are the Cartesian components of the
inverse effective-mass tensor of band u at crystal momen-
tum k, in the first of Eqs. (1.12) to write

is finite as co—+0, and the coefficients of the divergent
terms are

(l.16)

Physically, the first term on the right-hand side of Eq.
(1.16) clearly describes the efFects of intraband motion;
the term in parentheses is an average inverse effective
mass. The second term, as we argue in detail in Sec. II,
describes interband motion. It is because matrix elements
of &i only involve states at the same crystal momentum
that these two physically distinct contributions
are "entangled" in the straightforward calculation lead-
ing to Eq. (1.9); sum rules such as Eq. (1.13) must be used
to disentangle them. Indeed, it was with the use of
a new sum rule that those intraband contributions to
y' '( —Zco;co, co) resonant at zero frequency were shown
to vanish for a clean, cold semiconductor, rendering that
quantity finite as co—+0.

But with respect to the future calculation of other non-
linear optical response coefficients, such a situation is
clearly undesirable. Simply at a practical level, for each
new coefficient to be calculated it would appear necessary
to find a new sum rule, or set of sum rules, to isolate the
intraband contributions. This is both tedious and
inelegant. A method of calculation which separates the
intraband and interband motion from the start would ob-
viously be preferable. This is what we develop in this pa-
per.

Such an approach was introduced many years ago by
Genkin and Mednis. The differences between our devel-
opment and theirs are matters more of implementation
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than spirit, but they are important. The resonant intra-
band contributions at co=0 were of central importance to
Genkin and Mednis, who dealt with partially filled bands.
One of our goals is to show how such terms vanish for
filled bands, so we must be more careful to relate quanti-
ties which appear to our calculation to definitions of the
Bloch functions which are periodic over the Brillouin
zone. A second difference is that while Genkin and
Mednis developed a single-particle formalism, we have
developed ours in second quantized notation to allow for
generalization beyond the independent-particle approxi-
mation. Even at the level of the independent-particle ap-
proxirnation, we note that the derivation of expressions
for nonlinear optical coefficients is simplified by the use
of second-quantized notation.

Another difference, related to the periodicity in the
Brillouin zone mentioned above, concerns the develop-
ment of the perturbation series in the interband motion.
Both of us, in a sense, describe the intraband motion of
the electrons in their original bands to all orders in the
zeroth order of our perturbation expansion. But while
Genkin and Mednis then develop iteratively a unitary
transformation to describe the interband motion, our
treatment of that motion is done more analogously to
usual perturbation theory. This is possible because of our
choice of wave functions describing the interband
motion. We take these to be instantaneous eigenstates of
the time-dependent Hamiltonian, essentially wave func-
tions which describe adiabatic intraband motion includ-
ing the Berry's phase. A result of this is that the interac-
tion then describing the interband motion has the form of
a dipole moment interaction, with Blount's representa-
tion of the position operator —but without its diagonal
piece —playing the role of the position operator. This
connection allows us to physically identify in a clearer
way the aspects of interband and intraband motion that
appear in all stages of the calculation, particularly in the
expression for the induced current density [see the discus-
sion after Eq. (2.72)].

Finally, we are more concerned than were Genkin and
Mednis in reducing our expressions to a form suitable for
numerical analysis. Nonetheless, our work is clearly in
the general direction they established; as well, it relies
heavily on the insights of Blount and Lax. '

The goal of this paper is to establish the general for-
malism and give a few illustrative examples. We plan to
present the application of the formalism we develop here
to the numerical calculation of a number of nonlinear
response coefficients in later communications. The basic
formalism is presented in Sec. II: in Sec. II A we present
the instantaneous single-particle eigenstates we employ in
our calculation, and discuss their parametric time depen-
dence. In Sec. II 8 we discuss the corresponding many-
particle states, and in Sec. II C we discuss the expansion
of single-particle operators in terms of both the instan-
taneous single-particle states and the usual basis states.
Section IID details the unitary transformation between
these two bases, and in Sec. II E we discuss the electron
dynamics in the instantaneous eigenstate basis.

Section III is devoted to perturbation calculations. In
Sec. III A, we introduce an interaction picture, the zeroth

order of which describes intraband motion of the elec-
trons in their original bands to all orders, and present the
perturbation scheme to describe interband effects. Since
each order of this perturbation scheme involves intra-
band motion to all orders, to calculate nonlinear suscepti-
bilities it is convenient to expand in both interband and
intraband effects. This is done in Sec. IIIB, and in Sec.
IIIC the forms of the susceptibilities are presented to
second order; the generalization to higher order is
straightforward. As a particular example, we work out
the expression for g' '( —2';co, co), and discuss how it
reduces to an expression obtained earlier for that
coefficient. In Sec. III D, we discuss the different contri-
butions to P '( —2';co, co) with the help of a full band-
structure calculation. A discussion and summary of our
results are presented in Sec. IV.

II. GENERAL FORMALISM

A. Single-particle Hamiltonians

2

&o= + V(x),
2m

(2. l)

where V(x) is periodic, V(x) = V(x+R) where R is any
lattice vector, Bloch's theorem guarantees the eigenstates
~a) can be labeled by a band index n and wave vector k,
a=(nk), and is chosen to be of the form

(x~a) —=g„(k;x)=Q '~ u„(k;x)e' (2.2)

where 0 is the normalization volume of the crystal,
u„(k;x) =u„(k;x+R), and k can be restricted to the first
Brillouin zone; we denote the eigenvalues by %co„(k). Al-
lowing for the possibility of points and lines of degenera-
cy in reciprocal space, but assuming that planes of degen-
eracy do not exist, it is possible to uniquely define the
bands in such a way that co„(k)and g„(k;x) are continu-
ous in k, and even differentiable in k at all general points;
then"

g„(k+Cx,'x) =g„(k;x)

co„(k+Cx) =co„(k),

where G is any reciprocal-lattice vector, and

Bu„(k;x)
i = g u (k;x)g' „(k)

m

(2.3)

(2.4)

for points k where the band n is nondegenerate. The
g' „(k) satisfy the Hermiticity condition, g' „(k)

(k), and for mWn are given by

v „(k)
(2.5)

where

We shall require certain properties of the eigenstates of
single-particle Hamiltonians, which we state here for
reference. For a Hamiltonian of the form
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v „(k)—=If* (k; x) Vg„(k;x)dx,
lm

~ „(k)=~0 (k) —~„(k) .
(2 6)

Vi„(k;t)—: Jij~i'(k;x) . V—+fiK P„(k;x)dx1

m
' i

The phases of g „(k) (mWn), and the functions g'„„(k),
are chosen so that the periodicity conditions (2.3) are
satisfied. " We further require

g„„(k)=0,a
(2.7)

which guarantees that the g(k) are uniquely determined,
except for transformations related to shifts in the origin
of the unit cell in real space.

Next we consider the single-particle Hamiltonian [&(t)P„(k;x)—%co„(k+K)f„(k;x)]=0
dt

(2.18a)

Ig i'(k;x)e ' '" —.V [g„(k;x)e' *]dx,
m l

(2.17)

and the prime on the summation in Eq. (2.15) indicates
the sum is over states g~(k;x) for which co~(k+K)
Ace„(k+K), and the expression for p, „(k;t) will be
given below. To confirm the lemma we must show that

~( [p+iriK(t) ]
2m

where in our applications we shall have

K(r) = — A(i),
Ac

(2.8)

(2.9)

or

- dg„(k;x)
&(t ) —%co„(k+K )

dt

a~„(k+K)
=eE(t) ~

1 V+fiK—g„(k;x)
m i

where A( t) is the vector potential; in the long-
wavelength limit this is taken to be uniform, and to de-
scribe the full electric field,

1 ~

E(t)= ——A(t) .
c

(2.10)

Our development will employ a set of instantaneous
eigenfunctions f„(k;x) of &(t),

&(t)i'„(k;x)=irico„(k+K)f„(k;x), (2.11)

where all quantities with overbars depend implicitly on
time, and K=K(t) is given by Eq. (2.9). Since

p+gK —~ EK xpe/K x (2.12)

it follows that

~(i)—e
—iK x~ eiKx. (2.13)

and if we have a set of solutions tP„(k;x) of Eq. (2.11) we
may also write

%0[/„(k;x)e' '"]=iiico„(k+K)[g„(k;x)e' "] . (2.14)

iA g„(k;x)= g'g (k;x)pq„(k;t).E(t)
d-
dt

(2.15)

for each n, and if

E( t).V,„(k;i)=0 (2.16)

for each n and any state Pi(k;x) for which
~i(k+K)=~„(k+K). H«e

That is, g„(k;x)exp(iK. x) is a state with crystal momen-
tum @+K. To discuss the parametric dependence of the
g„(k;x) on time we first demonstrate a lemma: If an
orthonormal set g„(k;x) satisfies Eq. (2.11) at time t, then
the same equations are satisfied at time t +dt if

Bc@„(k+K)
=eE(t). . V [f„(k;x)e' "],

mi

(2.19)

the validity of which we must confirm. The functions on
both sides of Eq. (2.19) are spanned by functions of crys-
tals momentum k+ K. To show that Eq. (2.19) is
satisfied, we must therefore establish that its projection
onto gi(k;x)exp(iK x) is satisfied for all 1. For I =n we
find that the left-hand side of the projection is zero

(quan),

and the right-hand side is also, since

(2.20)

[cf. Eqs. (2.14) and (2.17)]. Projecting Eq. (2.19) now onto
a gi(k;x)exp(iK. x) such that coi(k+K)&co„(k+K), the
resulting equation requires

e Vi„(k; t)

(k+K) '

(2.21)
cubi„(k+ K)%0,

the expression we adopt for p&„. Finally, if there is an I
such that cubi(k+K)=co„(k+K), the projection of Eq.
(2.19) onto gi(k; x)exp(i K x) le.ads to the condition
(2.16), which is guaranteed by assumption. This com-
pletes the demonstration of the lemma, and identifies p&„.

We now explore the consequences of the evolution
prescription (2.15). Consider first the simple choice of a
k and n such that co„(k) is nondegenerate, and suppose

(2.18b)

for all n, if E'qs. (2.15) and (2.16) are satisfied. Using Eq.
(2.15) in Eq. (2.18b) we find

i g'—co „(M+K)p „(k;t).E(t)[g~(k;x)e' "]
q
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A(t) vanishes for t ( to. Then, at least for times t ) to
such that co„(k+ K } remains nondegenerate, it is easy to
verify that Eqs. (2.15) and (2.21) are satisfied by

P (k'x)=Q ' u (k x)e' '"

where

u„(k;x)=e " ' u„(k+K;x),
—iP„(k;t)

with

P„(k;t)=—J g„„('a') da',
k

(2.22)

(2.23)

(2.24)

where the path of integration in the Brillouin zone de-
pends on the evolution of K, with a'=k+K(t'). Equa-
tion (2.21) then leads to

pI„(k; t) =eg'I„(k+ K)e

with

(2.25)

(2.26)

More generally, if to„(k) is degenerate, Eqs. (2.22) —(2.26)
satisfy Eqs. (2.15) and (2.21) and Eq. (2.16) as long as we
choose the eigenfunctions at the point k of degeneracy
such that Eq. (2.16) is satisfied as A(t) increases from
zero. Thus, we see that the 1t„(k;x) satisfying Eq. (2.11)
evolve such that their crystal momenta remain at k [see
Eq. (2.22)], but the periodic part of the functions are asso-
ciated with crystal momentum k+ K(t) [see Eq. (2.23)].

We now consider what happens to these f„(k;x) as
k+K(t) approaches a point of degeneracy, at say k+Kd,
Kd= K(td). For exam—ple, we look at a simple scenario
where two bands are degenerate at k+ K, but are nonde-
generate at k+K(t) for ranges of times t before and after
td. For such t less than td, then, putting Eqs. (2.22) in Eq.
(2.15) yields

u„(k+K;x)=u„(k+K;x)e (2.28)

Note that Eqs. (2.27) are the "usual" k p" equations'2
that would be expected for the periodic part of the Bloch
function as tr =k+ K( t) evolves through points a in the
Brillouin zone where co„(a.) is nondegenerate. Now we
digress for a moment and consider the periodic func-
tions u„(k+K;x) at points where K is in the neighbor-
hood of Kd, u„(k+Kd eA 'E(td)bt+. . .;x), w—here
t =td+b, t. To write these in terms of the u„(k+Kd', x)
we must choose the correct set of basis functions at td,
since the u„(k+Kd', x) are degenerate. ' Using Eqs.
(2.17) (2.22), (2.23), and (2.28), we see that the correct set
satisfies precisely Eq. (2.16) at t =td, and that with this
choice the u„(k+K;x) will evolve precisely according to
Eq. (2.27), for times both earlier and later than td. Thus,
in particular, considering the earlier times, the
u„(k+K;x) are generated from those at Kd must match

iR u„(k+K;x)= g'u~(k+K;x)p, „(k;t).E(t),
dt

q

(2.27)

where

form a complete set of eigenstates of &(t) for any t, and
can thus be used as a basis at any time t. Our primary in-
terest in this paper is in the special case of filled bands.
By this we mean any initial distribution of electrons
which f„(k)=f„=0or 1, independent of k, where f„(k)
is the Fermi factor for band n at wave vector k. This is
the appropriate limit to describe a clean, cold semicon-
ductor, and in this limit f„=f„ for the n discussed
above. It will become clear that no confusion will result
in our derived expressions of interest if we omit the bar in
co„(k+K), P (k;t), and u (k+K;x). With this
simplification in notation we rewrite Eq. (2.14) as an
unrestricted sum,

dg„(k;x)i' = g g~(k;x)p~„(k;t).E(t),
dt

(2.30)

where we henceforth define [cf. Eq. (2.25)]

p „(k;t)=er „(k+K)e

r „(N):—g „(a.) if ~o (~)&co„(a)
—:0 if co (a)=to„(e)

and where

(2.31)

g„(k;x)=Q '~ u„(k+K;x)e " ' e' (2.32)

B. Many-particle Hamiltonians

We now consider the many-particle Hamiltonians, cor-
responding to &o and &, and their eigenstates. For the

up with the u„(k+K;x) that followed from to, except
perhaps for phase factors, since at an intermediate time
tp & t & td we have assumed there is no degeneracy. This
guarantees that, as the f„(k; x) evolve according to Eq.
(2.15), Eq. (2.16) will be satisfied at points k+Kd of de-
generacy, t =td. Thus, by our lemma these g„(k;x) will
continue to satisfy Eq. (2.11), even as k+ K moves
through such points of degeneracy.

Examples such as the above indicate that the P„(k;x}
evolving according to Eqs. (2.15) will always satisfy Eq.
(2.11), as long as at points k of degeneracy the bands are
initially labeled correctly as A(t) initially increases from
zero. One proviso is necessary: since the wave functions
g„(k;x) are not analytic functions of k at points of degen-
eracy, '3 a wave function g„(k;x) can apparently change
to a wave function labeled by a band index different from
its original index as K+K moves through a point of de-
generacy. Thus, the to„(k+K) appearing in Eq. (2.11)
should really be written as co„(k+K), where n depends
not only on n and K but on the entire history K(t). Like-
wise, P„and u„ in Eq. (2.23) must be redefined according-
ly. Specifying this dependence in detail would involve a
greater study of the topology of the band structure than
we wish to embark upon here. Furthermore, it is not
necessary for our purposes. The crucial point is that
the states ~a), where

(2.29)
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Hamiltonian C. Oyerators

Ho= g + V(x;)
Pi

(2.33)
We shall be primarily interested in single-particle

operators, e.g. ,

describing a system of fermions, we denote the many-
particle eigenstates by iS &, where S labels a sequence of
occupation numbers s„s2, . . . , the s either 0 or 1, and
a specifies a state (nk) described by the wave function
(2.2). Then

8= g fo(x;) .

Then, in the usual way, ' we 6nd

6= pa atone ti= g b btie~tt,
ap ap

(2.43)

(2.44)

H, is&=E, is&, (2 34) with

where

(2.35)

e., f=g„' (k, ;x)f (x)g„(k,;x)dx,

6 p= f g„* (k„'x)f (x)f„(k;x}dx,
(2.45)

with co =co„(k). In the usual way' we introduce fer-
mion raising and lowering operations, a and a, satisfy-
ing the anticommutation relations

where a=(n, ki), P (=n2ki) I.f f(x) has only nonzero
matrix elements between states of the same k, Eq. (2.44)

simplifies to

[a,ati] = Ia, a&] =0,
[a,ap~] =5 ti.

Then,

(2.36)
6= g a„j,a ke„(k),

nmk

= g b„„b I,e„(k),
nmk

(2.46)

Ho = g fico a a = g fico„(k)a„j,a„j, . (2 37) where

nk

Since we are neglecting spin-orbit coupling in Eq. (2.33),
and Eq. (2.38) below, we may neglect spin variables ex-
cept for accounting for the spin degeneracy at the end of
our calculations.

Correspondingly, for the many-particle Hamiltonian

[p, +fiK(t)]
H(t)= g + V(x;)

2m
(2.38)

(2.39)

where

we can introduce many-particle eigenstates is &, where
again S labels a set of occupation numbers s„s2, . . . ,
with, however, the s now referring to states described by
the wave functions (2.35). Here,

6„(k)=f 1(„*(k;x)f (x)p (k;x)dx,

e„(k)=fg„"(k;x)f (x)f (k;x)dx.
(2.47)

(2.48)

Using the first of Eq. (2.6) and the orthogonality of the
g„(k;x), we have

eJ=—g a„),a „v„(k)—
nmk

Alternatively, we evaluate

5„A(t)
mc

(2.49)

1 —, A' ef g „*(k;x) —.V ——A(t) f (k; x}dx
m " ' i c

As an example, we consider the current density operator
I,

Es= gs A'co

a
(2.40)

(2.50)

and co =co„[k+K(t)]. Associated with these states we
introduce fermion raising and lowering operators b and
b, satisfying

where we have used the definitions (2.6) and (2.32), and
Eq. (2.17); so we can write the same operator appearing
in Eq. (2.49) as

Ib, bti] =
I b, bp] =0,

Ib, by~] =5 ti,
(2.41)

J=—g bti,b ~e
" ' v„(k+K) .

nmk

Defining

(2.51)

where, like the quantities with overbars, the b, b are
implicit functions of time through the dependence of the
wave functions (2.32) on time. Corresponding to Eq.
(2.37), we may write

H(t)= QAco blab = +fico„[k+K(t)]btqb„i, . (2.42)
a nk

j„(k+K)=—v„(k+K),

we can write Eq. (2.51) as

J= g bti,b iJ„(k+K)e
nmk

(2.52)

(2.53)
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D. The unitary transformation

We now introduce a unitary transformation

U= y ~s&&s~,
S

U'= y ~s& &s~,
(2.54)

the P's label the Xf permutations of N objects, the 6& are
the parities of the perinutations, and the P are the associ-
ated operators; $2 (x, ), e.g. , is short for p„(k,;x, ).

1 1

Using Eqs. (2.30) and (2.32) one can form the time
derivatives of the $2 (x,. ) and, using the properties of the

1

raising and lowering operators, ' identify

where the sum is over all sets of occupation numbers S
(si, s2, . . . ); the states ~S & and ~s & involve the same oc-
cupation numbers, although in ~s& they refer to the
states described by the wave functions (2.2), while in ~s &

they refer to those described by the wave functions (2.32).
We use U to introduce transformed operators

~S&= g b„!,b ~„(k;t).E(t)~s& .
nmk

So, introducing the Hermitian operator

P= —g b„kb ~„(k;t)=1
nmk

(2.64)

e'= UeU'. (2.55) g bt!,b ri„(k+K) e
nmk

(2.65)

In particular,

b' =Ub U
we find, using Eqs. (2.61) and (2.64), and their adjoints,

so

= y fr&(rib. (s&(sf,
ST

& Tlb.']s &
=

& Tlb. ls &,

(2.56)

(2.57)

Ut= — E(t) PUt,
dt

Q= UP E(t) .d iQ
dt

E. Dynamics

(2.66)

a = Ub U~,

a =Ub~U~ .
(2.58)

This implies that for operators of the form, e.g., of Eq.
(2.46) we have

e'= g a„!,a i,e„(k) .
nmk

(2.59)

and thus we identify b' =a . A similar result holds for
b, so we have Describing the many-particle system by a density

operator p, the dynamics are specified by the equation

ilp=[H, p] . (2.67)

(8&—=Tr(pe)=Tr(p'e') . (2.68)

If we work instead with the transformed operator
p'—= Up U~, using the cyclic property of the trace, and the
fact that U is unitary, we find that the expectation value
of any operator e is given as well by

So, in particular, we have

H'= g a„!,a„!,!rivi„(k+K),
nk

J'= g a„i,a „j„(k+K)ei/ (k;t)

nmk

(2.60)
i!!ip'= [H'+ Hd, p' ], (2.69)

From Eq. (2.67), and the time dependence of the opera-
tors U and U [Eq. (2.66)], we readily find that the evolu-
tion of p' is specified by the equation

where we have used Eqs. (2.42) and (2.53). Now the
operators U and U~ depend on time because of the time
dependence of (S~ and ~S &. Look first at

&
dls&

(s~ .
dt S dt

(2.61)

(xi x2 xN ~s & rf ~P+[WA. (xi)ei. (x2)¹!
X .

$2 (x„)],
(2.62)

where

(2.63)

To evaluate the time derivative in Eq. (2.61), we note that
the configuration-space representation of ~S & is'

where H' is given by Eq. (2.60), and

Hd = —QP' E(t)
= —g a„!,a ~„(k;t).E(t) .

nmk

(2.70)

In deriving Eq. (2.69) we have essentially effected a sepa-
ration between the intraband and interband dynamics.
The Hamiltonian H' describes the electrons as if they
were unperturbed by the electric field, except that their
energies change as they would if the electrons were mov-
ing within their original bands as driven by the field. '

All interband dynamics are driven by Hd, which takes a
form familiar from atomic physics, with QP' playing the
role of a dipole moment operator.

That dipole moment operator formally appears to be
associated with a number of "atoms, " each labeled by k,
with dipole matrix elements p„connecting different
"atomic states" —really the different bands. The only
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difference from the usual atomic dipole interaction Ham-
iltonian is that here the dipole matrix elements associated
with the atoms —really of course the electrons —vary be-
cause of the intraband motion. The formal structure of
the total Hamiltonian H'+Hd encourages one to think of
the electrons as entities with translational (intraband) de-

grees of freedom, with dynamics described by H', and
internal (interband) degrees of freedom coupled through
Hd to the electric field via a dipole moment, which is
however adiabatically modified by the translational
motion.

This rough physical picture cannot be pushed too far,
of course; the system really consists simply of electrons in
a periodic potential driven by an electric field: there are
no real "internal degrees of freedom" (besides of course
spin) of the electrons. This is reflected in the formalism
by the fact that the different Cartesian components of the
effective dipole moment operators are not kinematically
independent. Putting p„=eq„[cf.Eq. (2.31)], it is
easy to derive from Eqs. (2.4), (2.24), and (2.26) that'

III.PERTURBATION CALCULATION

A. Interaction picture

Returning to the Eqs. (2.69) and (2.70) governing the
dynamics of the system, we can now construct a formal
interaction picture which implicitly takes into account
the intraband motion described by H', Eq. (2.60). To do
this, note that although H' is time dependent the a„kare
not, so even unequal time commutators of H' vanish,

[H'(t, ),H'(t, )]=0 .

Defining the unitary operator

(3.1)

thus simply an effective group velocity (matrix) associated
with the intraband electron motion, but as modulated by
the polarization energy associated with the interband
motion. The form (2.72} for the expectation value of the
current density operator J is particularly useful for calcu-
lating that quantity, to which we turn in the following
section.

~ (
a b b a

~npqpm qnpQpm
=

~ b
p

(2.71)
W(t) —=exp —J H'(t')dt' (3.2)

where the superscripts a and b denote Cartesian corn-
ponents; if q described a true displacement (position)
operator, of course, we would have ~q', q ]=0 and the
left-hand side of Eq. (2.71) would vanish.

Nonetheless, the conceptual separation of intraband
and interband motion is useful in that it provides a physi-
cal interpretation of various contributions to terms of in-
terest. For example, as we show in detail in Appendix A,
we have

we then have

dW(t)
dt

W(t)H'(—t)

H'(t) W—(t),

and the interaction picture density operator,

p= Wp'W

(3.3)

(3.4)

&»=&J„)+„&P),dt
(2.72) is readily found to satisfy the dynamical equation

where J is the current density operator (2.48), (2.49),
(2.51), and (2.53), and P is the operator (2.65), which in
line with the discussion above we refer to as the polariza-
tion operator. Here,

ihip= [Hd, p],
where

Hd —= WHd W

(3.5)

, aC„(k;t)J„=—g bt„b i,iri

nmk

with

(2.73)
= —g a „i,(t)a i,(t)p„(k;t) E(t),

nmk

with, for' example,

(3.6)

(k;t) =—5„ irico„(k+K) —p„(k;t) E(t), (2.74)
i(t)= Wa i W (3.7)

can be physically identified as an intraband current densi-
ty operator. The physical significance of the terms con-
tributing to Jz can be seen by noting that

8 —:g b„„b i,|„ (k;t}
nmk

da k(t)
i R = [a i,(t),H(t)],

dt

where

(3.8)

Since a k is time independent, it is easy to confirm that
a i,(t) satisfies the differential equation

g b„i,b„i,A'co„(k+K) —QP E(t) (2.75) H(t) = WH'W

can be thought of as the sum of the kinetic and potential
energy of the electrons as they move through their bands,
plus a polarization energy associated with the interband
motion, itself modulated by the dependence of the
dipole-moment-like operators on the intraband motion of
the electrons. The derivative appearing in Eq. (2.73) is

= g a tk(t)a„i,(t)A'a~„[k+K(t)] . (3.9)

—iv (k;t)
a i(t)=a ie (3.10)

Working out the commutator in Eq. (3.8) and formally
integrating, we then have
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where

v (k;t)= f co [k+K(t')]dt', (3.1 1)

For any specified vector potential A(t), K(t)
= —(e/fi) A(t), the interaction picture takes into ac-
count in the operators a k(t) the variation of the energies
of the electrons as they move within their original bands
under the action of the applied 6eld. The only dynamics
remaining in Eq. (3.5) is then that of the interband
motion. We can describe this in perturbation theory by
iterating Eq. (3.5) in the usual way, 's

p(t) =po+ f [H„(t'),po]dt'

6= g a „ka &6„(k+K)e
nmk

—:g a za 18„(k t) .
nmk

(3.15)

Using Eq. (3.10) and Eq. (3.15) in Eq. (3.14), to determine
& 6 & we then require

In arriving at the last form of Eq. (3.13) we have used the
cyclic property of the trace to "unravel" the commuta-
tors. For operators of the form (2.46) and (2.49) we
have

+,f f [H„(t'), [H~(t"),p, ]]

X dt "dt'+ (3.12)

where po =p( t = —~ ) =p'( t = —oo ). For any operator
6 we then have [cf. Eq. (2.68)]

Tr(poa„~j,a 1, ) =5„ f„(k),

Tr(po[a„|,~„g,ttpj, ttq|, ])=&|,|,fgm(k)&„q5~p, (3.16)

& e &
=Tr(p'6') =Tr(p 6)
=Tr(p06),

where

6(t)=6(t)+ .„f [6(t),H (t)]dt'

(3.13)
where f„(k) is the Fermi factor for band n at wave vector
k, f„( k)=f„( k)

—f (k), etc. The second of Eq. (3.16),
and the more complicated expressions which appear in
the higher order contributions to Eq. (3.13), follow from
the anticommutation relations (2.36) and the first of Eq.
(3.16). From the sum (3.14) we find we can then write+,f f [[6(t),H~(t')], H~(t")]

(iR)

Xdt"dt'+
&e&=&e&„,+&e&„,+&e&„,+ (3.17)

=—e,(t)+e,(t)+e,(t)+. . . (3.14) where

&e&„,= yy„(k)e„„(k+K),
nk

&6&~ii= —. g f„(k)8„(k;t)e " ' f e " '

p „(k;t') E(t')dt',
nmk

&6&~2i= —
2 g 8„(k;t)f„~(k)e " ' f e ' '

p (k;t') E(t')

k

X f ' e' '"'"'
p „(k;t")E(t")dt"dt'

(k;t)f p(k)e " ' f e ~" '
p, „(k;t') E(t')

&'
nm,

k

(3.18)

with

v„(k;t):—v„(k;t)—v (k;t) . (3.19)

I

trons is included to all orders. We may see this in detail
by looking at the zeroth order term in the expansion.
Since

The expansion (3.18) is an iteration in the interband
motion, but in each step the intraband motion of the elec-

P'= —g atka ~„(k;t)1

nmk

(3.20)
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g f„(k)v„„[k+K(t)],
nk

(3.21)

where in the second of Eq. (3.21) we have explicitly indi-
cated the time dependence of K(t) [Eq. (2.9)]. Even for
an E(t) [Eq. (2.10)] consisting of a single frequency, Eq.
(3.21) will in general contain all higher harmonics as the
electrons fully undergo their intraband motion. This can
be seen by expanding the v„„ in Eq. (3.21) about K=O.
Denoting Cartesian components by superscripts and sum-
ming over them when repeated, we have

a e aU„'„(k)
(~')~ ~= —gf„(k) „'„(k)+—g f„(k) "", K'(t)

nk nk

a'U„'„(k)
+ g f„(k), , K'(t)K'(t)+

Bk Bk'

(3.22)

Taking the electric field to be in general sum of frequency
components,

E(t) = g E(cop)e
P

(3.23)

where each frequency ~p contains a small positive imagi-
nary part so that E(t) vanishes at t~ —~, using Eq.
(2.10) we find

(&')„,=—'g f„(k) „'„(k)
nk

[cf. Eqs. (2.55) and (2.65)] and p„=O if n =m [Eq.
(2.31)], we have ( P ) ~o~

=0. On the other hand, the
current density does not in general vanish to zeroth or-
der. Using the second of Eq. (2.60) and Eq. (2.52), we
have

(J)(o)= g f (k)j (k+K)

linear contributions due to the variation in the effective
masses of the electrons as they undergo intraband
motion, also diverge at zero frequency.

Our special case of interest is the situation where
f„(k)=f„=Oor 1; see the discussion after Eq. (2.29). In
that limit the second and third terms in Eq. (3.24) vanish,
since v„„(k) is a periodic function in reciprocal space [see
Eq. (2.3)], and gradients of such functions integrated over
the Brillouin zone vanish. More generally, we see from
Eq. (3.21) that

(J)~0~=0 (filled bands) (3.25)

i [v „(k;t') —capt' j
e

to all orders in the electric field, since regardless of the
value of K(t) the sum over k in the first Brillouin zone in-
volves the set of vectors k+K(t) which are equivalent,
when used as the argument of v„„,to the set of vectors k.
So, as expected, we find that there is no net current densi-
ty due to purely intraband motion in the case of filled
bands.

B. Expansion in powers of the electric field

We now return to Eq. (3.18) and consider (6)~,~,

which describes the first-order interband response. The
intraband motion is taken into account fully here, which
leads to a complicated integrand to evaluate, with A ap-
pearing in v „(k;t ). For some special applied fields, it
may be appropriate to evaluate (6 )

~ i ~
directly. But it is

also possible to use the expression to generate a series in
powers of E(t) which involves iteration in both the inter-
band and intraband motion. For the calculation of non-
linear susceptibilities, this is generally what is required.
To generate this expansion, use Eq. (3.23) in Eq. (3.18) to
write

(6)„,= —.„yf„.(k)e„.(k;t)e'""- '

nmk

f„(k) a.„„(k)
0 nk %COP ()k b

P

f„(k) c)'U„'„(k)

Py
—r(co~+co )tXe ~ ~ ~ (3.24)

Xp „(k;t')dt' E (coti),

(3.26)

where we henceforth take repeated frequency com-
ponents, as well as Cartesian components, to be summed
over. To approximate the integral which appears, use the
exact relation

The first term in Eq. (3.24) quite generally vanishes, since
for most initial conditions of interest f„(k)=f„(—k),
and v„„(—k)=v„„(k). The second term in Eq. (3.24) in
general does not vanish; since iii-'c)U„'„(k)Zc)k' is the in-
verse efFective-mass tensor for an electron at crystal
momentum Ak in band n, we identify this term as the
current density that would be expected from a collection
of free electrons, but with the inverse free-electron mass
replaced by the appropriate inverse effective-mass tensor
for each electron. This term diverges as ~p~0, simply
because the intraband motion of the electrons is resonant
at zero frequency in the absence of any scattering terms.
The third and higher terms in Eq. (3.24), which are non-

e Lt= e . —es(~)L d s(i) L(t) s(i) d
dt S(t) dt S(t)

with

L (t) =8 „(k;t),
S(t)=i[v „(k;t) cotit] . —

Then, defining

a.=k+ K( t),
a'=k+K(t'),

(3.27)

(3.28)

(3.29)
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we have S(t)=i [co „(a) —cop] [see Eq. (3.11)],and the integral appearing in Eq. (3.26) becomes

i [vmn (k; t) ~—()t] b

f t i[v „(k;t ) 'c—opt ]'b, , e t mn(

OO i [co „(K)—cop]

i [v „(k;t')—co~t jei' K

(k;t')
E'(I')dt',

Co „(K ) Cop

(3.30)

which is exact. We have used the fact that p „(k;t') and co „(Ic') depend on time only through their dependence on
K(t') [Eqs. (2.24), (2.31), and (3.29)], and dK(t')/dt'=e))t 'E(t') [Eqs. (2.9) and (2.10)]. Finally expanding E(t') in Eq.
(3.30) in frequency components [Eq. (3.23)], we apply Eq. (3.27) again, this time to the integrand on the right-hand side
of Eq. (3.30). Putting the result into Eq. (3.26), we find

&e&(1)=&e&(1.o)+&e&(1.1)+ ' ' ' (3.31)

where

f„(k) 8„(k;t)p „(k;t)
nmk Comn K COp

ief„(k) 8„(k;t) g p „(k;t)
(1,1) X

CO „(K) Cop COr c}K Co „(K) cop
e P ' E (cop}E'(co ) .

(3.32)

Here, & 8 &(, J) involves an ith-order expansion in the interband motion, with a total expansion in the electric field of or-
der (i +j). Similarly, turning to the third expression in Eq. (3.18), we proceed in the same way to find

&e&(,)= &e&(„)+&e &„,)+
where, for example,

1 1
&e&(2,0)—,X

I Com„(K) Cop CO&

k

f„i(k)8„(k; ))M't(k; ))(Ci„(; ) f i(k)8„(k; ))M' i(k; )Pin(; )+
Coin (K) Cor

Corn(

(K ) Co&

(3.33)

Xe P ' Eb(cop)E'(cor) . (3.34)

Note that the summands in Eqs. (3.32) and (3.34) still depend on time. But the time dependence associated with the
phases P(k; t) can immediately be seen to vanish. In the first of Eq. (3.32), for example, we have

8„(k;t))(c „(k;t)=[e„(a)e " '
][er „(a)e " '

]

=ee„(a.)r „(a.) .

Turning to the second of Eqs. (3.32), we can easily confirm from the definition of r „{a) that

(3.35)

[r „(K)A „(K)+r „(K)5 „(K)] I g [co
&

(K)l
& (K)r&„(K) co& (Ic )r

& (K)r&„(K)]
e " ' [r „(K)e " ' )=

BK co „(a.) COmn(K}

where

=r „,(a), . (3.36)

5 „(K)=V (K) —V„„(K), (3.37)

and the difference in Fermi factors [f„(k)]appearing in the second of Eqs. (3.32) ensures that, in our case of filled
bands, we need only consider the derivative appearing in Eq. (3.36) for co „(K)%0. Using Eq. (3.36) we may then write

)(I „(k;t)f„(k)8„(k;t)
C}K' COmn K Cop

where

r „(Ic)=ef„(k)e„(a)
Comn K Cop

(3.38)

+r"„(a)
Co „(K) COp . Co „(K) Cop C}K Co „(K) Cop

(3.39)

When Eqs. (3.35}and (3.38) are used in Eq. {3.32), the only remaining time dependence is due to the dependence on time
of K for each k [Eq. (3.29)]. But in the case of filled bands this time dependence vanishes, by virtue of the argument
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given after Eq. (3.25), and we can write

ef „8„(k)r „(k)
nmk mn P

ie „8„(k) r „(k)
..k

A'2 ~..(k) —
Mp

—
My ~..(k) —

mp

1
2

&8&(2,0) 2 X
( co „(k) cop co&

k

f„,e„(k)r,(k)r;„(k) f,e„(k)r', (k)r,„(k)+
~,„(k)—~, co ((k) —co

(3.40)

Xe p ' E (cop)E'(coy) .

For the rest of this paper we shall restrict ourselves to the case of filled bands, leaving aspects of the more general prob-
lem to later communications.

We close this section by collecting all terms of a given order in the electric field together. That is, we put

(8&,=&e)(i 0)

& e &„=& e &„„+& 6&„„, etc. ,

where

(3.41)

(8),=R, ( cop', cop)—E (cop)e

l ( COp+ CO )t(6)n=R ii ( p
'

p )E (cop)E (

with

(3.42)

ef„e„(k)r „(k)
R i (

—
cop', cop) = g

nmk ~mn ~P

2

R ii( cop co;cop, co )—g„)A' [co „(k)—cop
—co ]

k

f„(6 „(k)r")(k)r(„(k) f (6„(k)r'((k)r)„(k)+
co,„(k)—co co )(k) —co

(3.43)

f„e„(k) r"„(k)+ g [co „(k)—cop
—cor] co „(k)—cop

Although it is possible to symmetrize R„so that it
satisfies intrinsic permutation symmetry, ' R i;( —

cop

cor, cop—,cor)'=Rii( cop cor , c—or, cop—), w'e have not done
that in Eq. (3.43) for simplicity. These expressions will
serve as the basis of our calculation of susceptibilities in
the following section.

&p) =(»,+&»„+
&J, &=&J, &,+&J, &„+

with

(P'), =y,' ( cop, cop)E (cop)e—

(3.44)

(3.45)
C. Susceptibilities

As an example, we now use the perturbation formalism
derived in the preceding sections to evaluate the linear
and second-harmonic susceptibilities of a crystal with
filled bands. The first of these is of course a well-known
result; the second has only been recently derived for a
general crystal class, utilizing a sum rule to eliminate an
unphysical divergence. In the present formalism, such
divergences do not even appear.

We have already seen that the expectation value of J
vanishes to zeroth order [Eq. (3.25)], and to evaluate it to
higher order it is convenient to calculate ( P ) and (Jz )
separately [see Eq. (2.72)]. Referring to the final results
of Sec. III B, we see that we can expect expansions of the
form

C l(Mp+~ )t
'&n=yii'( —~p —~ '~p, ~, )E (~p)E'(~, )e

and
l CO

&J&,= ( — p; p)E ( p)
(3.46)

(J~ )„=cr;,'( cop coy, cop, co )E—(cop—)E'(cor)

—i(a)p+co )t
Xe

where as before both Cartesian components and frequen-
cy components are to be summed over if repeated. It is
easy to verify that cr; ( —co;co) vanishes for a crystal with
filled bands, so the entire linear response is due to inter-
band transitions, real and virtual. Using the result (3.42),
with e=P', we find



48 NONLINEAR OPTICAL RESPONSE OF SEMICONDUCTORS IN. . . 11 717

e f„r„' (k)r"„(k)

nmk ~mn
(3.47)

exactly the result we would find for a set of atoms labeled
by k [see discussion after Eq. (2.70)]. Note that at this
point the phase of the wave functions used to calculate
r„(k) and r „(k) is irrelevant, since multiplying
g„(k;x) or P (k;x) by any (uniform) phase will not
change the product in the numerator of Eq. (3.47). Thus,
any convenient set of wave functions may be chosen; they
need not satisfy the first of Eq. (2.3). Defining the dielec-
tric constant

e (co)—5 +417+i ( co;co) (3.48)

where we explicitly indicate the small positive imaginary
part ig of the frequency [see discussion after Eq. (3.23)].
Passing to the limit of an infinite crystal we take

and writing the r(k) in terms of the v(k) [Eqs. (2.5) and
(2.31)],we have

ab( ) gal + 4yre fnm nm mnf u' (k)u (k)

l, co „(k)[co „(k)—co —ill]

(3.49)

the usual result. The numerical evaluation of Eq. (3.51),
for a given calculated band structure, is usually done
directly; Re[e' (co) ] can then be obtained from that result
using the Kramers-Kronig relation.

We now turn to the (second order) nonlinear response.
Here, both ( Jz )» and ( P )» will contribute to (J )„
through Eq. (2.72). Introducing an effective polarization
potential P through the relation

(3.52)

and expanding P as in Eqs. (3.44), we introduce an
effective nonlinear susceptibility y' '( —

cop —co; cop, coy )

by

P:y ( cop coy cop coy')E (cop)E (coy)e

(3.53)

From Eqs. (2.72), (3.45), (3.46), (3.52), and (3.53) we then
find

abc abc
( COp COy j COpy COy ) yi7 ( COp COyy COpy COy )

1~ ydk (3.50)
l crii ( cop coy,'cop, coy )+

(cop+ coy )

X5[co—co „(k)], (3.51)

the factor of 2 to include the spin degeneracy, and we find

u„' (k)u „(k)
Im[e'"(co)]= g fdk

COmn k

(3.54)

As an example, we work out the effective susceptibility
for second-harmonic generation, g' '( —2co;co, co). Using
the second of Eq. (3.42) with 6=P' we easily find

3 1
Xii

k

f.lr: «)[r'i(k)ri. «)] f lr: «)[r'i«)rr:«)]+
co,„(k)—co co l(k) —co

le f r' (k)J nm nm

2iii 0 „ l co „(k)—2co

r'„(k)
+

co „(k)—co

r „(k)
co „(k)—co

(3.55)

where when we use the curly brackets I j with the matrix elements we mean a symmetrized form with respect to Carte-
sian components [r l(k)rl„(k)]—:—,'[r l(k)rl„(k)+r'&(k)rl„(k)]; we have defined y' '( 2co;co, co)—so that it satisfies in-
trinsic permutation symmetry, 'y'„' ( —2co;co, co)=y»'( —2co;co, co). Next we turn to cyi, '( —2co;co, co) [Eq. (3.46)]. From
Eq. (2.73) for the operator J„we see that there will be two contributions due to the two terms contributing to 8„.To
obtain second-order terms in (J„),the first must be taken to second order in the perturbation expansion [Eqs. (3.42)],
but the second only to first order. Gathering up both terms, we find

l cr ii ( 2co; co, co ) 3

4' Qco

f„u„'„(k)Ir„(k)r'„(k)] f„u„„(k)[r"„(k)r„' (k)]+
co „(k)—co co„(k) —co

(3.56)
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The sum of the expressions in Eqs. (3.55) and (3.56) gives
the effective nonlinear susceptibility for second-harmonic
generation, y' '( —2';co, co) [Eq. (3.54)]. In Appendix 8
we discuss how expressions such as (3.55) and (3.56) may
be reduced to forms amenable for numerical analysis.
Here we only note that the expression for yt,"'( —2';co, co)
is obviously finite as co —+0, and the expression for
i(2') cr&&'( —2';co, co} is easily shown to be finite as
co~0 using only time-reversal symmetry (Appendix 8).
Thus, the formally divergent terms that appear in more
usual derivations of g' '( —2';co, co), and must be elim-
inated by sum rules, do not appear in this approach.
Nonetheless, after a certain amount of algebra, the ex-
pression derived here for y' '( —2co;co, co) can be shown to
be equivalent to the usual expression, as discussed in Ap-
pendix B.

D. Second-harmonic generation in CdTe

I I I I
i

I I I I

10 — CdT

I I I I
i

I I I I

0 I « I 1 I I I I—1
0 1 2

Energy (eV)

FIG. l. Im[y"«'( —2c0;co,cII)] for CdTe. See Ghahramani,
Moss, and Sipe (Ref. 23).

As a simple example, in this section we present the
different contributions to P '( —2co;co, co) for CdTe from
a full band-structure calculation. The energy bands and
velocity matrix elements are calculated using basis orbit-
als ( Is-5p) for Cd and Te in a minimal linear combination
of Gaussian orbitals (MLCGO) technique, in conjunction
with the Xa method for constructing the potentials of
each material. The local single-site effective potentials
and basis orbitals are constructed by adjusting the a's to
produce the correct lowest band gap; interactions up to
ninth nearest neighbor are included to ensure conver-
gence. This technique has been widely discussed and em-
ployed by us' and others. Although not an a priori
method, it generally gives good qualitative and often
good quantitative agreement with experiment when used
to calculate the optical response of semiconductors.
Typically, relativistic effects, such as spin-orbit coupling,
are neglected, so the formalism developed here can be ap-
plied without extension.

The results for CdTe have already been presented in
the literature and compared with experiment; for refer-
ence we give the frequency dependence of the imaginary
part of y «'( —2';co, co) in Fig. 1. For cubic symmetry
this component, and those equal to it by symmetry, are
the only nonvanishing components. We denote it by
g' '(co). The real part of g' '(co) can be determined from
the imaginary part by a Kramers-Kronig relation.

Figure 1 was calculated using the standard approach
sketched in the Introduction, extended to second
order; a sum rule was used to eliminate an apparent
divergence at zero frequency. With the approach
developed in this paper no such divergence appears (see
Sec. IIIC), and the physical different contributions to
Imp' '(co) may be identified [see Eq. (3.54)].

These different contributions are plotted in Fig. 2. The
solid line is the contribution from the first term on the
right-hand side of Eq. (3.55) [see Eq. (84)]. It represents
the purely interband contribution that would result if one
thought of the system as only a set of effective atoms la-
beled by their crystal momenta k [see the discussion after
Eq. (2.70}]. Although this term can be nonvanishing for
photon energies Aco=E ) ,'EG, where EG is the (direc—t)

band gap [see Eq. (84)], and the computed values of this
term for —,'EG & E & EG indeed seem to be larger than the
inevitable numerical noise, our results indicate the term is
only significant when E & EG. It is clear from a compar-
ison of Figs. 1 and 2 that this pure interband term is only
part of the physics.

The dashed line in Fig. 2 is the contribution from the
second term in Eq. (3.55) [see Eq. (813)], and describes
the portion of Imp' '(co) that results from the modulation
of the linear susceptibility by the intraband motion of the
electrons [refer back to Eq. (3.26}; this term follows from
the second expression in Eq. (3.32) with B=P']. For
E (EG this is the largest contribution to Imp' '(co). Fi-
nally, the dashed-dotted line in Fig. 2 is the contribution
from i (2') 'c«P; Eq. (3.56) [see Eqs. (86b) and (817)].
This is the portion of Imp' '(co) resulting from the
modification of intraband motion by the polarization en-
ergy associated with the interband motion [see Eqs. (2.73)

I I I
[

I

Cd Te
I I I I

I
I I I I

0

Cc0

0

10—

0 2
Energy (eV)

FIG. 2. The different contributions to Im[y"«'( —2';co, co)].
Solid line: pure interband term; dashed line: modulation of in-
terband term by intraband motion; dashed-dotted line: modula-
tion of intraband current by interband polarization. See text.
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and (2.74); the first sum in Eq. (3.56) vanishes (see discus-
sion before Eq. (B14)). This term only appears for
E &EG.

The three curves in Fig. 2, when summed, lead to the
curve in Fig. 1, as they should. We note that some par-
ticular contributions [those from Eqs. (B12a) and (B16b)]
vanish identically for the special case of cubic symmetry
considered here, although in general they would be
nonzero. And while there is still much to be interpreted
in how all these different contributions relate to the un-
derlying features of the band structures of semiconduc-
tors, it is clear that the formalism established here at least
allows them to be identified as different physical effects,
and calculated. We plan to return to matters of more de-
tailed interpretation in future communications.

IV. SUMMARY

We have presented a formalism for the calculation of
nonlinear optical response coefficients of crystals within
the independent particle approximation. Our particular
emphasis has been on the case of+lied bands, where all
bands are either completely filled or completely empty.
None of the apparent divergences which plagued earlier
formalisrns appear here. Although we have presented de-
tailed expressions and a sample calculation only for
second harmonic generation, the formalism can be easily
applied to find expressions for response coefficients for
other nonlinear processes. The second-quantized form in
which the theory is developed will facilitate generaliza-
tion beyond the independent-particle approximation.

The hallmark of the technique is the separation of the
interband and intraband motion of the electrons, both in
calculating the evolution of the density operator [Eqs.
(2.69) and (2.70)], and in evaluating the induced current
density [Eqs. (2.72) —(2.74)]. Although for the evaluation
of the usual response coefficients one wants a perturba-
tion expansion in both interband and intraband motion,
the formalism treats these effects in quite different ways.

The intraband motion is taken into account by expand-
ing in terms of eigenstates of the instantaneous Hamil-
tonian [cf. Eq. (2.11)]. In the limit of low frequency —the
adiabatic limit —these become exact single-particle wave
functions describing the evolution of the system. Note
that we have defined these wave functions such that they
are orthogonal to their parametric time derivatives [see
Eq. (2.15)]. This guarantees that the Berry's phase is in
eluded in these wave functions; in fact, it is related to
the g [see Eqs. (2.22) —(2.24), and the recent work of
Zak and co-workers ]. For the usual nonlinear response
coefficients, we expect the results to be independent of
these Berry's phases for filled bands, as we have seen here
for the special case of second harmonic generation. After
all, such coefficients could be calculated by the more usu-
al approach (recall the discussion in Sec. I) where only
momentum matrix elements would appear. The possible
appearance of the Berry's phases in more general optical
response calculations is still a matter for investigation.

By defining the instantaneous eigenstates so that they
are orthogonal to their parametric time derivatives, we
guarantee that the rest of the physics involves only ma-

trix elements between different bands [see Eqs. (2.31),
(2.69), and (2.70)], i.e., it is the interband motion. A per-
turbation theory was developed in terms of the interband
motion and, although for our application here we also ex-
panded in terms of the intraband motion, one could use
the perturbation calculation of the interband motion tak-
ing the intraband motion into account to all orders [Eq.
(3.18)].

Qf the contributions to the response coefficients, a
"purely" interband term can be identified, which is the
only contribution that would appear in a simple model
where the crystal is considered as a set of n-level atoms,
each associated with a different k point. Since we can
also calculate the other contributions, one of the issues
this formalism will allow us to address is the question of
just how good a description of the true nonlinear optical
response follows from such a simple and attractive physi-
cal model. To this, and the host of the other issues in this
paper we have relegated to future communications, we
now plan to turn.
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APPENDIX A

1=—Tr p' g a„za ~„(k;t)
nmk

We then find

(A 1)

=T, +T +T (A2)

where the superscript a denotes a Cartesian component,
and

T, = Tr [H', p'] g a„&a~~'„~(k; )
1

nmk

Tr [Hd, p'] g &.~~~~'„~(k; )
1

nmk

~P (k' i) dK"
g~b dt

1 Tr p g unÃma
nmk

(A3)

where b also denotes a Cartesian component, and we
have used Eq. (2.69); repeated Cartesian components are
to be summed over. Using the trace property

Tr([A, B]C)=Tr(B[C, A]), (A4)

the expressions for T, and T2 may be rewritten as involv-

ing the commutators of a„ka k with 0' and Hd, respec-
tively. From the anticornmutation relations of a„k and

In this appendix we confirm Eq. (2.72). We begin, us-
ing Eqs. (2.65) and (2.68), with

(P ) =Tr(pP) =Tr(p'P')
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a k. it is easy to verify that

[CtnkCtpzk Ctpk'Ctqk'] ~pk+qk~mp~kk' +pk~mk8nq tikk' (A5)

[see Eqs. (2.5) and (2.31)] and

r„' .b(
—k) = —r'„.b(k) (B3)

so immediately

[ct„"ka k, H'] = —%co„(k+K )a„ka

and

1
T, = —. Tr p' g co„(k+K)p'„(k;t)a„ka

nmk

e iP (k;t)=—Tr p' g v„' (k+K)e " '
ct„ka~k

n, mAn,
k

(A6)

= (J') ——g Tr[p'v„'„(k+K)atka„k],
nk

(A7)

where we have used Eqs. (2.31), (2.52), (2.60), and (2.68).
Similarly, using Eq. (A5) to evaluate [a„kct k, Hd], we
find

[see Eq. (3.36)]. The goal of the kind of simplifications we
seek is to reduce expressions to be computed to a form
which involves only one factor of the form [co&„(k)—co]
or [co&„(k)—2co] ' [see, e.g., Eq. (3.42)]. Then, restoring
the small positive imaginary part to the frequency the
factor can be written as a principal value part of a Dirac
6 function. The contribution from the latter can be com-
puted directly, and then the other obtained by a
Kramers-Kronig relation.

We begin with the first term on the right-hand side of
Eq. (3.55). Here the factors (co „—2co) '(co&„—co) ' and
(co „—2co) '(co

&

—co) ' may be broken up by the
method of partial fractions. Two terms proportional to
(co „—2co) ' result, which may be combined, as well as
terms proportional to (co&„—co) ' and (co

&

—co) '. The
final result is

e
T2 = Tl p g Q„kQ

nmk

ap, „(k;t)
az'

ap, '„(k;t)
E'(t),

e rrim Irmlrfn ] 2fnm + f I

iri 0 (col„co i ) (co „2co) (co i co)

In

(COi„CO)
(B4)

(A8)

eT3= Tr p' g a„ka
nmk

a~„.(k;t) E'(t) .az' (A9)

Using Eqs. (A7)—(A9) in Eq. (A2), we find

(J') = (P') +—Tr p' g v„'„(k+K)ct tka„k
dt nk

ap,
'„(k;t),

n~" p'&

where we have used Eq. (2.71). Finally using Eqs. (2.9)
and (2.10), we have

Here, and in the rest of this appendix, we do not explicit-
ly indicate the k dependence of terms such as r„' (k) and
co„(k), and we understand all band indices, as well as
crystal momenta k, to be summed over. Note that (B4) is
of the form desired, except for possible difficulties with an
"accidental degeneracy" if col„=m

&
at some point in the

Brillouin zone. Although the possibility and nature of
such accidental degeneracies has not been studied in de-
tail analytically, the evidence from numerical calculation
is that they do not present a problem. '

Now we turn to the second sum in Eq. (3.55). To effect
a decomposition by partial fractions, we work out the
derivatives to find that the net term to be summed may be
written as

Defining

(A10)
rbie Jnm nm rmn;c

2irt2 fl co 2co ( co co )

r' a'
+(b~c)

(COmn

(B5)
1 a6„(k;t)

nk mkg
nmk

(Al 1)

APPENDIX B

where 6'„(k;t) is given by Eq. (2.74), and using Eq.
(2.68) we find Eq. (2.72) from Eq. (A10).

where (b~c) indicates the preceding term(s) should be
written with b and c exchanged. We have used

~~mn
(B6)

ak
[cf. Eq. (3.37)]. Decomposing Eq. (B5) by partial frac-
tions we find

v „(k)=—v„(—k), (Bl)

In this appendix we discuss the simplification of ex-
pressions (3.55) and (3.56). The only symmetry property
we employ is the time reversal symmetry of the Hamil-
tonian (2.1), from which it follows that

ie
2%20 nm nm

r'

4rb„a' „
COmn (COmn

2r+
COmn ( COmn

b b
rmn;c rmn;c

CO „(CO „2CO) CO „(CO „CO)

so

r „(k)=r„(—k) (B2)

b gc
+ +(b~c)

COmn ( COmn

(B7)
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b
rmn ()

~mn ~k ~mn

b c
rmn ~mn

COmn (COmn

(88)

so we may partially integrate such terms over the Bril-
louin zone, the net contributions at the edges of course
vanishing. Returning for a moment to Eq. (3.36), we
see that

To handle the terms proportional to (co „—co) we note
that

for yf&'( —2co;co, co) [Eq. (3.55)] is the sum of terms com-
ing from expressions (84), (812a), (813a},and (813b). All
expressions are to be summed over the Brillouin zone,
and (84) and (812a) are to be summed also over band in-
dices n and m, while (813a) and (813b) are to be suinmed
also over band indices n, m, and l.

Next we turn to the simplification of Eq. (3.56). The
first sum in that expression vanishes from time reversal
symmetry: writing that sum as half the sum over k and
half that over —k, and using Eqs. (Bl) and (82), it is seen
to vanish. When the same procedure is applied to the
second sum in Eq. (3.56), we find

=r'„,(Ic)r„. (a)+ r'„.(Ic)r„,(lc), .

(89)

le fnm

4A Qco ~nm
rnm;a rmn

so in the result of the above-mentioned partial integration
we may put

a
ak

t
a b a b a b

rmn rnm rmn'crnm rmn rnm c7 7
(810}

ie Zr„'
b

2AQ CO „(CO „) 2r'„a' „
~mn

Doing this and collecting all terms, we find that the sum-
mand (87) may be replaced by

le' f.
4A'0

X I
rb ,r'„].

1 1

~mn ~ ~mn +~

(814)

as an equivalent summand, which confirms that
i(2 co) 'of, '( —2co;co, co) is finite as co~0. Writing the
term in exPression (814) involving (corn„+co) as a sum
over —k and using Eqs. (82) and (83), it may be com-
bined with the first term in the second line of (814) to
give a summand

b a c
rmn nm mn

~ 3le f.
(815)

+(b~c) (811)

Using expressions for r „, and r.„' ., [see again Eq.
(3.36)] in Eq. (811), we look first at the terms involving
only two bands; we find they may be collected into two
terms with different resonant denominators,

ie fnm~nm [rmnrnm ]

COmn (COmn
(816a)

equivalent to the summand (814). Referring back to Eq.
(3.36), we see that when it is used in the expression (815)
both two-band and three-band terms will be generated.
The two-band term is the sum of two contributions,

~ 3 ra

A' 0 CO „(CO „—2CO)
(812a)

and

ie fnm ~mn

fi 0 CO „(CO „—CO)
rmn rnm (812b)

and

2e fnmrnm(~ml ~ln ) [rmlrln ]

ill 0 CO „(CO „2CO)
(813a)

3

A 0 COI„(COI„CO)

a b c
~mnrnm [ rmlrln j

CO, (CO, —
CO)

(813b)

Neither (813a) nor (813b) vanishes. Thus the final result

Applying time-reversal symmetry [Eqs. (Bl) and (82)],
Eq. (812b) is seen to vanish. The terms involving three
bands that result when Eq. (3.36) is used in Eq. (811)can
likewise be written as the sum of two terms with different
resonant denominators,

l'e fnm rnm I rmn ~mn ]

2iri 0 co „(co „—co)
(816b)

The final result for i(2 )co'o»'( —2co;co, co) is thus the
sum over terms coming from expressions (816b) and
(817). Both expressions are to be sumined over the Bril-
louin zone, and (816b) is to be summed also over band in-
dices n and I, while Eq. (817) is to be summed over band
indices n, m, and l.

This completes our simplification of Eqs. (3.55) and
(3.56). When the described results are combined,

Using time-reversal symmetry, the sum over k of expres-
sion (816a) is easily seen to vanish. The three-band terms
that result from using Eq. (3.36) in the expression (815)
can be written as

3e a b c a b c
2A' 0 CO „(CO „—CO)

[COnl Im [ mn nl ] ~lm rnl [ Im mn ] ]

(817)
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t Crtt ( 2co;co, co)
( 2ci);co,co)=gtt ( 2co;co, co)+

CO

[cf. Eq. (3.54)], we obtain an expression which, after some
straightforward algebra, is found equivalent to the ex-
pression for y'"'( —2co;co, co) obtained earlier, by usual
perturbation theory, for a crystal with filled bands.
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