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Localization of flux lines by columnar defects is investigated in the presence of point disorder. A
(1+1)-dimensional model is analyzed in some detail. When point disorder is weak, the phase transition
is found to be of the Bose-glass type. Some aspects of the Bose-glass phase itself may be marginally un-

stable to weak point disorder, but only beyond an astronomically large crossover scale. Correlated disor-
der is always irrelevant when point disorder is very strong. The Bose-glass transition is also studied in a
small transverse magnetic field. Critical exponents for the commensurate-incommensurate transition
that occurs in this case are derived using scaling arguments.

I. INTRODUCTION

The importance of Aux-line pinning in preserving the
superconductivity of a type-II superconductor in a mag-
netic field has long been recognized. ' For the cuprate su-
perconductors, the Aux lines form an entangled line liquid
at high temperature. The line liquid cannot be pinned
efFectively and has a linear resistivity. ' At lower tem-
perature, the Aux lines are preempted from forming an
Abrikosov lattice be weak defects in the underlying crys-
tal such as oxygen vacancies. It has been suggested that
these weak pointlike defects may then collectiUely pin the
flux-line network in a possible "vortex-glass" phase.
Unfortunately, evidence supporting the existence of such
a phase in a bulk sample is still inconclusive at the mo-
ment. The phase transitions seen experimentally by
Koch et al. and by Gammel, Schneemeyer, and
Bishop' may in fact be due to correlated pinning by twin
boundaries and/or screw dislocations. The recent obser-
vation" that a first order transition rep-laces the putative
vortex-glass singularities of Ref. 10 in twin-free samples
supports this hypothesis. Intriguing evidence for a
vortex-glass behavior in numerical simulations' is thus
far restricted to models with zero external magnetic field
and an infinite London penetration depth. The behavior
for directed vortex lines with finite range interactions
could be difFerent.

More recently, enhanced pinning has been reported in
YBa2Cu307 & crystals with random columnar defects
produced by energetic heavy ion radiation. ' The theory
of Aux-line pinning by such columnar defects has been
considered by Nelson and Vinokur. ' At low tempera-
ture, the fIux lines are strongly localized to the columnar
defects, forming a "Bose glass"' with zero dc resistivity.
A similar theory would apply to pinning dominated by
mosaics of twin boundaries or forests of screw disloca-
tions.

In this paper, we analyze competition between the
columnar defects which promote fIux-line localization

and point defects which promote Aux-line wandering.
We focus on a (1+1)-dimensional model where the flux
lines are confined to a plane, since this is the only case
where the existence of a vortex-glass phase has been ex-
plicitly demonstrated. ' ' We find weak point disor-
der to be irrelevant at the line liquid-Bose-glass transition
originally discussed by Giamarchi and Schulz. ' The sta-
bility of the Bose-glass phase itself is marginal. Some as-
pects of the Bose-glass ground state may be modified by
rare regions of weak point disorder beyond an astronomi-
cally long crossover length. However, important dynam-
ic properties dominated by rare regions of columnar de-
fects continue to be of the Bose-glass type. In the pres-
ence of strong point disorder, columnar defects are ir-
relevant. In this case, both the glass transition and the
low-temperature phase are dominated by point disorder.
Qualitatively similar conclusions may apply to competi-
tion between the Bose-glass and the putative vortex-glass
phase in (2+1) dimensions. We also study the effect of
point disorder on a system with a small transverse mag-
netic field, which arises when the applied field and the
columnar pins are slightly misaligned. We find the Bose-
glass transition induced by tilting the magnetic field in
this fashion changes from the standard commensurate-
incommensurate (CIC) transition ' to the random CIC
transition in (1+1) dimensions. Analogous critical
behavior in (2+1)-dimensional systems with negligible
point disorder is obtained using scaling arguments. This
theory predicts how the linear resistivity arises at the
tilt-induced transition out of the Bose-glass phase. Our
conclusions for (1+1)-dimensional systems could be test-
ed directly by experiments on two-dimensional Josephson
junctions with an in-plane magnetic field and with line
pins inserted by microfabrication.

II. COMPETING DISORDERS

We start with a review of existing models. Following
Ref. 2, we describe the configurations of the Aux-line net-
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work by the free energy
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where r„(z ) is a di-dimensional vector denoting the
transverse coordinates of the nth Aux line directed along
the z direction, c,

&
is the elastic energy cost for transverse

wandering, and vo is the strength of the line-line repul-
sion. Point disorder is described by the random potential
Vo(r, z) and the columnar pins by V, (r). We assume
Gaussian distributions with means Vz, V& and variances

V=f dx dz
' (a. A )'+ '

(a, A )'

+ ( VO+ V, )B„A+ V08, A (2.2)

Vo(r, z) Vo(0, 0)=bo5 '(r)5(z),

V, (r)V, (0)=b, ,5 '(r) .

Obviously, d~ =2 describes flux lines in a bulk sample.
However, a good starting point for the investigation of
competitions between point and columnar defects is in
di =1. The (1+1)-dimensional model describes fiux lines
confined to a plane ' ' as shown in Fig. l. It is also a
model of vortex lines in a rough two-dimensional Joseph-
son junction (see the Appendix and Ref. 23 ).

In (1+1) dimensions, r„(z ) becomes a scalar function,
allowing a continuum description. We write Eq. (2.1) as

FIG. 1. An illustration of Aux lines confined in (1+1) dimen-

sions, with both point disorder (dots) and columnar pins
(straight lines).

with

A(x, z)= +8[x—r„(z)], (2.3)

0(g) being the Heaviside step function. Here, a is the
mean spacing between lines and we have also included
the random potential VO(x, z ) which couples to the local
tilt of the Aux lines. Although this term is not present in
the original model, it is generated by the point disorder
upon renormalization. We take Vo(x, z) to be a Gauss-
ian random variable again, with Vo =0 and

Vo (x,z ) Vo (0,0)=605(x )5(z ).
The field A (x,z) can be thought of as they component

of the magnetic vector potential. The discrete nature of
A, as expressed in Eq. (2.3), is a consequence of fiux

quantization and is crucial in the formation of glassy
phases. Its effect is manifested in the appearance of a
periodic potential in the coarse-grained free energy.
Upon introducing a displacementlike field u (x,z ), apply-
ing the coarse-graining procedure outlined in the Appen-
dix, and then averaging over disorder using the replica
trick, we obtain the following replicated free energy,

= f d d g [K 5 p A, ]—B u .8 up——g cos[2 (u (x, ) —up(, ))]
J~&~P

—g, f dz' cos[2vr(u (x,z) —u&(x, z+z') }] (2.4)

Here, a,PE I 1, . . . , n ] are replica indices, and jH Ix,z I.
The parameters K„=vo/T and K, =Z&a/T are the bulk
and tilt modulus, respectively. They describe the linear
elasticity of the flux-line array. The bare coupling con-
stants describing the nonlinear (cosine) interactions are
go=bol(aT) and g, =b, l(aT) . We have also set
6„=60/T and 5, =ho/T to simplify notation.

We performed a renormalization-group (RG) analysis
of the model (2.4). Upon rescaling by a factor e', we find
the following recursion relations for small go and g& in
the limit n ~0,

dK,
dl

=C1g, +O(g1),

dh
2

dl
C2g +O0(g gl &Og 1 )

dgo 2

dE
=[2 K ]go C3go+O(gogl, gl )

dg) D 2

dE
3 — 1+—K g +O(g ).1 1

(2.6)

(2.7)

(2.8)

(2.9)

dX

dl
(2.5) Here the C's are positive constants, and the bulk modulus

E is not renormalized to any order due to a statistical
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invariance under tilt. We also introduced the dimen-
sionless parameters vortex glass

D= + and K
IC K,

to characterize the strength of the point disorder and the
rigidity of the line network, respectively. Equations
(2.5)—(2.9) combine previous results on Bose-glass and
vortex-glass transitions. if 6,=go =0, then we recov-
er at temperature K~z =3, the Bose-glass transition
first studied by Gianmarchi and Schulz. ' The tilt
modulus K, remains finite at the transition but diverges
upon entering the Bose-glass phase. ' ' This signals the
localization of flux lines to the columnar defects, since K,
is proportional to the renormalized tilt modulus c.&. If
g& =0, i.e., if correlated disorder is absent, we recover at
Kvz =2, the vortex-glass transition considered by Fish-
er. Now, both the bulk and tilt modulus remain finite
below the transition, leading to a line of fixed points
describing a weakly pinned vortex-glass phase. ' '

The most important feature of the recursion relations
of the combined problem is the eigenvalue of g, in Eq.
(2.9). We see that point disorder reduces the Bose-glass
transition temperature KBo from 3 to 3/(1+D/2). For
weak point disorder (i.e., D ((1), the point disorder cou-
pling go is irrelevant at KBG. Thus the glass transition
continues to be of the Bose-glass type. However for
strong point disorder (D ) 1), where random pinning en-
ergies becomes comparable to the elastic energy, we have
Kvz)K&G, and the glass transition is changed to the
vortex-glass type.

We next investigate the low-temperature glass phase it-
self. In the weak point disorder regime, the stability of
the Bose-glass phase is determined by the RG flow of D.
The Bose glass is stable if D decreases, but is unstable if D
increases to O(1). Since K, diverges in the Bose-glass
phase, while K„remains finite, the flow of D is deter-
mined by the flow of 6, i.e., the renormalized strength
of point disorder. Unfortunately, the RF flow is only
known close to the glass transition (see Fig. 2). The fiow
at low temperatures is not directly accessible via the per-
turbation approach discussed above.

We can, however, study the effect of point disorder on
the low-energy excitations of the Bose-glass ground state.
In cases where the columnar pins outnumber the flux
lines, the ground state (in the absence of point disorder) is
simply the state in which each flux line is localized to a
columnar pin, "filling" the pins in decreasing order of
pinning strength. (We assume the line-line repulsion is
short range but strong enough to forbid double occupan-
cy of any columnar pin. ) As indicated in Ref. 14, the
dominant excitation about the ground state is the genera-
tion of a "superkink" (see Fig. 3) by the most weakly
bound fiux line from a columnar pin (A) right below the
chemical potential (p) to a pin (B) slightly above p. The
energy E,k of a superkink of width 8' and length I. is
easily estimated using the variable range hopping ap-
proach. It is given by

Bose
glass

FIG. 2. A renormalization-group Aow diagram near the glass
transition in (1+1) dimensions. The dashed line is the critical
temperature of the Bose-glass transition, KBG =3/(1+D/2).
The line with open circles is the critical temperature of the
vortex-glass transition, Kv& =2. A line liquid, stable to both
types of disorder appears in the shaded region. In the region
D) 1, the parameters Aow to the vortex-glass phase, while
along the line D =0, they Aow to the Bose-glass phase. The Aow

trajectories in the region 1)D )0 and K ' & 2 is not accessible
by the RG analysis described in the text.

E,k =2Ek +e( W)L,
8'

(2.10)

where Ek is the energy of a single kink and e( W) is the
difference in pinning energy between columns A and B.
Let the density of states at the chemical potential be
no(p). Then the smallest E(W) one can find in a typical

A B

FIG. 3. An illustration of a superkink excitation. Column A
is a pin right below the chemical potential and column B is the
strongest unoccupied pin within a distance 8' of column A.
Columns with weaker pinning are shown as dashed lines. The
average interpin distance d « O'. The length of the superkink
is L. The difference in pinning energies between columns A and
B is e( 8').
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region of linear size 8'is of the order

e( W)-
no((M) JY '

in d~ transverse dimensions. By optimizing E,k, we find
the best conformation of the sup erkink to be

1 j(dan+1)O'-L ', with a diverging energy scale
1/di+ 1

LE,*k(L )-E),
Ek "0 p)

Thus it is energetically unfavorable to create large super-
kinks at low temperatures. (This simple consideration
neglects interaction among fIux lines. Incorporating a
short-range interaction, one finds' that the qualitative
results remain unchanged. In particular, the renormal-
ized density of states n()M) is found to be reduced but still
finite. )

In the presence of point disorder, the most weakly
bound Aux line is affected by unavoidable variations in
the pinning strengths of both columns A and B as it at-
tempts to make a superkink. The typical Auctuation due
to point disorder is of the order 6E(L ) —(boL )'/ for su-
perkinks of length L centered at various points along the
z direction. This fIuctuation becomes bigger than the en-
ergy scale E,*„(L) above a length

—(d~+ ) )/d~ —) )
—2/(d~ —) )

n (M

Thus, in d~) 1, large superkinks (of the type illustrated
in Fig. 3) spontaneously proliferate along the z direction.
This signals the instability of the Bose-glass ground state.

Clearly, d~=1 is the marginal dimension. Here, one
might naively expect a reduced but still diverging energy
scale for small ho. But Auctuations coming from rare re-
gions of both columnar and point disorders can change
results considerably. To illustrate what can happen, let
us consider the probability of the most weakly bound Aux
line to form superkinks spontaneously in a typical
(1+1)-dimensional sample. Since a superkink of length
l can only form if )5E(l)~ )E,*),(l ) —I'/, we see that it
occurs very rarely (with a probability p -exp[ —c/60])
at any arbitrary point along the z direction. However,
the probability of having a superkink at successively
larger length scales, (2l, 4l, gl, etc. ) is also given by p.
Then the accumulated probability of having some super-
kink of any size from i to L =2"/ is given by 1 —(1 —p )".
The accumulated probability becomes significant at a
scale p lnL, —1, giving the crossover scale
L, -expIexp[c/b, o] j beyond which point disorder must
be relevant. Thus if we divide the Aux line into segments
of length L„ then each segment will typically contain a
superkink of size up to L, . This suggests the instability
of a typical Bose-glass ground state even in (1+1)dimen-
sions.

There are of course also rare samples (or rare regions
of a big sample) which are void of "good" columnar pins.
For example, if the next best pin within a distance 8'of a
weakly bounded fiux line is higher in energy by e( 8') —1,
then the minimum energy required to form a superkink
of length L becomes E,*„—8'-L, which is certainty not

III. RESPONSE TO A TRANSVERSE FIELD

In the remaining part of this paper, we will assume
that a Bose-glass phase exists over the relevant length
scales in the presence of weak point disorder, and study
the effect of a small transverse magnetic field H~ on the
glass transition. The transverse field represents misalign-
ment between the applied field and the average columnar
pin direction, which is straightforward to control experi-
mentally. As discussed in Ref. 14, application of such a
field provides a convenient way to determine whether
point or correlated disorder dominates a particular exper-
iment. We first discuss the problem in (1+1)dimensions,
where the transverse field can be incorporated into Eq.
(2.4) as

V„(H )=7„— H g f dx dz(B, u ),4~
(3.1)

where $0 is the magnetic fiux quantum. The field H) at-
tempts to tilt the fiux lines in the x direction. In the
Bose-glass ground state, there is an energy barrier
preventing the Aux lines from tilting. The barrier arises
because the energy gained from tilting by an angle 0 is

sensitive to a small amount of point disorder. The proba-
bility of encountering such a region is -exp[ —n()((, ) W],
since the smallest energy difference in a typical region is
I/[n(p)W]. Thus the occurrence of such a region is
very rare for large W and there would normally be no ob-
servable effects. However, it is important to observe that
in (1+1) dimensions, such rare regions are the "bottle
necks", which control transport properties (e.g., the resis-
tivity) of a large system. It then follows that the impor-
tant dynamic properties of the Aux lines remain to be of
the Bose-glass type.

The above considerations indicate that the behavior of
the Aux lines in the marginal dimension d~=1 is quite
complicated. Both columnar and point disorders may be
important in the thermodynamic limit. It all depends on
which observable one looks at. But in any case, the
crossover (if at all) away from the simple Bose-glass phase
would occur at an astronomically large scale for small ho.
Thus the Bose-glass phase exists (1+1) dimensions for all
practical purposes in this limit. In higher dimensions,
the energy scale E,k is always short circuited by the point
disorder. However the crossover length, of
0[60 n((L(, ) '] in (2+1) dimensions, can still be quite
large, especially when the range of the Aux-line interac-
tion (of the order of the London penetration length) is
long and thereby the density of states n(p) is low. '

We do not know the nature of the phase beyond the
crossover length. It could be the vortex glass (if it exists
in higher dimensions) or a mixed anisotropic phase in-
volving both columnar and point disorder. On the other
hand, simple power counting using the boson Hamiltoni-
an of Ref. 15 indicates that weak point disorder is again
not relevant at the Bose-glass transition in (2+ 1) dimen-
sions. ' It is therefore plausible that the above con-
clusions in (1+1) dimensions are at least qualitatively
correct for bulk (2+ 1)-dimensional samples.
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only of O(HiOL), L being the linear dimension of the sys-
tem, while the energy cost is of O(E„OL/a ), since OL /a
kicks must be created. The presence of point disorder
reduces the barrier, but is not enough to eliminate it (un-
less L )L, ). Thus there is a critical field Hi" -Ek below
which the Bose glass acts as a "transverse Meissner
phase" where the transverse magnetic susceptibility is
zero. At higher temperature, thermal fluctuations renor-
malize Ek and lower the tilt barrier. In particular, HJ'
must vanish as we approach the Bose-glass transition
temperature TBG from below, since the kink energy van-
ishes there (see Fig. 4). The shape of Hi' ( T ) in the vicin-
ity of TBG can be straightforwardly determined from
scaling. According to Eq. (3.1), Hi has the length dimen-
sion [x 't. Using the known behavior of the correlation
length at the Bose-glass transition, ' we find
H ~" ( T )-exp[ —c /( TBo —T ) ]. Thus the transverse crit-
ical field has a sharp upward cusp, similar to the one
found for commensurate-incommensurate (CIC) transi-
tions of atoms on a periodic substrate. In (2+1) dimen-
sions, the transverse Meissner phase is still expected to
exist, since the energy barrier against tilting remains un-
changed. However, the shape of the cusp near TB& is
modified to a power law. '

For H )H i" ( T ), the transverse susceptibility is
finite, since kinks proliferate throughout the system. It
is energetically favorable for the kinks to line up in order
to insure single occupancy of the columnar pins. Thus
the kinks form "chains" of average spacing w that run
across the sample in the Hi direction (see Fig. 5). To
reduce the free energy, the chains themselves can wander
in the z direction by kink motion along the columnar
pins. However, the transverse excursion is limited by en-
counters with the neighboring chains, since the chain-
chain interaction is repulsive. This reduction in entropy
discourages kink proliferation.

In (1+1) dimensions and without point disorder, the
physics describing the kink chains right above Hi'(T) is

Line
Liquid

H' (T)

Vortex
Glass

Bose
Glass

Vortex
Glass

VG

H

FIG. 4. Phase diagram in the (H~, T) plane, showing the
Bose-glass, vortex-glass, and line liquid phases for weak point
disorder. The phase transition across the solid line H~'(T) is of
the random CIC type. But critical temperature at the tip of the
cusp is described by the Bose-glass transition.

j
'

(

!

I

FIG. 5. For H~ & H~", each Aux line (solid line) "hops" from
one occupied columnar pin to another via kinks. The kinks link
up to form chains in order to keep each columnar pin singly oc-
cupied. (Note that only columnar pins with binding energies
below the chemical potential are relevant here. Other pins that
do not participate in the process are now shown in the figure. )
The chains (shaded regions) run across the sample in the l
direction. The average interchain distance is w.

just that of the usual CIC transition. ' Balancing the
magnetic energy gain (-5) with the confinement entropy
cost ( —w ), where o=Hi Hi'(T—) is the distance
from Hi'( T ) and w is the average chain separation dis-
tance (see Fig. 5), one obtains the preferred chain density
n,h„„=w '-6' . This transition is not sensitive to the
quenched fIuctuations in the strength of columnar pins,
which only provide identical overall energy fluctuations
to each individual chain. In the presence of point disor-
der, a directed chain can reduce its free energy more sub-
stantially by wandering further in the transverse direc-
tion to take advantage of fiuctuations in random energy.
A single chain of length l wanders a distance l to lower
its free energy by I ' . Confining a chain to a distance w

therefore leads to a loss of random energy of O(w ') per
length per chain, in addition to the entropy cost. This in-
creases in the free energy of confinement then leads to a
reduced chain density, n,h„„-5. This expression was
first derived by Kardar using the Bethe ansatz. For
Hi )Hi'( T), there will ultimately be a vortex-glass tran-
sition at low temperatures when point disorder is present
(see Fig. 4).

The above analysis can be extended straightforwardly
to (2+1) dimensions. Let Hi be in the x direction. In
the absence of point disorder and at low temperatures, we
expect the kinks to organize into "sheets" (as in a
smectic-A liquid crystal), equally spaced and stacked on
top of each other in the z direction. This is a conse-
quence of translational symmetry (in z) and interkink
repulsion. Within a sheet, we can again think of the
kinks as chains, directed by Hi!!x through a forest of
columnar defects. The configuration of the directed
chains within a sheet is similar to that of the (1+1) di-
mensional Aux lines with point disorder. Let the in-
tersheet spacing be w„and interchain spacing within a
sheet by w, then, the free energy (per chain) is
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f= —5+O(wy +w, )+O(w~ ') . (3 2)

dI = —I [aogo+aigi], (3.3)

where a's are positive constants in the vicinity of the
glass transition. Since the coupling constant gi (or go)
become nonzero in the Bose-glass (or the vortex-glass)
phase, we see explicitly here that I (I~ oo )~0, i.e., zero
resistivity in the glass phases. The behavior of I at the
glass transition is more interesting; it depends crucially
on the Qows go(l) and g, (1), which can be obtained by
solving Eqs. (2.5) through (2.9). For large l, we find
g&(l)-I at the Bose-glass transition and go(l) —l ' at
the vortex-glass transition. Using these results in Eq.
(3.3), we find I n~(l )—const and I vo(l ) —l . Thus,

Here, the first term is the energy gained by a chain when
it follows the tilt field, the second term is the entropy cost
of confinement, and the third term is the loss in random
energy as explained above. From Eq. (3.2), we find the
optimal separations distances to be m —5 ' and
m, —5 ', leading to a preferred density,

The critical behavior close to H i' ( T ) can be measured
through the behavior of the linear resistivity p near the
glass transition. In the Bose-glass phase, the I-V charac-
teristics are nonlinear, ' with zero linear resistivity.
However, the glass turns into a line liquid with finite
linear resistivity as one crosses Hi'( T) for T ) TvG (see
Fig. 4). The rise in p results from the appearance of free-
moving chains of kinks. Therefore, p-n, h„„-5,with
v= —,

' (or —,') for columnar pins only in (1+1) [or (2+1)j
dimensions. Including weak point disorder, we have
v= 1 in (1+1) dimensions. The singular behavior of the
tilt modulus is given by E, -n h,';„-5 near the CIC
transition.

On the other hand, the resistivity at the tip of the
phase boundary is controlled by the critical dynamics of
the Bose-glass transition. For a (1+1)-dimensional sys-
tem (Fig. 1), a current J applied perpendicular to the
plane of the flux lines generates a Lorentz force which
pushes the lines in the x direction. The resistivity is
simply the response of the system to J, which can be in-
corporated into the free energy of Eq. (A4) as

V~ V[u, J]=V[u ]—JJdx dzu (x,z) .

For small J, the dynamics of this system is given by the
variation of the effective free energy as

au r5
Bt T 5u

P[u, J]+g(x,z, t),
where the parameter I characterizes the "mobility" of
the Aux-line network and is proportional to the resistivi-
ty, and g is the thermal noise, characterized by its second
moment,

(q(x, z, t)q(x', z', t') & =2m(x —x')S(z —z')6(t —t') .

Extending the RG calculation of Sec. II to dynamics as
was done for a related problem in Ref. 35, we find the fol-
lowing recursion relation for I,

the faster decrease in g&(l ) leads to a discontinuous drop
in the resistivity to zero at the Bose-glass transition. But
at the vortex-glass transition, go(l ) decreases slowly
enough to give a continuous vanishing of the resistivity,
of the form p(T) —(T—Tv&)', as one approaches the
transition from above. Although p( T ) is discontinuous
at TBo when columnar defects dominate in (1+1) dimen-
sions, it is expected also to have a power-law form in
(2+ 1) dimensions. '
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APPENDIX: DERIVATION
OF THE CONTINUUM FREE ENERGY

In this appendix, we derive an effective free energy
describing the behavior of the Aux-line array at distance
scales much larger than the interline spacing a. The
effective free energy was introduced in Ref. 6 based on
symmetry grounds. Here, we derive it explicitly from the
free energy of the directed lines, i.e., from Eq. (2.1) and
Eq. (2.2). Unfortunately, the derivation does not extend
immediately to flux lines in (2+ 1) dimensions.

We note that although the free energy (2.2) has a sim-
ple quadratic form, the complicated dependence on r„(z )

is hidden in Eq. (2.3). However, simplifications occur
upon coarse graining the system. To this end, we first
rewrite Eq. (2.3) using the Poisson summation formula,

A(x, z)= Jdo. 8[x r(o, z)] g e— . (A 1)

where the last factor fixes the integration variable o. to be
nonzero only at integer values. The step function in the
integrand sets the upper limit of integration at o* such
that r(cr*,z ) =x. This implicitly defines cr* as a function
of x and z, i.e.,

cr* =P(x,z ) .

In terms of the field P, Eq. (Al) simply becomes

3 (x,z) =P(x,z)+m. ' sin[2trg(x, z) j+ . . (A2)

We can identify P(x, z ) as a phase field, since the transfor-
mation /~/+integer merely shifts the line labels, leav-
ing the problem invariant. The invariance is a result of
the equivalence of the Aux lines as required by Aux quant-
ization. Substituting Eq. (A2) into the free energy (2.2)
and keeping only the relevant terms, we obtain the fol-
lowing effective free energy,
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V= f dx dz (8 p) + (t),p)

+( Vo+ Vi )t)„P[1+2 cos[2rr(t(x, z)]]

+ v,'a, y (A3)

tion. (The average chemical potential Vo is proportional
to the applied magnetic field H, . ) To study the fiuctua-
tions, it is convenient to introduce a displacementlike
field, via P(x,z)= —x/a —u(x, z). Using the field u in
Eq. (A3), and shifting away V, (x) from the quadratic
part with the transformation u (x,z )~u (x,z )

+ vo
' j dx' V, (x'), we obtain the effective free energy

It is interesting to point out that Eq. (A3) is precisely the
energy describing a two-dimensional Josephson junc-
tion, with (t (x,z ) being the gauge-invariant phase
difference across the junction, and the random potential
Vs describing the variations in local critical currents due
to nonuniformities in the junction thickness. Here, the
periodicity in P appears directly as a consequence of
magnetic-Aux quantization.

From Eq. (A3), we see that the average profile of (() is—x/a, where a = Vo+ V, /vo is the average line separa-

Uo C. ,aV= f dx dz (a.u )'+ (a, u )' —V,a.u —V,'a, u
2 2

——Vo(x, z) cos[2sr(x/a+u(x, z))]2

(A4)

Replicating the above and performing disorder average
finally yields Eq. (2.4).
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