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The plane-wave method for electronic-structure calculations is reformulated in generalized curvi-
linear coordinates. This introduces a new set of basis functions that depend continuously on a
coordinate transformation, and can adapt themselves to represent optimally the solutions of the
Schrodinger equation. As a consequence, the efFective plane-wave energy cutofF is allowed to vary
in the unit cell in an unbiased way. The e%ciency of this method is demonstrated in the calculation
of the equilibrium structures of the CO and H&O molecules using the local-density approximation
of density-functional theory, and norm-conserving, nonlocal pseudopotentials. The easy evaluation
of forces on all degrees of freedom makes the method suitable for ab initio molecular-dynamics
applications.

I. INTRODUCTION

With the advent of ab initio molecular dynamics (MD)
based on density-functional theory (DFT), tremendous
progress in the determination of electronic and structural
properties of materials has been made. Its application to
a wide range of molecules, clusters, solids, and surfaces
has demonstrated that MD calculations can successfully
predict structural properties of most ionic and covalent
systems. The success of such an approach relies largely
on an accurate and numerically stable representation of
the forces acting on atoms. This was first achieved using
plane-wave basis functions and pseudopotentials, which
are still used in most ab initio MD calculations. Many
properties of the plane-wave basis have contributed in an
essential way to the success of ab initio MD simulations.
Among these, we note (i) their orthonorrnality, (ii) the
use of fast Fourier transform algorithms to obtain a real
space representation of wave functions, (iii) the smooth
control of convergence provided by the plane-wave energy
cutoff, (iv) the independence of the basis set on atomic
positions, and (v) the unbiased way in which orbitals are
described throughout the unit cell.

These advantages, however, are obtained at the cost of
eKciency, since a large number of plane waves is needed
in order to reach convergence in large systems, or for
atoms having a rapidly varying potential. This lack of
eKciency, even though partially remedied by the use of
pseudopotentials, makes the plane-wave approach un-
wieldy for the calculation of electronic properties of com-
pounds involving first-row elements. Furthermore, the
large number of plane waves needed in such calculations
also affects adversely the rate of convergence of the iter-
ative algorithms used in the energy minimization.

A way around these difticulties could be to turn to
localized basis functions (e.g. , Gaussians, Slater-type or-
bitals, atomic orbitals), which are better suited to the
description of solutions of the Schrodinger equation, and
usually give a good description of physical properties
with a reasonably small number of basis functions. How-

ever, this increase in eKciency usually implies the loss
of property (v), which is acceptable, but also of proper-
ties (i)—(iv), which leads to additional complications in
the calculations. First, lack of orthonormality of the ba-
sis functions implies the use of an overlap matrix in the
eigenvalue problem, which is known to become numeri-
cally untractable as the number of localized basis func-
tions is increased in order to attain convergence. Further-
more, choosing localized basis functions which lead to a
rapid convergence of the results can be a delicate task. A
systematic procedure to increase the quality of the basis
set is usually lacking. Lastly, localized basis functions
are usually centered ori atoms, so that the basis set and
the overlap matrix depend explicitly on the ionic coordi-
nates. This introduces additional terms (Pulay forces) in
the calculation of the atoxnic forces.

In this paper, we present a formalism which generalizes
the plane-wave formalism and dramatically improves its
efBciency without losing its most important properties.
This is achieved by reformulating the plane-wave method
in arbitrary curvilinear coordinates. The resulting basis
set is similar to plane waves, but depends continuously
on a given three-dimensional coordinate transformation.
Treating this coordinate transformation as a variational
parameter then allows the unbiased optimization of the
basis set, while keeping the number of basis functions
constant. An immediate consequence of this approach
is that the effective energy cutoff of the plane-wave ex-
pansion can vary locally so as to adapt optimally to the
physics of the problem. In typical examples, the increase
of eKciency of the basis set is manifested in a fourfold to
ninefold local increase of the effective plane-wave cutofF in
the vicinity of the atoms, i.e., where the wave functions
vary rapidly. This implies that a calculation that requires
a cutoff of 160 Ry in a small part of the unit cell can be
carried out with a number of plane waves corresponding
to a cutoff of 20 Ry throughout the unit cell. An ap-
plication of the method to the calculation of structural
properties of CO and H20 shows that a high degree of
accuracy can be attained with only a limited number of
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basis functions. A reduction in the number of basis func-
tions by a factor of 10—25 can be achieved with respect
to a conventional plane-wave calculation, with equivalent
accuracy.

The rest of this paper is organized as follows. In Sec. II,
the basic tools needed for the construction of the new ba-
sis set are developed. Section III describes the applica-
tion of the adaptive coordinates to the problem of elec-
tronic structure within the local-density approximation
of the DFT, and using norm-conserving, nonlocal pseu-
dopotentials. An application to the calculation of the
equilibrium geometries of the CO and H20 molecules is
then given in Sec. IV.

II. BASIC FORMALISM

A. Properties of the basis functions

(k~k') = — exp[i(k' —k)((x)] ds2:0 Bx

exp[i(k' —k)g) d $0
(4)

To prove completeness in L2(Ts, d x), we note that the
functions gk can be seen as the characters of the unitary
representations of the compact Lie group T . The the-
orem of Peter and Weyl ' states that these characters
form a complete basis, independent of the coordinates
chosen.

Given a smooth map «((), the functions yk can there-
fore be used to represent any function vp C I2(Ts, d x),

@(x) = ) ckgk(x).

In this section, we derive the properties of plane waves
in arbitrary curvilinear coordinates. The solutions of the
one-particle Schrodinger equation are then described us-
ing this formalism. We consider a set of arbitrary curvi-
linear coordinates for a periodic system with a unit cell of
volume 0, spanned by the Cartesian coordinates (', i =
1, . . . , 3. We then define an invertible map ( ~ x(() on
the unit cell 0 (which, because of the periodic boundary
conditions, can be identified with the 3-torus T ), and re-
quire that this map be twice continuously differentiable
everywhere in T . The Riemannian metric tensor can be
expressed as '

g~k g~k

0(' 8(&

(summation over repeated indices is used throughout this
paper). This particularly simple expression of g;~ is a
consequence of the Hatness of T or, in other words, of the
fact that there always exists a coordinate system on T
for which g;i = h;~ [i.e., Euclidean coordinates x(() = (].

Plane waves in curvilinear coordinates are then defined
by

1
gk(x) = g

x~4 exp[ik((x)]0
1 0$

exp [ik((x)],0
where g = detg, ~, ~8(/Bx[ is the Jacobian of the trans-
formation x m ((x), and k is a reciprocal lattice vector

(nx n, n, lk=2~
~

—,—,—~, n„n„n, g Z,

B. One-electron Schrodinger equation

In the following example we consider the use of this
basis set to represent the solutions of a one-particle
Schrodinger equation. The corresponding Hamiltonian
1s

h2
H = — 4+ V(x)2m

and its matrix elements in the yk basis are

(k~H~k') = — (k; + iA;)g" (k,
' —iA, )

) 1

+V(x(()) exp[i(k' —k)(] d (,

where g'~ denotes the inverse of the Riemannian metric
tensor g;~, and by analogy with the notation of a gauge
potential, A; is defined by

1 |9 t9X

2 8(' 0$

Note the close connection of A; with the contracted
ChristoKel symbol 1 ., All the quantities appearing in
Eq. (7) can be evaluated once a coordinate system x(()
has been specified. Using the expansion of a solution
Q(x) in the yk basis,

@(x) = ) ck exp[ik((x)],
1 8$

we can write the energy as

where aq, a2, and a3 are the dimensions of the unit cell,
which we choose to be orthorhombic for simplicity. The
fuxxctions yk(x) reduce to ordinary plane waves in the
case of Euclidean coordinates. We now show that for
any given map x((), the functions yk forxn a complete
orthonorxnal basis of L (T, dsz). The orthonormality
follows immediately &om the change of variables

E[( k), (*'(())1
1 52= ) ckck — (k, + i A;)g*~ (k' —iA~)

kk'

+V(x($)) exp[i(k' —k)(] ds$. (10)
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52k~
Clit (12)

In the limit of slowly varying coordinates, the largest
value (E,„~") of the local effective cutoff in the unit cell
gives an estimate of the energy cutoff needed to reproduce
the same results using conventional plane waves. How-
ever, in practical calculations, E,„~ is usually smaller
than the energy cutofF of an equivalent calculation in
conventional plane waves. This can be understood by
considering the extreme case of a function represented
with only one (k = 0) basis function. In this case, even
though E,„t = E,„t = G, any positive function can be
represented exactly by this single basis function by choos-
ing appropriate coordinates.

Intuitively, it appears advantageous to use coordinate
systems such that the effective energy cutoff is large in
the regions where solutions vary rapidly (e.g. , in the
vicinity of atoms). As is clear from Eq. (2), this also
makes the basis functions yp oscillate more rapidly and
have a larger amplitude in these regions.

C. Determination of optimal coordinates

Note that expressions (7) and (10) are nothing but a
coordinate-free representation of the Hamiltonian matrix
elements and of the energy. By definition, the coordinate-
free energy (10) is independent of the choice of coor-
dinates x(() if the solution vP is represented exactly in
L (T, d x), i.e. , if g is represented by an infinite sum in
Eq. (9). Any truncation of the expansion (9) to a finite
number of terms makes the energy coordinate-dependent.
Clearly this is the case in all practical applications, in
which only a finite number of functions yk can be used
to represent the solution. Thus, in practice, some coor-
dinate systems will be better suited than others to the
representation of the solutions. We will consider below
strategies to obtain optimal coordinates, in the sense that
the energy (10) is minimized.

In order to measure locally the eKciency of the basis
set, we define a local effective energy cutoff by

E.„,(x) = g(x) '~'E.'„„
where g(x) is the determinant of the inetric tensor at
position x, and E,„t is the usual plane-wave energy cutofF
defined in terms of the largest reciprocal lattice vector
k „used in the expansion (9),

plicit dependence of the basis set on atomic positions,
and therefore complicate the calculation of ionic forces.

Instead of making uncontrollable assumptions about
the optimal choice of x((), we consider the coordinate
system as a variational parameter, and look for coordi-
nates that minimize the energy. For practical reasons,
the coordinate system must not only be represented by
a finite number of parameters, it must be done in a way
that facilitates the calculation of the derivatives ojx'/0(~
needed for the evaluation of g;~ and A, . We chose to
represent x(() as

x(() = (+) xg exp[i+(],

where the Q's are reciprocal lattice vectors, and the
Fourier expansion is limited to Kg plane waves. Al-
though Ng can be arbitrarily large, care must be taken
to insure that no fast Fourier transform (FFT) aliasing
errors appear in the representation of the metric tensor
and of its determinant.

The energy, therefore, has the general form
E[(ck), (xg), (R )], where the dependence on atomic
positions R has been included. Its minimization can
now be carried out using, e.g. , a simulated annealing
approach, whereby the coefBcients cp and xg and the
atomic positions R are varied simultaneously until the
energy is stationary. The Lagrangian describing such a
dynamical system is

L[(c~) (c~) (x~) (xcf) (R-) (R-)]
= K i((ck)) + K--~((x~)) + K'-((R-))

—E[(c~) (x~) (R-)] (14)

where K,i((ci,)) and K, ,g((xg)) are fictitious kinetic
energies associated with the electronic and coordinate
degrees of freedom, respectively, and K; „((R )) is the
ionic kinetic energy. Fictitious masses are assigned to
the electronic degrees of &eedom as well as to the coor-
dinates. Lagrange multipliers can be added to this ex-
pression in the usual way in order to enforce additional
constraints, such as orthonormality of the eigenfunctions.

We can now derive the generalized forces on all de-
grees of freedom from the Lagrangian (14). Functional
derivatives bL/bg are obtained in the usual way from the
Hamiltonian

We now focus on the problem of choosing an optimal
coordinate system x((), which, as will be seen below,
can increase dramatically the efFiciency of the basis set.
A possible approach would consist of choosing arbitrar-
ily a local efFective cutofF function E,„t(x), although it is
not always clear a prior, where this function should be
peaked (e.g. , on atoms or on bond centers in covalent sys-
tems). In the next step, one would have to find a set of
coordinates x(() such that Eq. (11) holds. This involves
the additional work of solving a set of coupled nonlin-
ear partial difFerential equations for the coordinates x(().
We also note that a definition of the effective cutoff func-
tion in terms of atomic positions would introduce an ex-

hg (2m
JI@=

/

E ——V /Q.

Functional derivatives with respect to the coordinates
x(() are obtained using the general expression

bI BL
beJ' t9z&

t9 OL 82 OL
g(q go+& g(q(v g 8~+&„+

g(e 8/~8/"

Contributions from the electronic kinetic energy involve
the functional derivatives bg'~ /hx" and 8A;/hxi' for which
detailed expressions are given in Appendix A. Terms
arising &om the ionic potentials are simpler, since
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b(v) = ) f [v„(x—R )p(x) dp2]rx~, (i7)
generalized forces can be made efBcient through extensive
use of fast Fourier transform algorithms.

dp = p(») d'x
1 w ( 8(= —) cf,cg exp[i(k' —k)((»)] d x0 (t9xkk'

= —) c„*ck exp[i(k' —k)(] d (
kk'

is invariant under any change of the coordinates. There-
fore,

b(V) = ) f "( ")b2~ p(~) d'T.
n

(i9)

More detailed expressions for the forces on the Fourier co-
eKcients of the coordinates can be found in Appendix A.
An example of application of these formulas to the so-
lution of a one-particle Schrodinger equation has been
given in Ref. 2.

We now derive the expressions of the ionic forces. The
ith component of the ionic force on atom n is defined by

Clearly, the electronic kinetic energy does not contribute
to the ionic forces, since there is no explicit dependence
of the basis set on the atomic positions R . The ionic
forces, therefore, reduce to

(9(V) BV„(»—K„) (2i)

which can also be written

OV„~ —K„
|9x (22)

This expression is closely related to the forces on coor-
dinates obtained from the potential energy in Eq. (i9).
Using the expressions in Appendix A, it is easily shown
that forces on atoms can be derived from the forces on
coordinates in the fo11owing way:

where V (») is the ionic potential associated with atom
n, and p(») = ~@(»)~ is the electronic density. This
expression can be simplified by noting that the measure

D. Elastic energy of the coordinates

&.. '.[(*'(6)[= p--. f ~ t p" ~'(

+@shear trg (24)

In a typical calculation involving plane waves in adap-
tive coordinates, it is generally found that the coordi-
nates adjust during the calculation so as to increase the
effective energy cutoff in the regions where solutions vary
rapidly. In the initial phase of the adaptation of the coor-
dinates, the efFective energy cutofF rapidly reaches a large
value in these regions, which insures a correct descrip-
tion of the electronic wave functions. This rapid increase
is usually followed by a much slower adaptation phase,
where the effective energy cutoff increases very little, and
where the total energy is not improved significantly. At
the end of this second phase, the coordinates reach their
equilibrium configuration. However, all physical proper-
ties of interest are already converged at the end of the
first phase. In order to avoid the slow convergence of the
second phase, we introduce a means of controlling the
degree of adaptation of the coordinates. Although this
is not necessary, it allows us to reach convergence more
rapidly. A practical way of achieving this is to add to
the Lagrangian (i4) an elastic energy term E,(,t;, which
depends only on the coordinates x&((), and measures to
what extent they are deformed with respect to Euclidean
coordinates. The elastic energy is defined such that any
deviation kom Euclidean coordinates makes it increase.
This eA'ectively amounts to introducing a restoring force
that "pulls" the coordinates back to the Euclidean limit.
Note that, since the expression of the elastic energy is in-
dependent of atomic positions and of the wave-function
coefBcients, the unbiased character of the adaptation of
the basis set is preserved. This approach has clear con-
nections with nonlinear elasticity theory. Following con-
siderations of elementary rheology, and noting the anal-
ogy of the Riemannian metric tensor g,~ with the right
Cauchy-Green tensor, we require that the elastic energy
associated with the coordinates depends only on the prin-
cipal invariants of g;~ or of its inverse g . These invari-
ants are trg;~, detg;~, and the quantity A~A2+A243+~3~g)
where the A s are the eigenvalues of g;~. Similar expres-
sions derived &om the inverse g'& can also be used. We
consider only detg'~ and trg'& since, as will be shown be-
low, they lead to a simple physical interpretation of the
elastic energy. We define

where (V„) is the potential energy associated with atom
n. Thus, the computation of the ionic forces requires
no additional efFort once the forces on coordinates have
been calculated. We also note that the calculation of the

where the first term describes an isotropic compression
energy and the second term is a shear deformation energy.
The constants p, p and p,h, can be chosen so as to
control the maximum value that the effective cutofF can
reach. In practice, it turns out that p, p can be set
to zero, and that the maximum effective cutoff can be
controlled with p,h, of the order of 10
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III. DFT AND NONLOCAL POTENTIALS

A. Hartree and exchange-correlation potentials

Bvc (x —x')
hvar (x —x')=, (bz" —bz"')

0(zJ' —z&')

x"- "'
(hz" —hz"') .

X —X (29)
In this section, we extend the formalism of plane waves

in adaptive coordinates to density-functional theory and
to the use of norm-conserving, nonlocal pseudopotentials.
The electronic density is now defined in terms of the so-
lutions @ (x) of the Kohn-Sham equations by

p(x) = ):I@-(x)l'

Bvc (x —x') Ovc (x —x')
ax& Ox&

(30)

we finally get

Using the symmetry under the exchange x m x' and the
fact that

where the index n runs over all occupied states. We write
the Hartree energy as

Bhvc (x —x')
hE~ = p(x)d z p(x')d z'

E~ = — vc (x —x') p(x) d z p(x') dsz'.
2

vtI(x) p(x)dsz,
2

(26)

Bv~ (x)
Ox&

(31)

where the absence of factor 1/2 should be noted.
The exchange-correlation energy in the local-density

approximation is expressed as

where vc (x) = 1/lxl is the Coulomb potential, and v~(x)
is the solution of the Poisson equation E, = ~, px pxd x,

6v~(x) = 4xp(x). (27)

The Poisson equation cannot be solved as easily as in
the plane-wave basis. Indeed, it can be seen kom Eq. (7)
that the coordinate-free Laplacian has ofF-diagonal ele-
ments in the yg basis. However, the calculation of the
Laplacian of a given function expressed in the yg ba-
sis can be carried out entirely through products of func-
tions in both real space and yp space, and by using fast
Fourier transform algorithms to go from one representa-
tion to the other. This facilitates considerably the calcu-
lation of AvIr(x). We therefore use an iterative proce-
dure, the conjugate gradient method, to solve the Poisson
equation. It should be noted that the iterative solution
of the Poisson equation, even though it difFers from the
direct solution obtained using conventional plane waves,
does not introduce any computational eKort which scales
worse than other parts of the calculation. Also, it has
been pointed out that an exact solution of the Poisson
equation is not necessary at every step of a minimization
(or MD) procedure. ' Instead, the Hartree potential
can be included in the set of dynamical variables, and a
fictitious mass can be associated with it. This approach
leads to substantial savings of computing time in the de-
termination of the equilibrium geometry of a molecule
using plane waves in adaptive coordinates.

Functional derivatives of the Hartree energy with re-
spect to coordinates can be obtained by considering the
variation of Hartree energy bEH induced by an infinites-
imal change of coordinates bx". Using again the invari-
ance of the measure dp = p(x)dsz, we find

where e„,[p(x)] is the exchange-correlation energy den-
sity. The variation of E, caused by an infinitesimal co-
ordinate transformation bx" is given by

bE, = b(e-I p(x) 1 p(x))d'z

+ ~„,px px b dx

v„,(x)bp(x)d z

+ -[p(x)]p(x) b(d'*),

h(p(x)d z) = 0 = hp(x)d z + p(x)bd z

we get

bE, = e„,px —v„, x px bd x. (35)

This can be further simplified by using the identity

Bbx&bdx= dx.
Bx~ (36)

Integrating by parts and using

0
~, (e-[p(x)lp(x)) = v-(x) ~ „

Bp(x)
(37)

where v„,(x) is the exchange-correlation potential. Using

hEIr = — p(x)d z p(x')d z' hvar(x. —x') .
2

The variation of the Coulomb potential is

we finally get

bE„.= "' hz" p(x) d z.
Oz&
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B. Nonlocal pseudopotentials

We consider the energy associated with separable non-
local pseudopotentials as formulated by Kleinman and
Bylander, which can be written

) - l(@l&ivi&l'

l vl l
(39)

where Pi is the valence atomic orbital of angular momen-
tum l, and vl is the nonlocal part of the pseudopotential
associated with angular momentum /. Functional deriva-
tives of E„i involve the expression

&(Wlvild'i) = ~ f@(x)v (x)A(x)&'x (40)

Since the functions vi(x) and Pi(x) do not depend on the
derivatives of x((), we have

&8'lvil4i) = f ~B (x)~'v)v, (x)A(x)

+ xd2: vlx lx bx". (41)

While the evaluation of the second term in Eq. (41) poses
no particular problem, the first part involves the func-
tional derivatives

b t9x '
bz& (9(

i9 Ox

Bz& 8(
|9 0 Ox

o)(q g Bx& g(

(9 Bx ' 1 8 (9P
Ox& (9( 2 c)(& Bx&

(42)

IV. APPLICATIONS TO CO AND HgO

In this section, we present calculations of the equilib-
rium structure of CO and 820 using plane waves in adap-
tive coordinates. We used the norm-conserving nonlocal
pseudopotentials of Bachelet, Hamann, and Schluter
for the description of oxygen. Potentials derived by
Giannozzi, the parameters of which are given in Ref. 15
and in Appendix B, were used for carbon and hydrogen.
The exchange-correlation energy functional was that of
Ceperley and Alder, as parametrized by Perdew and
Zunger.

The molecules were placed at the center of a cubic unit
cell of lattice parameter a = 10 (a.u.). The calculations
were started with Euclidean coordinates, and a homoge-
neous plane-wave energy cutoff of 20 Ry, corresponding
to 1503 basis functions. The total energy was then min-
imized using both the steepest-descent algorithm and a
simulated-annealing approach. The atomic positions and
the coordinates x(() were held 6xed in the initial stage
of the calculation. After the electronic energy had come
close to a minimum, the coordinates and the atomic posi-
tions were successively relaxed, and the minimization was
pursued until all degrees of &eedom converged. Coordi-
nates were represented with 57 plane waves in Eq. (13),
which corresponds to an energy cutoff of 2 Ry.

B. Results for HqO

Calculations of the equilibrium structure of 820 were
performed under the same conditions as those used for
CO. A first calculation was carried out with p, p: 0
and p,h, ——5 x 10 . The resulting maximum local
energy cutofF after full relaxation of all degrees of &ee-

TABLE I. Equilibrium bond length of CO obtained using
plane waves in adaptive coordinates, compared with the re-
sults of conventional plane-wave calculations. E,„, indicates
the maximum e8'ective energy cuto8' in the unit cell, E „, is
the initial energy cutofF in Euclidean coordinates, and Np~
is the number of basis functions used.

E,„," (Ry)
85.2
80
100
120

E.'„, (Ry)
20
80
100
120

Npw
1503

12053
16879
22119

dco (a.u. )
2.138
2.148
2.137
2.132

Basis set
adaptive

conventional
conventional
conventional

A. Results for CO

The calculation of the equilibrium bond length of CO
was carried out with p, p 0 and p,h, , ——0.001.
After full relaxation of all degrees of freedom, the ef-
fective plane-wave energy cutoff E,„q(x) reached a value
E,„»"= 85.2 Ry at the position of the oxygen atom. The
equilibrium bond length was dcQ = 2.138 (a.u. ), and the
vibrational &equency estimated &om a quadratic fit to
the force in the vicinity of the equilibrium position was

2125 cm . These values are in excellent agree-
ment with results obtained with other methods. ~ In or-
der to confirm the high accuracy of the results, we car-
ried out calculations using the conventional plane-wave
method and plane-wave energy cutoffs of 80 Ry, 100 Ry,
and 120 Ry. The results are summarized in Table I and
show that the calculation done with plane waves in adap-
tive coordinates is equivalent to the conventional plane-
wave calculation at 100 Ry, even though the maximum
efFective energy cutoff reached a value of only 85.2 Ry.
This confirms that E,„» underestimates the energy cut-
ofF of an equivalent calculation using conventional plane
waves (see Sec. II8). Other results obtained at lower en-
ergy cutoffs also show this trend, i.e., that a calculation
performed with plane waves in adaptive coordinates in
which the maximum efFective energy cutoff reaches the
value E,„» is equivalent to a conventional calculation
with a cutoff larger than E „» . We note that the num-
ber of basis functions used in adaptive coordinates (1503)
is more than ten times smaller than the number of plane
waves needed in an equivalent calculation using plane
waves (16879 with a cutoff of 100 Ry). This reduction
in the number of degrees of &eedom also implies a large
reduction in the number of iterations needed to attain
convergence. In order to illustrate the increase in effec-
tive energy cutofF in the unit cell, we show in Fig. 1 the
image of a regular grid under the map ( ~ x((). The
concentration of the coordinates in the vicinity of the
oxygen atom is clearly apparent, and leads to an increase
in effective energy cutoff by a factor of 4.2 at that point.
The increase in effective energy cutoff at the position of
the carbon atom is less important and only reaches 1.75.
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The first integrand can be expanded into

b (@'(x)(—b, )vb(x)d x}= —) c„'ci, exp[i(k' —k)(]
kk'

x((k;+iA;)bg*s(k' —iAs) + [i(k,' —k;) + 2A;]g'sbAs)d $, (A2)

where

(A3)

where p(x) = ]@(x)] is the electronic density. Using the
invariance of dp = p(x)d x, under coordinate transfor-
mations, we have

and
b (V(x)p(x) d x) = bx" p(x) d x.orV x

(Ao)

BA; t9 „OA; 82

t9/q 8(q 8("
(A4)

The force on the Fourier coeFicient x~ is obtained by
setting bx& = e exp[ —iQ(]. We then have

which are evaluated using the following identities derived
&om the de6nition of g,~ and A;:

OE 0
Oxg 06

(AIO)

ciA; 1 cl BP
g 2 oj(' Bx&

ggq

(A5)

(A6)

Setting Q = 0 in this expression and replacing the po-
tential V(x) by the potential V (x) associated with atom
n, we recover the expression for the force on atom n. We
note that, since the sum of the forces on all atoms is zero,
the total force on the Q = 0 component of the coordi-
nates vanishes, which prevents any global translation of
the coordinates.

DA; 1 t';0(",OPi
4 g coax& Oxi' )

+b„' (A7) APPENDIX 8: PARAMETERS OF THE
HYDROGEN PSEUDOPOTENTIAL

Note that there exist many equivalent expressions for
these derivatives, which can be obtained &om each other
by multiplication by the metric tensor or its inverse.
The forms given here are slightly shorter, though exactly
equivalent to, the expressions given in Ref. 2.

The variation of the potential energy is

The local pseudopotential derived by Giannozzi for
hydrogen has the form

fr l'
V(r) = ——erf

~ ~

+ (a+ br ) exp(r,i) Er 2)

S(V) = f biV(x)p(x) d xi (A8) where the parameters expressed in atomic units are r ~
——

0.25, a = —1.9287, b = 0.3374, and r 2
——0.284.
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