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For the purpose of approximating the exact density-functional exchange-correlation energy E„,[n], we
previously established the coordinate scaling identity E„,[n]=a E„,[nz] for a=A, ', or
E„,[nz] =A2E„,[n], where E„,[n] is the exchange-correlation energy functional for electronic charge
&ae and where nz(x, y, z) =A, n (kx, iy, iz). This identity is utilized here to derive the low-density limit
1im~ OA, 'E„,[nz]=infv „(%~P'„~%)—(e /2) f f [n (r, )n(r~)/)r, —r2~]d'r, d'r2, which allows us to
express the Lieb-Oxford bound in the tighest-possible manner, namely,
jim~ 01 'E„[nz])—Ce f n ~3(r)d3r, where 1.43(C(1.68. Meaningful adherences to and viola-

tions of the bound are presented to demonstrate that it is surprisingly tight and thus quite useful. Other
key properties of limz OA, E„,[nz] are found, including the observation that
hmq 0& 'E„,[nq]+(e'/2) f f [n(r, )n(r 2) /~r, —r2)I]d'r, d r2 is convex, which is a severe constraint.

We discuss these and other exact relationships as formal tests of generalized-gradient approximations
(GGA's) for exchange and correlation. We find that the Perdew-Wang 1991 (PW91) GGA respects
many of the known exact relationships, including those respected by the local-density approximation
plus many others that are violated by the local-density approximation. We present a minor variant of
the PW91 correlation-energy functional which additionally satisfies a strong A, —+ 00 (high-density) con-
straint. Finally, we show that atomic densities are much closer to the high-density than to the low-
density limit.

I. INTRODUCTION

According to density-functional theory, the ground-
state electronic energy E, is given by

E, =min . Iv(r)n(r)d r+ T, [n]+ U[n]+E„,[n] . ,
n

n (r&)n(r2)
U[n]= ,' Jf —dr d r2,I 2

T.[n]=(q'. I&l+'. &,

E„,[n]= ( 0'„/ f'+a P'„['0„)—a U[n] —T, [n],
(3)

(4)

where v(r) is the external potential (electron-nuclear at-
traction operator in Coulomb systems), T, [n] is the
noninter acting kinetic energy, U [n ] is the classical
electron-electron repulsion energy, and E„,[n] is the
exchange-correlation energy. In other words

E„,[n]=a E„[n~]; a=A, (6a)

and where a is a coupling constant. Consistent with the
constrained-search orientation (see, for instance, Refs.
1 —3 for reviews), 4„ is that antisymmetric wave function
which yields n and minimizes ( f'+aP„), or m'inimizes

( a ' f'+ P„). C'onsequently, 4„' is the original
Hohenberg-Kohn wave function when 4„' is the nonde-
generate ground state of some interacting Hamiltonian,
and 4'„ is the original Kohn-Sham single determinant
when 4„ is the nondegenerate ground state of some
noninteracting Hamiltonian.

It is E„,[n] that must be approximated when one per-
forms Kohn-Sham calculations, because T, [n] may often
be evaluated explicitly in terms of the Kohn-Sham orbit-
als. In order to approximate E„„one usually invokes
various equalities and inequalities which are satis6ed by
the exact E„,. With this in mind, it is a main purpose of
this paper to express the Lieb-Oxford bound in terms of
E„, in the tighest-possible manner by utilizing the follow-
ing scaling identity of Levy and Perdew and Yang:

so that

E„,[n] =E„',[n],
where, in atomic units,

or

E„,[n~]=A, E„,[n],
where

(6b)

N

X~' ~-=X X
i=1 j=i+1

nx(x, y, z)=A, n(Ax, ky, kz) .

Lieb and Oxford proved that there exists a universal
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positive constant C, C ~ 1.68, such that

inf (Vl f„l+)—U[n] ~ —C f n (r)d r,
%~n

(8)

Next, note that Eq. (4) gives

lim A,E„,[n]= lim (V„l f„l%'„)—U[n],
A, ~O Q~ OO

(18)

where "inf" is the infimum or greatest lower bound. The
optimum bounding constant C is unaffected by restric-
tions on the spin or statistics of the wave function 4', but
can be reduced by restricting the particle number. In any
case, the 4's shall be made antisymmetric for the
remainder of the paper to allow us to connect Eq. (8) with
E„,as defined in Eqs. (4) and (5). Recently, by employing
results for a uniform electron gas in its low-density limit,
Perdew has shown that C) 1.43, which means that Eq.
(8) is capable of providing tight bounds for density func-
tionals. Accordingly, in the next section we shall prove
that the low-density liniit for a nonuniform n (r) is

lim A, 'E„,[ni]= inf (Vl O„ll ') —U[n],
A, ~O %'~ n

so that

(9)

lim A'E„, [,ni ]~ —Cf n (r)d r . (10)

As an indication of the power of this bound, we note that
it is violated by the random-phase approximation for the
uniform electron gas. ' Previously, Perdew and Wang '"
(PW91) were the first to actually utilize the Lieb-Oxford
bound, Eq. (8), to help approximate E„,. The PW91 ap-
proximation to E„,has been constructed to satisfy

E„,[n] ~ —C f n ~ d r . (1 1)

Perdew arrived at Eq. (11)by implicitly utilizing

&q".
I
t)„lq". &

~ inf (+I ~„lq'&
4~n

and

and observe that

»m & q'I ~„lq' &
= inf' (q'I ~„lq'&~~ oo +~n

(19)

because, by defjnition, +n yields n and minimizes
lim (a 'f'+ P'„). Finally, Eq. (9) follows from a
combination of Eqs. (17)—(19). Note that we have em-
ployed the fact that

»m ~ '[&+:lf'le:&—&e'„lf'le')]=0

which, in turn, follows from' '
a '[(e„lf'Ie„)—(q'„l1 e'„)]=BE„, ni

'E„,[ni ]

and from the fact that E„,[n 1 ] goes' linearly in 1, as
A, ~O.

Earlier, we deduced Eq. (6) from U[ni ]=A,U[n],
T, [ni]=A, T, [n], and from the observation' that
P3+~2W(Pr, Pr~) yields n13(x,y, z) =P n(Px, Py, Pz)
and minimizes ( f'+ yPP„). In th'is connection, see also
the related work in Ref. 14.

We now present additional key properties of
limi OA, E„,[ni]. First, notice that the definition of
the functionals in this paper may be directly generalized
to include ensemble constrained searches, ' ' as first re-
ported by Valone. ' In fact, Lieb has noted that the en-
seinble search version of inf+ „(0'IP„l+) i's convex.
This means that with

(13)

The latter inequality arises from Eq. (4) plus the fact that

(14)

For a given n, Eq. (10) is even tighter than Eq. (11) be-
cause Eqs. (9) and (13) dictate that

A [n]=lim A, 'E„,[ni]+U[n],
A, ~O

we have

A [d, n, +d2n2] d, A [n, ]+dz A [ni],
where g;, d; =1 and d; ~ 0, or

(20)

(2la)

E„,[n ] ~ lim A, 'E„,[n 1 ],
A, ~O

which also follows from Eq. (115) in Ref. 12:

E„,[n]~A. 'E„,[ni ]; A, ~ 1 .

(15)

(16)
or

B A [n+shn]
BE

)O (21b)

In fact, for a given n, Eq. (9) dictates that
limi OA, E„,[ni ] is the most negatiue meaningful num-
ber that may be used for the left-hand side of the Lieb-
Oxford bound for the case of fermion pure states. (Gen-
eralization to ensembles shall be discussed later. ) Howev-
er, it is important to note that if an approximate E„,
satisfies Eq. (11) for all n, then this approximate E„, au-
tomatically satisfies Eq. (10).

II. THEORY

We start with Eq. (6) which implies

5 Af f ~n(r )iLn(r )zdridir2 ~0, (21c)
11 1 i 11 1p

for arbitrarily b, n such that Ib.n (r)d r =0.
Observe that expression (21b) follows directly from the

minimization in Eq. (1) when ni is the ground-state densi-
ty of some external potential ui(r), as A, ~O. The minim-
izing property of n & then implies that

2

lim A,
' f ui(r)gi (r)d r+T, [gi ]

A. —+0

lim A,E„,[n]= lim A, 'E„,[ni ] .
A, ~O A, —+0

(17) + U[g ~ 1+E..[g'~, 1
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so that A [n] is bounded from above through

A [n] —f I (rirzlrir2)r i2'd'rid'r2, (23)

where I (rir2lrir2) is the diagonal part of any
representable second-order reduced density matrix which
is defined by

N(N —1)I (r, rzlr, rz)=
2

q(x, x~) e(x, x„)

Xl f3' 0 PN~ 1 ~&N

(24)

and where 4 is any antisymmetric wave function such
that

2n(r)=
(N —1) f I (rrilrr2)d r2 .

Incidentally, we already know the identity

(25)

(4„'l 0'„l%„' ) = U[n]+2E„,[n]— BE„,[ni ]
BA,

(26)

from equations in previous works. '

The following are unusual properties of
limi DA, 'E„,[ni] because multiple asymptotic scalings
are involved. Let us first define B [n] by

B [n]= lim A, 'E„,[ni ] .
A, ~O

Then, by Eq. (9) it follows that

B[n] —
—,
' f n(r, )n(r, )lr, —r, l

'd'r, d'r,

which means

(27)

(28)

about e=0, where gi =ni+ebni. Expression (21b) re-
sults because the integral involving U& vanishes due
to the fact that the integral is linear in c., because
lim& 0 A, 'T, [g i ]=0, and because

A[n+ eb n]=lim& 0A, 'I U[gi ]+E„,[gi ]j .

Valone' has very recently investigated approximations
to the right-hand side of Eq. (9) by using constrained
searches involving second-order density matrices (or
pair-correlation functions). With this in mind, observe
that Eq. (9) implies

A [n]= inf f 1(r,r zlr ir z)r, z'd rid r2, (22)
I~n

where n & (x,y, z) =A n ( Ax, y, z) and n Pz ( x y, z)
=A, n ( Ax, ly, z) are nonuniformly scaled densities. (See
Refs. 9, 11, 13, and 17—21 for presentations of and utili-
zations of the properties of n i and n g.)

III. DISCUSSION

The relationships presented in this paper are meant to
serve as vehicles to help in the continuing evolution of
ever more accurate approximate exchange-correlation
functionals. With this in mind, Sec. IV is devoted to a
discussion of generalized-gradient approximations
(GGA's). It has already been noted" that Eq. (11) is
satisfied by the 1991 CONGA of Perdew and Wang
(PW91)," but violated '" by their 1986 GGA function-
al ' as well as by the exchange functional of Becke.
Equation (11) is always satisfied by the local-density ap-
proximation for E„, but is not always satisfied by the
local-density approximation for correlation plus the exact
exchange.

Equation (10) offers the quickest mechanism for the
testing of Eq. (11) with approximations to E„, because
many terms of E„, are eliminated by simple inspection
when limi 0A, 'E„,[ni ] is taken.

Conditions (29) and (30) are violated by many present
approximations to E„, (e.g. , the local-density approxima-
tion and most GGA's), because the approximations tend
to become —~ in the two limiting situations. However,
the right-most inequalities are respected by PW91.

Just as T, [n] is the constrained minimization of just
( f'), we have here identified limi 0 A, 'E, [ni ]+U[n]
as the constrained minimization of just ( 0„). In fact,
Eq. (23), which utilizes any antisymmetric wave function,
is the first bound to our knowledge connecting ( P„) for'
any arbitrary antisymmetric wave function (or pair-
correlation function) and a component of E„,[n]. In con-
trast, the equality in Eq. (26), although also useful, re-
quires knowledge of the exact ground-state wave function
for the given n.

The requirement that A [n] is convex, Eq. (21), ap-
pears to be a reasonably severe constraint upon approxi-
rnations to E„. For instance, the local-density approxi-
mation (LDA) for A [n], A" [n], does not satisfy the
constraint because of the negative sign in

A [ +n&6 ] n4lcl f d 3„„—p/3(

BE, 9

bn(r, )bn(r2)f+
r, —r, l

and

n(ri)n(r2)d rid r2

y&
—

y2 + zi —z

, )n(rz)d rid'rz
lim A, 'B [nfl] ~ —

—,
'

x —x + y —y

(29)

(30)

X8 l)l 72 (31)

into Eq. (21b). [Note, by the way, that —1n4~3(r)d3r is

all that remains in the A, ~O limit of the local-density ap-

where c is a constant. [In fact, the first term actually
diverges to —~ with all b, n(r) which vanish more slow-
ly than n (r ) as

l
r

l
~~ .] The above expression is ob-

tained by inserting

A [n]= —lcl f d rn (r)+ U[n] (32)
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E [n]=a E [nz]

E, [n]=a E, [n~]

(33)

proximation for correlation as well as for exchange. ]
Similarly, any approximate exchange-correlation func-
tional which contains a —fd r n (r) component, in-

cluding the PW91 GGA, is not likely to satisfy condition
(21). [For example, the spin-density functional versions
of LDA and PW91 GGA do not satisfy condition (21a)
for the one-electron densities n, (r) =e "/m and
n2(r) =(1+2r)e "/4m. .]

Equation (6) itself provides an important constraint
upon approximations to E„,. With this in mind, it was
previously asserted by Levy and Perdew that both the
exchange and correlation components of E„satisfy an
equation analogous to Eq. (6). Namely,

proximation is striking in chemical applications, ' but
somewhat mixed in solid-state applications. ' ' Well-
constructed GGA's reduce in the slowly varying limit to
the familiar gradient expansion, whose leading term is the
local-density approximation. Here, we investigate the
implications of our formal results for GGA's. We display
the GGA dependence on the fundamental constants e -,

A, and m, which did not appear in previous sections be-
cause of the use of atomic units. More generally, we
present a compendium of relationships satisfied by the ex-
act exchange-correlation energy E„,[n], and test various
approximations (local spin density, gradient expansion,
GGA) against those relationships.

The GGA for exchange is

E„[n]=—De f d r n F (s), (41)

where

where again a =A, ', and where

E„[n]= & q'„ ia P'„ i+'„& (35)

s = iVn i/2k n,
k =(3m n)'

(42)

(43)

and

E, [n]= & +, IT+aV„l+„& &+„f'+aP„+„&. (36)
D = (377 )' =0.7386,= 3

4m.
(44)

(Note that E [n] and E, [n] may be projected' from E„,
by E [n]=limz „A, 'E„,[nz] and E, [n]=E„,[n]—lim& A, 'E„,[n&].) Both LDA and PW91 obey Eq.
(34).

Key conditions result from expression (36) in combina-
tion with the fact that 4„ is defined to minimize

&
f'+ a P'„&. Namely, for a )0,

BE n

Be
(37)

& q „ i
f'„

i e„&(0,
a Bo'

(38)

BE,[n~]
2E, [nz] —

A, (0 (39)

where the right-hand inequalities in both expressions
were previously noted. ' We utilize here expression (34)
for E, [n] to now transform Eqs. (37) and (38) into forms
which are usable as conditions for testing approximate
functionals. Namely,

and e is the electronic charge. The characteristic inverse
length for exchange is the local Fermi wave vector kF.
Under uniform scaling which transforms n(r) into
nz(r)=A. n(Ar), the reduced density gradient s(r) is
transformed into s(A,r). Thus, the exact scaling proper-

12

E [nz]=LE„[n] (45)

F )0. (46)

In the slowly varying limit (s~O), F„has the gradient
expansion

is obeyed, as is Eq. (31). [A spin-density-functional exten-
sion "' is achieved by allowing F to depend upon the
local polarization g=(n t

—n ~ )/n, where n =n t+n ~.
Since g(r) scales uniformly to g(A, r), this extension poses
no formal problem and will not be discussed further
here. ]

F (s) is an enhancement factor with respect to local ex-
change. The condition E 0 will be satisfied if

and

BE,[n~] B E, [n~]
2E, [n~] —2A, +A,

BA.
2

(40)

F„(s)=1+0.1234s +O(s ) .

The dimensionally correct GGA for correlation is

GGAEGG~[n]= f d r nh(n sa)o,
ao

(47)

(48)

Equations (39) and (40) also follow from combination of
expressions (74), (75), and (80) in Ref. 13. where ao=h' /me is the Bohr radius. Equation (48) may

be recast as
IV. FORMAL TESTS OF

GENERALIZED-GRADIENT APPROXIMATIONS E, [n]= De f d r n —F(na sO), (49)

Generalized-gradient approximations "' (GGA's)
are perhaps the most accurate of the current density
functionals for exchange and correlation, although GGA
energies are typically more satisfactory than GGA poten-
tials. GGA improvement over the local-density ap-

F, (A, nao, s))F,(nao, s) (A, (1) .

The exact condition E, 0 will be satisfied if

(50)

where F, = D'(nao) 'i h. —Equation (49) obviously
obeys Eq. (34). Equation (16) will be obeyed if
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F, ~O.

The exact relationship'

lim A, 'E„,[nz]=E„[n]g~ QO

implies that

lim F, (A, nao, s)=0 .
g~ QO

The stronger condition'

lim E, [n3 ]=constant
g~ QO

implies that

lim h(A, nao, s)) —~(s&0) .
g~ QO

(51)

(52)

(53)

(54)

(55)

Equation (55) ensures that the correlation energy is of or-
der e when e ~0, as the nondegenerate perturbation
theory requires for many densities. (In this connection,
see the recent work of Gorling and Levy ' which evalu-
ates the coefficient. See also Perdew's private communi-
cation in Ref. 34.)

In the slowly varying limit (s ~0), F, has the gradient
expansion

F, (nao, s)= F(n ao, 0)

—51.83[C(nao)+0. 000714]s +O(s ),
(56)

where

optimum C/D is greater than or equal to 1.93; we conjec-
ture that this is, in fact, the optimum value.

It is easy to construct a density for which s is arbitrari-
ly large almost everywhere. An example is the ground-
state density for one electron bound by a potential which
is fixed and periodic inside a large volume 0, and van-
ishes outside. For this density, s —0' diverges as
Q~ Do. Thus, the s~ oo of Eq. (61) is a necessary condi-
tion for a GGA to satisfy Eq. (11) for all densities, as well
as a sufhcient one.

Now consider the nonuniform scalings of Eqs. (29) and
(30). Under one-dimensional scaling ( n ~n & and
A,~ ~ ), s ~ A,

~ . Under two-dimensional scaling
(ning& and A, ~O), s o-A, ~ . Thus, Eqs. (29) and (30)
will be satisfied if

lim s'~ F„,(nao, s) ( oo .
S —+ QO

(62)

Perdew and Wang 1991 (Ref. 11) have developed a
GGA based upon real-space cutoff of the spurious long-
range components of the gradient expansion for the
exchange-correlation hole. PW91 (after modifying the
small Gaussian term as in Appendix A) satisfies all the
exact conditions set forth in this section, with the excep-
tion of Eq. (54). [Also, as stated in the previous section,
PW91 does not satisfy Eq. (21).] In Appendix A, we
show that the original PW91 functional almost satisfies
Eq. (54), and may be made to satisfy this limit exactly by
a minor modification. This is an important indicator that
the real-space cutoff method used to construct PW91 is
correct.

Figure 1 displays the PW91 enhancement factor
2

h (nao, O)
E Qo

F,("ao 0) 2 $/3—e Dn
(57)

is the ratio of correlation to exchange energy per particle
in a uniform electron gas. This ratio varies from 0 in the
high-density limit (nao~ ~ ) to 0.93 in the low-density
limit ( na o ~0). The na 0 dependence of C has been
given by Rasolt and Geldart; it makes the coeKcient of
the s term in Eq. (56) vary from —0.2565 in the high-
density limit to —0. 1234 in the low-density limit.

Now consider exchange and correlation together,

E„, [n] = De Id r—n F„,(nao, s), (58)

where

1.8—

& C)
cga

1.6

O

1.4

F„,(nao, s)=F„(s)+F,(nao, s) .

We find that the low-density limit of E„, is

8 [n]= lim A, 'E [n ]

(59)

1.2

= —De d rn F„, Os (60)

The bound of Eq. (10) will be satisfied if

F„,(O, s) ~ C/D . (61)

The optimum bounding constant C is less than 1.68, so
the optimum C/D is less than 2.27. From the uniform
electron gas in the low-density limit, we learn that the

0 1 2 3 4
Reduced Density Gradient s=lVnl/2kFn

FICx. 1. The enhancement factor of Eq. (58) for the PW91
generalized-gradient approximation, for several values of r„Eq.
(63). The nonlocality of the functional is borne by the s depen-
dence of each curve.
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F„,(nao, s) for several values of constraint) are

4~na o
3

1/3

(63)
lim A,E, [n i]=0,
A, ~O

(64)

(65)

[1+1,r)/Br, ]F,(3/4rrr, ,s) ~ 0,
[2r, B/Br, +r, d /dr, ]F,(3/4rrr, ,s) ~ 0,

(39')

(40')

for all r, ~0 and s ~0. Conditions (39') and (40') are
satisfied by the local-density approximation and by both
versions of PW91, but not by the second-order gradient
expansion. In fact, condition (39') will be satisfied by any
GGA obeying Eqs. (50) and (51).

Other exact conditions that the PW91 GGA respects
naturally (from the real-space cutoff, without additional

The high- and low-density limits correspond to
r, ~O(n~~, A, ~~, or e ~0) and r, ~~
(n ~O, A, ~O, or e ~~ ), respectively. Typical valence-
electron densities fall in the range 1 & r, & 6. On the scale
of Fig. 1, the difference between the original PW91 func-
tional and the variant of Appendix A cannot be dis-
tinguished. The condition of Eq. (61) is clearly respected.
The condition of Eq. (50} is also satisfied, since the curves
of Fig. 1 do not cross. Early tests of PW91 for atoms,
rnolecules, solids, and surfaces indicate close agreement
with experiment. In Appendix B, we apply PW91 to
study the instabilities of the low-density uniform electron
gas.

The local-density approximation F„,(na o,s)
~F„,(nao, O} replaces the curves of Fig. 1 by horizontal
straight lines. It satisfies all the conditions of this section
except Eqs. (47), (55), (56), and (62). The second-order
gradient expansion F„,(nao, s)~F„,(nao, O)
+ ,'F„",(na—o,0)s replaces the curves of Fig. 1 by
downward-turning parabolas. It violates several exact
conditions, most importantly Eqs. (51) and (53).

Earlier GGA's were constructed by Langreth and
Mehl (LM), Perdew and Wang 1986 (PW86), ' and
Becke. These GGA's violate a number of exact condi-
tions. In particular, we note that LM and PW86 violate
Eqs. (50) and (51), while all three of these earlier GGA's
violate Eqs. (55), (61), and (62). The GGA of Lee, Yang,
and Parr satisfies Eq. (55).

Conditions (39) and (40) will be satisfied by a GGA
[Eq. (49)] if the appropriate integrands are everywhere
negative, i.e., if, respectively,

(66)

lim A, 'E, [n i„~q ]=0 .
A, ~O

(67)

The first two exact limits are derived with the help of a
Taylor expansion of E, in powers of e . The last two lirn-
its are derived without this assumption. Note that the
local-density approximation yields —ao for the limits
(64)—(67) and that of the GGA's mentioned in this paper,
only PW91 and its variant in Appendix A satisfy condi-
tions (64)—(67).

Geldart and Rasolt assert that the second-order gra-
dient expansion for exchange and correlation should be
valid for extended systems with s = ~Vn

~
/2k~n &&1 and

~V n /2k~~Vn
~

&&1. But, we shall show that another
necessary condition is t «1, where t is defined after Eq.
(A5). Consider the density

n (x,y, z) = n [1+A cos( gx) ], (68)

V. ATOMIC DENSITIES SCALED TO THE
HIGH- AND LOW-DENSITY LIMITS

For an atom, the reduced gradient s takes all values
greater than about 0.2 and diverges into the surrounding
vacuum. However, the interior of the atom, which dom-
inates its total energy, has s ~ 1. Since the PW91 curves
of Fig. 1 "go Oat" for s &1 in the low-density limit
r, —+~, the PW91 functional becomes rather "local" in
this limit. In Table I, we show PW91 values for E„[n],
E„,[n], and B[n] [Eq. (27)], evaluated for the densities
of the rare-gas atoms. We also show the ratio

where Q=B(2k~). Here, n =k F/3m. , and 3 and B are
constants, with

~
A & 1 and ~B ~

&& 1. When this density is
scaled uniformly to the high-density limit
[n(r)~An(Ar, ) and A~ ~], the correlation energy per
electron tends to —Oo as —ink, in the local-density ap-
proximation. But in the gradient expansion, it tends to
+ ~ as 1,; this unphysical result is found because t ~ ~
as A,

' . In the modified PW91 GGA of Appendix A, the
correlation energy per electron more correctly tends to a
negative constant when A,~~.

TABLE I. GGA values for the exchange-correlation energy E„,[n], its high-density limit E„[n] of
Eq. (52), and its low-density limit B [n] of Eq. (27), for Hartree-Pock densities of the rare-gas atoms.
Also shown is the ratio B[n]/E„[n], where E„[n] is the local-density approximation for ex-
change. Estimated percent errors are shown in parentheses. The GGA is the modified PW91 function-
al of Appendix A; the original PW91 GGA gives the same E„[n]and B[n], but slightly different E„,[n]
for these atoms (given in hartrees).

Atom

He
Ne
Ar
Kr
Xe

—1.017
—12.115
—30.123
—93.831

—178.986

E„[n]

( —0.9%%uo)

(0.i%)
( —0.2%)
( —0.1%)
( —o.&%)

E„,[n]
—1.059

—12.466
—30.830
—95.598

—181.904

( —0.8%)
( —0.3%)
( —0.5%)

B [n]
—1.680

—21.188
—53.657

—171.137
—329.599

//E LDA

1.900
1.920
1.926
1.931
1.932



11 644 MEL LEVY AND JOHN P. PERDEW 48

B[n]/E~ [n], where E„ is the local-density approxi-
mation for the exchange energy. This ratio in PW91 is
always very close to its LDA value, 1.93, which in turn is
our conjectured upper bound.

We think it is fair to conclude that B[n]/E„[n] is
considerably greater than 1 for atomic densities, although
neither LDA nor PW91 is necessarily trustworthy in the
low-density limit. For an exponential or Gaussian one-
electron density, where the exact E„,[n] cancels the
spurious self-interaction U [n], we find the exact result

cannot help since E„,becomes nearly independent of po-
larization g in the low-density limit. ] Because E„,[n] for
atomic densities is always closer to E„[n]of Eq. (52) than
to B[n] of Eq. (27) (Table I), atoms are closer to the high-
than to the low-density limit, as expected intuitively.
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8[n]/E" [n]=1.47 (N= 1), (69) APPENDIX A: PW91 GENERALIZED-GRADIENT
APPROXIMATION

which is smaller than our PW91 value (1.88) but still
somewhat greater than 1. [Note that PW91 thus violates
Eq. (28), and an appeal to spin-density-functional theory

I

The exchange energy functional has the form of Eq.
(41), with

1+0.19645s sinh '(7.7956s)+ (0.2743=4. 1508e ' ' )sF„s =
1+0.19645s sinh '(7.7956s)+0.004s

(Al)

Equation (A 1) is a modification of Becke's analytic form
for F (s).

The correlation-energy functional has the form of Eq.
(48), with

h(nao, s)=E,(r, )+h„l(r„s) . (A2)

s(r, ) =0. 03109lnr, (r, ((1) (A3)

s, (r, ) is the correlation energy per electron of a uniform
electron gas, " ' expressed in units where e =a0=1. It
has the high- and low-density limits

2(x 1

p —2am, (r, )Ip
e

(A6)

2 2

f d r n 0.031 09—
ao 2a lnr, , (A7)

In the original PW91 functional, a =0.09 and
p(r, )=1. Without changing the low-density limit, we
can slightly modify the high-density limit to satisfy Eq.
(54). First, we take p(r, )= r, —E(r, )/0. 4269. Then, the
r, ~0 leading behavior is

0.4269
r, ))1s, (r, )=—

~s

The nonlocal contribution to h is

p 2a t + At

P 1+At'+A't4
—100s / (, r )+v[C, (r, ) —0.003 521]t e

(A4)

n (r) =/3 —e
2
7T

(A8)

which is proportional to e lne. So, we take
a=p /2(0. 03109)=0.0716. With these modifications,
the limit of Eq. (54) is rapidly achieved as A, —+ oo. As an
example, Table II displays the correlation energy for the
two-electron exponential density

(A5)

Here t = ~Vn ~/2k, n, k, =(4k~/mao)', v=(16/m)
X(3m )', P=vC, (0), C, (0)=0.004235, C, (r, )

=C(nao), and

Extension to a spin-density functional is straightfor-
ward. " The only subtlety is that one should use the
unpolarized E, (r, ) in p (r, ), as defined above.

For most practical purposes, this variant will give
essentially the same valence-electron correlation energies

TABLE II. Correlation energy for the scaled two-electron exponential density of Eq. (A8). The ex-
act X~ ~ limit is estimated as —0.05 hartree from Ref. 44. LDA: local-density approximation. GEA:
second-order gradient expansion. GGA: original PW91. GGA: PW91 as modified in Appendix A
(given in hartrees).

0.5
1

2
6

12
24

LDA

—0.0661
—0.0919
—0.1218
—0.1764
—0.2143
—0.2541

GEA

—0.0045
0.0453
0.1713
0.7468
1.6525
3.4934

GGA

—0.0360
—0.0437
—0.0501
—0.0586
—0.0640
—0.0697

GGA'

—0.0351
—0.0415
—0.0456
—0.0483
—0.0485
—0.0485
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as the original PW91 form, "' which we continue to
recommend. The significant point is that only a relatively
minor modification is needed in the original PW91 form
to make it satisfy Eq. (54). This fact is an important indi-
cator that the real-space cutoff method used to construct
PW91 is correct.

APPENDIX B: STUDY OF THE INSTABILITIES OF THE
LOW-DENSITY UNIFORM ELECTRON GAS

I.ow electron densities are realized experimentally in
metal-ammonia solutions, and theoretically in jellium (a
rigid uniform positive background neutralized by elec-
trons). The uniform-Quid phase of jellium becomes unsta-
ble against charge-density waves of infinitesimal ampli-
tude and wave vector Q when the density is low
enough. ' In LDA, this instability occurs at r, =30

and Q/2kF =1.11. In PW91, it occurs at r, =33 and the
same Q/2kF. The critical wave vector Q is almost exact-
ly the first reciprocal-lattice vector G for a face-centered-
cubic ( G /2k~ = l. 11 ) or body-centered-cubic
(G/2kF = 1.14) crystal with one electron per site. Thus,
the charge-density wave might be regarded as ' an
itinerant-electron or metallic precursor of Wigner crys-
tallization, which localizes each electron on its own lat-
tice site at a still lower density (r, =100). (In the
exchange-only approximation, which neglects correla-
tions, the instability of a uniform, spin-unpolarized jelli-
um against a charge-density wave of infinitesimal ampli-
tude appears at r, =64 and Q/2k~ = 1.36 in LDA, but at
r, = 19 and Q /2k~ = 1.24 in PW91.) Note that for densi-
ty variations of infinitesimal amplitude, the reduced den-
sity gradient s is arbitrarily small and PW91 reduces to
the second-order gradient expansion.
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