
PHYSICAL REVIEW B VOLUME 48, NUMBER 16 15 OCTOBER 1993-II

Correlation in Fermi liquids: Analytical results for the local-field correction
in two and three dimensions

A. Gold and L. Calmels
Laboratoire de Physique des Solides, Universite Paul Sabatier, 118Route de Narbonne, 31062 Toulouse, France

(Received 2 February 1993)

The local-field correction for the two-dimensional and the three-dimensional electron gas is calculated
within a sum-rule version of the self-consistent approach of Singwi, Tosi, Land, and Sjolander. Correla-
tion effects are studied. Results for 0.001 & r, & 100 are given where r, is the random-phase-

approximation parameter. An analytical expression for the static structure factor, representing a gen-

eralized Feynman-Bijl spectrum, is used in the calculation. We derive analytical expressions for the den-

sity dependence of the local-field correction and we compare the results for the ground-state energy for
the interacting electron gas with Monte Carlo computations. The pair-correlation function and the

compressibility are studied. Exchange and correlation effects for quantum wells and heterostructures are
calculated: numerical and analytical results are derived. In two dimensions and at low density a roton
structure in the plasmon dispersion is found. We discuss an instability in layered structures of two-

dimensional electron gases.

I. INTRODUCTION

The random-phase approximation (RPA) is a very
good theory to describe dielectric properties of the in-
teracting electron gas in the high-density limit (r, (1).
r, is the RPA parameter. Plasmon and electron-hole ex-
citations are described by the RPA, and for small wave
numbers (large distances) the RPA is exact. The local-
field correction (LFC) takes into account corrections to
the RPA due to the effects of exchange and correlation.
The repulsion hole around an electron due to the ex-
change repulsion and the correlation effects is described
by the local field. The LFC is important for large wave
numbers (small distances) and for small particle densities.
A self-consistent approach for the LFC and the static-
structure factor (SSF) was formulated by Singwi, Tosi,
Land, and Sjolander (STLS). The approach was used to
calculate the LFC for three-dimensional and two-
dimensional electron gases. Large r, values have not
been studied within the complete STLS approach. ' For
a review of the STLS approach, see Ref. 5.

Many-body effects in the interacting electron gas have
been studied during the last 40 years. ' The ground-state
energy is the sum of the kinetic (kin) energy, the ex-
change (ex) energy, and the correlation (c) energy. The
first two terms can be calculated analytically as
ek;„~ 1 lr, and E,„~—1/r, The cor. relation energy is
di%cult to calculate. Monte Carlo computations and
density-functional-theory computations are presently the
most accurate calculations for the correlation energy, and
results have been published for three ' and two dimen-
sions.

A sum-rule version of the STLS approach was recently
used to calculate the LFC for a charged Bose gas at zero
temperature. For a Bose gas the only excitations are the
collective plasmon excitations, and the SSF can be calcu-
lated analytically. Therefore, the sum-rule approach be-

came simple for the Bose gas. For the electron gas an ex-
act analytical form for the SSF is not available from the
literature.

In the following we present an analytical form for the
SSF of interacting electrons. For small r, this SSF repro-
duces the Hartree-Fock results for the pair-correlation
function and the ground-state energy. The proposed SSF
is a generalized form of the SSF in the mean spherical ap-
proximation. The LFC is included in the new SSF. The
generalized SSF describes the Coulomb-interaction effects
quantitatively correctly for small electron densities
(1(r, (20), where the collective modes become the im-

portant modes. We use this analytical expression for the
SSF in order to obtain numerical results for the LFC of
three- and two-dimensional electron gases for
0.001 & r, & 100 within the sum-rule approach. We show
first that this simplified STLS approach is in good agree-
ment with the full STLS approach and with Monte Carlo
calculations for the ground-state energy, by studying the
electron gas in three dimensions. In the second part of
the paper we study the electron gas in two dimensions
and compare with Monte Carlo calculations for the
ground-state energy. We study finite extension effects for
quantum wells and heterostructures in order to present
results for realistic structures as used in experiments.

The paper is organized as follows. The analytical ex-
pression for the static-structure factor is described in Sec.
II. In Sec. III we present results for the local-field correc-
tion in three dimensions. The LFC in two dimensions is
evaluated in Sec. IV. In Sec. V we present results for the
two-dimensional electron gas with finite width. The
plasmon dispersion is studied in Sec. VI. An instability
in a layered two-dimensional electron gas is treated in
Sec. VII, and correlation and exchange effects are dis-
cussed. In Sec. VIII we compare for r, & 1 some analyti-
cal results for the correlation energy from the literature
with our numerical results. A one-sum-rule approach is
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discussed in Sec. IX. We discuss our results in Sec. X. A
short discussion of experimental results appears in Sec.
XI. We conclude in Sec. XII.

II. STATIC-STRUCTURE FACTOR

SMsA(q) =1/[1/So(q) +4mNV(q)/q2]'~~ . (3)

So(q) is the SSF of the free-electron gas and contains the
electron-hole excitations. It was noted in Ref. 8 that for
r, & 1 the MSA is a good approximation to the exact SSF
calculated within the Monte Carlo approach, and that it
becomes wrong for r, & 1.

From the interacting Bose gas '" we know that the
SSF contains the LFC G(q). In the following we use an
analytical form of the SSF and we suggest the following
generalized approximation (GA) expression:

1/2
1

1/So(q) +1/S (q)
(4)

The term So(q) in (4) represents the particle-hole spec-
trum, and the second term represents the plasmon excita-
tions. The SSF S (q) for plasmons is defined as

S~(q)= [q /4mNV(q)[1 —G(q)]]'~ (5)

With E(q)=q /2m the SSF can be written as a general
ized Feynman-Bijl expression

E(q)

Is(q) /So(q) +co (q)[1—G(q)]I'

It is easy to see that So~(q) =So(q) for e =0, and for
G(q)=0 we obtain So~(q)=SMs~(q). For small wave
numbers we find the correct behavior of the SSF
So~(q ~0) ~ q'"+ "~ for quantum liquids with long-
range Coulomb interactions in d dimensions. For large
wave vectors we find So(q )2kp) =S(q ~~ ) = 1.

We note that for r, « 1, So~(q) gives a LFC in agree-
ment within the Hartree-Fock approximation (HFA): ex-
change effects dominate correlation effects, resulting in
the Hubbard expression' for the LFC. For r, &1 the

The wave-vector-dependent dynamical susceptibility
y(q, co) determines the static structure factor S(q) via'

S(q) = f de 1m[a(q, a))] .
mN 0

N is the electron density. For Planck's constant we use
h /2m. = l. The electron-hole excitation spectrum and the
plasmon excitation spectrum are hidden in y( q, co ). For
an interacting electron gas the co integral in (1) cannot be
performed analytically. In order to calculate the SSF,
both excitations are important. The collective excitation
spectrum (plasmon excitations) co (q) for small wave vec-
tor q is expressed as

co (q) =Nq V (q) /m .

m is the effective electron mass and V(q) is the
Coulomb-interaction potential in Fourier space.

Within the mean spherical approximation (MSA) (Ref.
8) the SSF was given as'

plasmon excitations are as important as the electron-hole
excitations: for the LFC, correlation effects are as impor-
tant as exchange effects. This crossover from exchange to
exchange/correlation is included in So&(q), as will be
shown in the following. From a first view, however, it is
not evident that this crossover is included: the exchange
term in (3) is proportional to I/So(q~0) ~kF ~N'~",
while the correlation term in (3) is proportional to
1/S (q ~0) ~ N'

III. EI.ECTRON GAS IN THREE DIMENSIONS

A. Model and theory

We consider an interacting electron gas in three dimen-
sions. The RPA parameter for three-dimensional systems
is described as r, =[3/4rrN3a* ]'~ . a*=EL /me is the
effective Bohr radius defined with the effective electron
mass I, the background dielectric constant E.L, and the
electron charge e. The electron density N3 defines the
Fermi wave number kp via N3 =kF/3n. . In the follow-

ing we measure wave numbers q in units of
q0 =12' /(r, a*) as x =q/qo. The Coulomb-
interaction potential in Fourier space is
V(q)=4m. e /El q . The SSF of the free-electron gas is

given by So(q & 2k„)=3q /4kp q /16kp —and So(q)2kp) = 1.'

In the STLS approach the LFC is given by a one-
dimensional q integral over the SSF, which via (1) is
determined by the LFC. The coupled equations for the
self-consistent STLS approach must be solved numerical-
ly. One can show that G (x « 1) 0- x, and that
G(x ))1) is constant.

B. Results

1/C23(r, )=1.618 123J dx x [1—So~(x)] .
0

(9)

These equations have been derived before for the Bose
gas in three dimensions. However, the SSF of bosons is
different from the SSF of electrons.

Equations (8) and (9) can be discussed within three
difFerent approximations. With So~(x)=SO(x), one gets
C,3 Hp(r, ) and C33 Hp(r, ), which are the Hartree-Fock
parameters, and explicitly we find

Ci3 Hp(r ) = 1.0956r (10a)

We suggest the GA expression for the LFC in three di-
mensions to be

0.846x
2. 188Ci3(r, )+x C23(r, )

The expression for Go~(x) can be interpreted as a
Hubbard-type expression' for the LFC, where the values
for x «1 and x »1 are determined by the parameters
Ci3 ( r, ) and C33 ( r, ), respectively. Using the analytical
expression for the LFC, we find

I /C»(r, ) = 1.180203 J~ ™dx[1—So~(x)] (8)
0

and
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and

CQ3 Hp(r, )= 1 ~ 691 lr,

Within the HFA we find the Hubbard (H) result '
(10b)

Due to the analytical form of the SSF these correlation
effects can be traced back to the plasmon dynamics in the
system. Exchange effects already exist in the noninteract-
ing electron gas, and are described by So(q).

G~(q) =- q
2 4k /3+

and

Ci3(r, )=0.918r, ' for 0. 1&r, &1,
C,3(r, )=0.916r, ' for 1&r, &10,

Ci3(r, ) =0.921r, ' for 10 & r, & 50,

(12a)

(12b)

(12c)

Cz3 ( r, ) = 1.108r, for 0. 1 & r, & 1,
Cz3(r, )=1.076r, ' for 1&r, &6,

Cz3(r, ) =0.782r, for 6 & r, & 50 .

(13a)

(13b)

(13c)

The accuracy of these analytical expressions is about 2'%.
Clearly, C,3(r, «1)=C;3o(r, «1)=C,3 Hp(r, ). For
large r, we find C;3 o(r, »1)=1, and the self-consistent
equations give results similar to the results for bosons
(B): C;3 Hp(r, ) & C;3(r, ) = C;3 g (r, ).

The difference between C;3 Hp(r, ) and C;3(r, ) is the re-
sult of correlation effects in the interacting electron gas.
These correlation effects are small, if compared with the
kinetic energy, for r, «1, but they are large for r, & 1.

Using Szz(x ) =SMs~ (x ), we derive the coefficients in the
lowest-order plasmon-pole approximation: C,z 0(r, ) and
Czz0(r, ). These coefficients represent the results for a
RPA-like approximation.

Note that So~(x) in (8) and (9) contains Gz~(x),
which depends on r, . Equations (8) and (9) are inuch
easier to solve than the full STLS equations. We calculat-
ed C,3(r, ) and Cz3(r, ) with a personal computer
(Macintosh-Si) for 0.00001 &r, &400. Some results are
given in Table I. We find that Cz3(r, ) increases strongly
with increasing r„and the r, dependence of Ci3(r, ) is
weaker than that of Cz3(r, ). For r, &0.01 our numerical
results are very near to the results in the HFA (see Sec.
VIII A). The numerical results can be described by the
following expressions:

C. Application

go~(Q) =1—Q. 846r, /Cz3(r, ) .

In the MSA, with S(x)=SMs~(x), we get

gMs~(0) = 1 —0.846r, /Cp3 p(r, ),

(15)

(16)

and in the HFA, with S(x)=So(x), we find gH„(0) = —,'.
gMs~(0) and go~(0) versus r, are shown in Fig. 1. Nu-

merical results for gsrLs(0) (Ref. 3) are shown as solid
circles. We find a good agreement between gsi„s(0) and

go&(0). From general arguments it is clear that g(0)
must be positive. For r, & 3, gsrLs(0) and go~(0) become
negative. This negative value for the pair-correlation
function for large r, is a known defect of the STLS ap-
proach. ' However, in the STLS approach g(0) is only
slightly negative, and the negative value is very small
even for very large r, (see Fig. 1). Similar results have
been found for the Bose gas. For the Bose gas one finds
(for r, «1) g(0)=1 due to the fact that the exchange
repulsion is missing in boson systems. For large r, we
find gMs~(0) =1—0.846r, . This analytical result corre-
sponds to the large negative values found for g (0) within
the RPA '

The ground-state energy co per particle can be ex-
pressed as

Eo(r, ) ek;„=(r, )+E;„,(r, ) . (17)

The kinetic energy is given as Ei,;„(r,)/R *=2.2099/r, ,

0.5

The SSF determines the pair-correlation function g (r).
For r =0 one gets

g(0)=1—1.368r, ~ f dx x [1—S(x)j . (14)
0

With S(x)=So~(x), we derive the analytical result

TABLE I. Parameters for the local-field correction for d =3:
Cl3O CQ30 C/3 and C» according to (8) and (9) for various
values of r, .

025

0.01
0.04
0.1

0.4
1

4
10
40

100

C)3 o(r )

0.344
0.478
0.586
0.760
0.863
0.960
0.987
0.998
1.000

C23, 0 (r )

0.053
0.144
0.266
0.569
0.780
0.957
0.990
1.000
1.000

C]3(r, )

0.344
0.479
0.589
0.777
0.905
1.107
1.243
1.477
1.674

C»(r, )

0.053
0.146
0.278
0.666
1.090
2.290
4.102

11.46
23.37

0 25 I I:. l I

Q
2 ]0 1 ]00 )0) ]02
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FIG. 1. Pair-correlation function g&A(0) (solid line) and

gMs&(0) (dotted line) vs RPA parameter r, for three dimensions
according to (15) and (16), respectively. The solid dots represent
the STLS results according to Ref. 3.
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while the interaction energy is written as

E;„,(r, )/R*= —
2 dr,'r,' /Ci3(r, ') .1.003 90 "~, , )g4

y" 0

KF d E=1—0. 166r +0.0453r
K

dEq

r dl"
(19)

with ~~ = 1.706r, as the compressibility of the free-
electron gas. With our analytical results for E, (r, ), ' ob-
tained from the numerical results by a fit, we calculate
the compressibility as

&~/+=0. 998—0. 173r,' for 0. 1 & r, & 1,
~~/~=0. 976—0. 153r," for 1 & r, & 10,
scF/K=0. 985 —0. 150r," for 10&r, &30 .

(20a)

(20b)

(20c)

The result in the HFA is aF /xHF = 1 —0. 166r, .
K~hc versus r, is shown in Fig. 3 together with results

obtained in the STLS approach. In the literature, some-

R*=1/2ma* is the effective Rydberg. The correlation
energy is defined as E, (r, )= s,„,(r, ) c—,„(r,). With
Ci3 HF(r, ) we find c,„(r,, )/R = —0.91633/r, . Numeri-
cally we found C,3(r, « I ) =C, 3 HF(r, « 1), and we con-
clude that c,;„,(r, « 1)=E,„(r,« 1) and ~s,„(r, &&1)

~))~s, (r, &&1)~. Numerical results for s;„,(r, )/e, „(r, )

versus r, are shown in Fig. 2 together with numerical re-
sults from Refs. 3 and 6. The increase of E;„,(r, )/s, „(r,)

for r, & 1 indicates that correlation effects become impor-
tant. For small r, the interaction effects are dominated
by the exchange: E;„,(r, )/E, „(r, ) = 1. In Fig. 2 an analyti-
cal result' is shown as the dotted line (see Sec. VIII A).
In Table II we compare our numerical results for E, (r, )

with the results obtained within the full STLS approach
and the Monte Carlo calculations. The agreement is
very good up to r, -20. This result indicates that the
generalized approximation Go&(x) is a good approxima-
tion for treating short-range correlations.

The compressibility ~ is given as

TABLE II. Correlation energies c, for d =3 and various
values of r, : c,, according to our sum-rule approach, c,, sT&s ac-
cording to Ref. 3, and c, calculated with co from Table I of Ref.
6.

1

2
3
4
5
6

10
20
50

100

—C, /Ry*

0.1200
0.0877
0.0725
0.0627
0.0557
0.0503
0.0372
0.0241
0.0129
0.0078

~,sTLs /Ry* (Ref. 3)

0.124
0.092
0.075
0.064
0.056
0.050
0.036
0.022

c~ /Ry* (Ref. 6)

0.1195
0.0902

0.0563

0.0372
0.0230
0.0114
0.0064

times a negative ~ for large r, has been interpreted to be
an instability. However, experimentally there are no in-
dications of such an instability. The physical interpreta-
tion is that the positive background charge in the jellium
model stabilizes the system (see, for instance, in Refs. 7
and 15).

The comparison of our results obtained within the
sum-rule approach with the exact results and the full
STLS approach supports our claim that many-body
effects in the three-dimensional electron gas can be de-
scribed, for r, & 20, by the sum-rule approach.

IV. ELECTRON GAS IN TWO DIMENSIONS

A. Model and theory

In the following we consider an interacting electron gas
in two dimensions. The RPA parameter r, for two-
dimensional systems is described as r, =1/mN2a . The
two-dimensional electron density N2 defines kz via

N2 =g„k~ /2n. g„ is the v. alley degeneracy, and in the fol-

lowing we use g, =1. The Coulomb-interaction potential
in the Fourier space is V(q)=2m. e /sL q. We use dimen-
sionless wave numbers x with x =q/qo. qo is expressed
as q0=2/(r, a*). The SSF of the free-electron gas is
given by So(q & 2kF ) =2[are sin(q/2kF )+q (1—

q /

0&

(d

C
4)

p

I I

10 10 10

rs

I

101

I

102
I

5
r&

FIG. 2. Solid line: interaction energy c;„,(r, )/e, „(r, ) in units
of the exchange energy vs RPA parameter r, for three dimen-
sions according to (18). The solid dots and solid squares are re-
sults from Refs. 3 and 6, respectively. The dotted line corre-
sponds to (58).

FIG. 3. Solid line: compressibility a(r, ) vs RPA parameter
r, for three dimensions according to (19). The dashed line
represents the Hartree-Fock approximation. The solid dots
represent results from Ref. 3.
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4k+) /2k+]/m. and SO(q &2k+)=1.
Within the STLS approach for two-dimensional sys-

tems the LFC is expressed as a one-dimensional q integral
over the SSF. One finds the following asymptotic
behavior for small and large x: G (x « 1) ~ x and
G(x »1) is constant.

B. Results

C,2(r, ) and C22(r, ) are described by

C,2(r, ) = l. 135r, for 0. 1 & r, & 1,
C,2(r, )=1.120r, ' for 1&r, &10,

Ciz(r, )=1.127r, ' for 10&r, &100

and

(26a)

(26b)

(26c)

We propose the following GA for the LFC in two di-
mensions:

G ( )
—2/3 1.40

[2.644C (r ) +x C (r ) ]' (21)

The LFC is described for every r, by two coefficients

C;2(r, ) and i =1,2. Coefficients C,2(r, ) and C22(r, ) are
determined by the nonlinear equations

Czz(r, ) = l.687r, " 'for 0. 1 & r, & 1,
Czz(r, ) = l.640r, for 1 & r, & 10,

C22(r, ) = l.314r, ' for 10 & r, & 100 .

(27a)

(27b)

(27c)

The accuracy of this fit is about 2%. For large r, we find

C;2O(r, »1)=1, and our self-consistent equation gives
results similar as for bosons C;2 H„(r, )

& C;z(r, ) =C;2 ii(r, ).

1/C, 2(r, ) = l. 159 595f dx [1—S«(x)]
0

(22) C. Application

Ciz HF(r, ) = 1.436 78r,' (24a)

and

I/C22(r, )=1.426348 f dx x[1—S«(x)] . (23)
0

Equations (22) and (23) can be solved within three ap-
proximations as discussed for three dimensions. In the
HFA, with S«(x ) =So(x ), we find

The SSF determines the pair-correlation function
g(r). For r =0, one finds

g (0)=1 2r2~' f—dx x [1—S(x)] . (28)
0

We conclude that g (0) is determined by G (x » 1).
Within the generalized approximation for the LFC we

get'

C22 HF ( P'& ) =2. 804 36'&

which results in a LFC of Hubbard type:

g«(0)=1 —1.402r, ~ /Czz(r, ) .

(24b) In the MSA we derive

g Ms~(0) = 1 —1.402r, /C2p 0(r, )

(29)

(30)

GH(q) =-=1
2 [1.39k + ]'~ (25)

U»ng S«(x)=SMsz(x), we find the coefficients in the
lowest-order approximation: Ci~ 0(r, ) and Cz2 o(p ) with

C;2(r «1) C20(r, «1)=C,2H„(r, «1.).
We calculated C,2(r, ) and Czz(r, ) by solving (22) and

(23). The results are presented in Table III. A systematic
study of C,2(r, ) and C22(r, ) versus r, was performed.
For large density we find C;2(r, «1)=C;2HF(r, «1);
however, see Sec. VIII B. Our numerical results for

and in the HFA we find gH„(0) =
—,'. gMs~(0) and g«(0)

versus r, is shown in Fig. 4. We find that g«(r =0) be-
comes slightly negative for r, & 3: g«(0) & —0.08.
Similar results have been found for the Bose gas. For
large r, we derive the analytical result

gMsA(0)=1 —1.402r, . This result explains the large

I I

05

TABLE III. Parameters for the local-field correction for
d =2: C»0, C» o, C», and C» according to (22) and (23) for
various values of r, .

0.25

0.01
0.04
0.1

0.4
1

4
10
40

100

Ci2, o(r, )

0.307
0.475
0.616
0.832
0.930
0.989
0.997
0.999
1.000

C»,0(r, )

0.127
0.299
0.486
0.804
0.933
0.992
0.998
0.999
1.000

C»(r, )

0.308
0.480
0.633
0.913
1.123
1.509
1.844
2.497
3.037

C»(r, )

0.128
0.311
0.535
1.088
1.660
3.418
6.044

15.39
28.86

—0.25
&0

I

lO ~ 100 10~

rs

FIG. 4. Pair-correlation function g&A(0) (solid line) and

gM,„(0) (dotted line) vs RPA parameter r, for two dimensions

according to (29) and (30), respectively. The solid dots represent
the STLS results according to Ref. 4. The solid squares
represent Monte Carlo results from Ref. 8.
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TABLE V. Compressibility K for a two-dimensional electron
gas in units of the compressibility K+ of the free-electron gas ac-
cording to (33), together with results in the HFA and Monte
Carlo results (Ref. 8).

rs

1.0
2.0
3.0

KF /K

0.525
0.013

—0.511

Ky /KHF

0.550
0.100

—0.350

KF/K (Ref. 8)

0.528
0.031

—0.529

1
I

10

I

100 &0'

rs

I

102

FIG. 5. Solid line: interaction energy in units of the ex-
change energy c;„,(r, )/c, ,„(r,) vs RPA parameter r, for two di-
mensions according to (31). The solid dots and solid squares
represent results from Refs. 4 and 8, respectively. The dotted
line corresponds to (62).

negative values obtained in the RPA for g(0) and large
r, . gsTLs(0) (Ref. 4) and Monte Carlo results are shown
in Fig. 4 as solid circles and solid squares, respectively.

The correlation energy is defined as in three dimen-
sions as c, =c.;„,—c.,„. The kinetic energy is given as
sk;„(r, ) /R~* = 1 /r, , while the exchange part is given
as' ' E,„(r,)/R*= —1.20042/r, Wit.hin the general-
ized approximation for the LFC, we find

c,;„,(r, )/R = — '
dr,'r,' /C&2(r, ') .1.724 74

y 0
(31)

4 2
s d ~IIIt=1+

dr2
1 dc,;„,
s dys

(32)

For r, &0.01 we get s;„,(r, )/E, „(r, ) =1. E;„,(r, )/E, „(r, )

versus r, is shown in Fig. 5 together with numerical re-
sults from Refs. 4 and 8. The agreement between our re-
sults and the results of Ref. 8 is very good up to y, =20.
The dotted line represents an analytical result from Ref. 8
(see Sec. VIII B). Numerical results for s, (r, ) are given
in Table IV together with the results of the STLS ap-
proach and of Monte Carlo calculations (Table I of Ref.
8).

The compressibility is given by

with zz=mr, l2 as the compressibility of the free gas.
The compressibility in the HFA is ~z/AH„=1 —2' r, /~.
With our analytical results for c.,(r, ), ' we calculate the
compressibility as

aF/ir=azlirH„0 Ol—lr,'. for 0. 1 &r, &0.5,
xF/x=vz/~H„0 01—6r,'. for 0.5&r, &1,
~z/sc=v~/aH„0. 030r,' —for 1 & r, &4,
~F!a.=aF/~H„0. 057r,—' for 4&r, &20 .

(33a)

(33b)

(33c)

(33d)

Numerical values for the compressibility for y, ~3 are
given in Table V together with Monte Carlo results taken
from a figure in Ref. 8. The agreement between our
analytical results and Ref. 8 is very good. We note that
correlation effects are already important for r, )0.5;
compare with the results in the HFA, which are also
given in Table V.

Kp/K versus y, is shown in Fig. 6 together with results
obtained for a heterostructure. We note that Ko/K is
larger in two-dimensional systems with finite width than
in the ideally two-dimensional electron gas.

The static response function y(q) for the interacting
electron gas is expressed as

y(q)=go(q)/[I+ V(q)[1 G(q)]po(q)I

with yo(q~0)=pz, where p~ is the density of states at
the Fermi energy. go(q) is the Lindhard function in two
dimensions, ' and represents the static response function
for the free-electron gas: go(q &2kF)/p~=1 and

yo(q ~2kF)/pz=1 —[1 4kF/q j ~ . —y(q) is shown in

TABLE IV. Correlation energies c., for d =2 and various
values of r, : c, according to our sum-rule approach, c, sTLs ac-
cording to Ref. 4, and c, according to Table I of Ref. 8.

1

2
4
5
8

10
16
20
30
50

—c., /Ry

0.2049
0.1528
0.1067
0.0938
0.0702
0.0607
0.0441
0.0377
0.0283
0.0194

F& sTLs/Ry* (Ref. 4)

0.211
0.155
0.108

0.066

0.038

—c,, /R„* (Ref. 8)

0.2171

0.0955

0.0609

0.0352
0.0250
0.0159

x —5—
LL

I

10
rs

I

15 20

FICx. 6. Solid line: compressibility K(r, ) vs RPA parameter
r, for two dimensions according to (32). The dashed line
represents the Hartree-Fock approximation. The dashed-dotted
line represents the results for the heterostructure.
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V. FINITE WIDTH EFFECT IN TWO DIMENSIONS

A. Many-body effects in quantum wells

In the following we present results for the electron gas
in two dimensions where the width for the confinement is
finite. In order to specify the model we use a quantum
well of width L, and infinite barriers for an
Al Gai As/GaAs/Al„Ga, As structure with g„= l.
For a Sii „Ge„/Si/Sii „Ge„quantum-well structure the
valley degeneracy is g, =2, and our results cannot be ap-
plied directly. The interaction potential is written' as
V(q, L ) =2rre F(q, L)/El q, and F(q, L) is the form fac-
tor for the finite width. The form factor for a quantum
well was derived in Ref. 19 as

F(q L)=
z 3qL+1 8m

4~2+q2L2 qL

32vr 1 —exp( qL)—
2L2 4 2+ 2L2 (35)

With F(q, L =0)=1 we find for L =0 the Coulomb-
interaction potential of an ideally two-dimensional elec-
tron gas. The behavior for q ~0 is important:

n] Q

Fig. 7 for r, =1 and 5. Very recent numerical results ob-
tained with quantum Monte Carlo simulations' in small
systems are shown as solid squares. Very good agreement
is achieved for r, =1. For r, =5 the agreement is good
for small and large wave numbers. However, for q -2k+
our LFC is apparently too small to reproduce the peak in
g(q-2k~) and G(q-2k+) obtained in Ref. 18. Equa-
tion (34) defines [with G (q) =0] the static response func-
tion within the RPA, which is also shown in Fig. 7 as the
dashed line.

F(q =O,L)=1.
Within the sum-rule approach the form factor could

enter the SSF via V(q, L). However, because
V(q +O—,L)= V(q) we used the same SSF as for an ideal-
ly two-dimensional electron gas. We have tested the
self-consistent equations in both approximations for the
SSF and found that with V(q, L)= V(q) the pair-
correlation function was less negative at small electron
densities than with V(q, L). In the following we present
our results within the approximation: So~(q, L)
=SoA(q). The self-consistent equation for Czz(r„L) is
the same as for the ideally two-dimensional electron gas
[see (23)]. For C,z(r„L) we find

I /C, z(r„L)= 1.159 595I dx [1 SGA(x—)]F(xqo, L) .
0

(36)

In Fig. 8 we show the coefficient Ciz(r„L)/Ciz(r, )

versus L for r, =l, 4, and 10. Decreasing the density
(r, ~ oo ) leads to C iz(r„L ) /C iz(r, )~1. In the high-
density regime, where kI;L is large, the finite width effects
are large. For small density we find C, z H„(r„Lkz
&& 1)=C,z H„(r, ), but for large density we get

Clz, HF(& LkE ++ 1) + Clz, HF(r. ). On the oth«hand it
is clear that Czz Hz(r„L)=Czz Hi;(r, ).

In Table VI we give some values for Ciz(r„L =a*) for
different r, . The finite width reduces many-body effects:
G(q, L) (G(q, L =0); compare Table VI with Table III.
Unfortunately, Monte Carlo calculations have never been
performed for structures with finite L.

In the following we report some results for a quantum
well with L =a *. For high density ( k~L ) 1 ) the
Hartree-Pock results depends on the well width, and we
find

C,z H„(r —+O, L)=0.678L/[a*r, ln(2 L /a *r, )]

(37a)

Ll
CL

0.5
OC

C12,HF(r ) Clz, HF(

Our numerical results for C,z(r„L =a*) are fitted as

(37b)

~ ~ e ~ ~ ~ ~
I

~ t ~ ~ ~ ~ ~ ~ ~ ~ t&
I

C,z ( r„L =a *
) = 1. 135r, for 0'. 1 ( r, (1,

C,z(r„L =a )=1.12r, ' ' for 1(r, (10,
(38a)

(38b)

U
CL

05
OC

Q i

0 2

q/kp

1.6-

C)
&-4

1.2
CV

FIG. 7. Solid line: static response function with y(q) vs q for
r, =1 and 5 and for two dimensions according to (34). The
dashed line represents the RPA and the dotted line the free-
electron gas. The solid squares correspond to Monte Carlo cal-
culations of Ref. 18.

1.0
0 2

L/a"

FI&. 8. C&2 ( r„L) /C» o ( r, ) vs width L of the quantum well
for r, = 1, 4, and 10, according to (23) and (36).
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TABLE VI. Parameters for the local-field correction for a
quantum well (L) and a heterostructure (b) with a form factor:
Clp(L) and C22(L) according to (23) and (36) and C&2(b) and
C2z(b) according to (23) and (40) for various values of r, .

C&2(r„L =a*) C22(r„L =a*) Cj2(r„b) C22(r„b)

0

-0.05—

0.01
0.1

1

10
100

3.25
1.54
1.34
1.88
3.05

0.13
0.52
1.62
6.02

28.85

1.04
1.44
1.92
2.53
3.60

0.13
0.52
1.53
5.67

28.49

and

015'
0.1

I

0.5 1

rs

5 10 50

C,z(r„L =a *)= 1.127r, '5 for 10 & r, & 100 . (38c)

B. Many-body e8'ects in heterostructures

For a GaAs/Al„Ga, As heterostructure with exten-
sion parameter b as b =(3a*/44vrN2)'/, the interaction
potential is written as V(q, b)=2meE(q, b)/sLq, with'

The exchange energy is determined by C,z H„(r„L)
and, therefore, depends on the width of the well.
r, E,„(r„L =a *

) versus r, is shown in Fig. 9 (dashed line)
together with the results for an ideally two-dimensional
system (solid line). For small densities ~E,„ in a system
with finite width is smaller than in an ideally two-
dimensional system. E, (r„L =a*) versus r, is shown in
Fig. 10 (dashed line) together with results for the ideal
two-dimensional system (solid line). For given r, we find
that correlation effects are reduced in finite width sys-
terns. This result is in agreement with numerical results
obtained in the full STLS approach.

FIG. 10. Correlation energy c,(r, ) vs RPA parameter r, for
two dimensions (solid line), for a quantum well with L =a*
(dashed line), and for a heterostructure (dashed-dotted line).

For C&2(r„b), we find

I /C&2(r„b) = l. 159 595I dx [1—So&(x)]F(xqo, b)
0

(40)

C~2 HF( 1'& ~0& b) =6.2/ln( 1 /P'& ) (4 la)

We realize that qob=( —,', )' is independent of r, . There-
fore, the coefficients C,z(r„b) are universal and depend
only on r, . Numerical results for C,2(r„b) are given in
Table VI for different values of r, . By comparing Tables
III and VI, it is clearly seen that G(q) is reduced by the
finite width of the electron gas.

For the Hartree-Pock result, we find

F(q, b)= [1+,'qb+ ,'q b ] —. —1

(1+qb)
(39) and

C12 HF(r, ~~,b) = C&z HF(r, ~~ ) .

The numerical results for C,z(r, ) are expressed as

C&2(r„b) = l.914r, " for 0. 1 & r, ( 10

C&2(r„b)=1.764r, 'for 10& r, &100'.

In this model we used a vanishing depletion density XD.
For a finite depletion density the extension parameter b is
somewhat modified. b =0 corresponds to the ideally
two-dimensional electron gas.

The self-consistent equation for C22(r„b) is the same
as for the ideally two-dimensional electron gas [see (23)].

(41b)

(42a)

(42b)

With C,2 HF(r„b), we calculate the exchange energy as

E,„(b)= —0.649/r, for 0.3 & r, & 3 (43a)
—0.5

lZ

Ih

-1.0

I I

0.5 1

rs

I I

5 10 50

e,„(b ) = —0.694/r, ' for 3 & r, & 100 . (43b)

r, E,„(r„b) versus r, is shown in Fig. 9 (dashed-dotted
line) together with the results for a quantum well (dashed
line). For small density the width effect is small; howev-
er, for large density Ie,„I is smaller than for the ideally
two-dimensional system.

The correlation energy is expressed as

FICx. 9. Exchange energy r, c,„(r, ) vs RPA parameter r, for
two dimensions (solid line), for a quantum well with L =a*
(dashed line), and for a heterostructure (dashed-dotted line).

s, (b) = —0.0895/r, ' " for 0.3 & r, & 1,
E,(b)= —0.0889/r, for 1(r, &3,

(44a)

(44b)
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E, (b) = —0. 1084/r, for 3 & r, & 10,

e, (b)= —0. 157/r, ' for 10&y, &70 .

(44c)

(44d)

/ir(b) 1 Q 23r i.os 0.015r i.ss

for 3&r, &10, (45c)

E, (r„b) versus r, for the heterostructure is shown in Fig.
10. The finite width reduces the correlation energy for
large density if compared to the ideally two-dimensional
electron gas. We note, however, that the ratio
E;„,(r„b)/E,„(r„b) is nearly the same as for the ideally
two-dimensional system. This means that in a structure
with finite width correlation effects become important at
a similar electron density as for a structure with zero
width.

The compressibility of the heterostructure is written as

z+/z(b) = 1 —0.23@ . —P 031& .

for 10 & r, & 70 . (45d)

The first two terms on the right-hand side of Eqs. (45)
represent the HFA. We find for a heterostructure that
IrF /x ( b ) & 0 for r, )3.5.

VI. PLASMON DISPERSION

The plasmon dispersion co (q) in the RPA with a finite
LFC is given by'

KF/K(b) = 1 —0.20r, ' —0.0028r, ' 1+ I'(q)l:1 —G(q)]XoI:,(q), q]=o . (46)

for 0.3 & r, & 1, (45a)

aF/ir(b) = 1 —0. 12r,"—0.0071r,'
for 1&r, &3, (45b)

For G(q)=0, one obtains the plasmon dispersion in the
RPA. In the following we show that for r, & 1 the finite
LFC strongly modifies the plasmon dispersion. We com-
pare with results obtained in Refs. 3 and 4.

A. Rotons in three dimensions: r, & 5

For small wave numbers the plasmon dispersion is given by

~ (q)=~ oI 1+0.368r, (qa*) [1—0. 138r, Ci3 HF(r, )/Ci3(r, )]], (47)

with co„o=co (q =0)=(4mN3e /eL m )'~ . The term in (47) containing C» represents the reduction of the plasmon en-

ergy by the finite LFC. For small r, the prefactor of the q term is positive. However, for large r, this prefactor be-
comes negative. For 1 =0.138r,Ci3 HF(r, )/Ci3(r, ), the q term vanishes. With Ci3(r, =7)= 1.2 and

C» H„(r, =7)=1.8, we derive r,„-4.8. For r, ) r,„we predict a roton structure in the plasmon dispersion. Indeed,
such a roton structure is well known in the three-dimensional electron gas from the STLS approach.

The plasmon dispersion for r, =20 is shown in Fig. 11 together with the RPA and STLS results. At q =qEH the
plasmon mode enters the particle-hole spectrum. We mention that qEH is strongly reduced due to the LFC if compared
with the result in the RPA. q, =0 and q2 for r, )r,„edsrcibe the point in the dispersion relation where de„(q)/dq =0.
We conclude for q2 that the density of plasmon modes is singular. A systematic study of q2a and qEH/kz versus r, is
given in Table VII. We believe that the large density of plasmon modes at q2 can be measured in doped semiconductors
at (very) low temperatures.

B. Rotons in two dimensions: r, &45

For small wave numbers the plasmon dispersion is given by

co (q) =co OI 1+0.375qa *[1—0.392r, C,2 H„(r, )/C, 2(r, )]], (48)

with co~o=co (q~p)=(2mN2e q/ELm)' . The term in
(48) containing Ci2 represents the reduction of the
plasrnon energy by the finite LFC due to exchange and
correlation. For small r, the coe%cient of the qa *

term is positive. However, for small density
1&0.392r, C,2H„(r, )/C, 2(r, ) this term becomes nega-
tive. We conclude that for r, & 2. 5 exchange and correla-
tion effects are very important for the plasmon dispersion
in two-dimensional systems. Note, however, that r, & 2. 5
does not correspond to a roton structure due to the fact
that in (48) co„(q~p) ~q'~ increases with increasing
wave number.

In Fig. 12 the plasmon energy co (q) versus q is shown
for r, =10, 20, and 40. The dotted lines correspond to

the RPA. For finite wave numbers q&0. 2kF, a large
difference is found between the plasmon dispersion calcu-
lated in the RPA and calculated with the finite LFC. At
q =qEH the plasmon mode enters the electron-hole spec-
trum. The values qEH calculated within our theory are
much smaller than within the RPA. For r, =10, 20, and
40, we find qEH =1.57k~, 1.80k+, and 2.04kF, ~especti~e-
ly. The corresponding numbers in Ref. 20 are
qEH

= 1.5k~, 1.75kF, and 1.85k
In a two-dimensional electron gas a roton structure has

been predicted for r, ~40. For r, =50, not shown in
Fig. 12, a maximum of the plasmon energy is found at
qi =1.035kF with co&(qi )=7.160m~, and a minimum of
the plasmon energy at q2 = 1.280k+ with co~(q2 )
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q/kF
0.8

0 0.5 1.0
q/kF

1.5

FIG. 11. Solid line: plasmon energy co~ vs wave number q for
r, =20 according to (46) for three dimensions. The dotted line
represents the RPA result. The shaded area represents the
particle-hole spectrum. qEH represents the wave number where
the plasmon mode enters the particle-hole spectrum. The solid
dots are numerical results within the full STLS approach (Ref.
3).

TABLE VII. Parameters for the plasmon dispersion in three
dimensions for various RPA parameters r, (see Fig. 11).

=7.147cF. This structure is interpreted as a roton struc-
ture similar to the roton structure of superAuid helium.
In a recent paper roton behavior in the plasmon disper-
sion of interacting bosons in two dimensions was found
for r, )30. For r, & 45 a roton structure is absent.
However, the LFC has a substantial effect on the
plasmon dispersion for q/k~&0. 2 (see Fig. 12). The
main effect is that the density of plasmon modes in this q
range is strongly enhanced compared to the density of
plasmon modes for G (q) =0; with a finite LFC,
dq/des~(q) is much larger than for G (q) =0.

The comparison between our results and the results
from Refs. 20 (Monte Carlo) and 4 (STLS) is shown in
Fig. 13. For q & kF the reduction of the plasmon energy
due to the LFC is determined by C,2(r, ). Our values for
C,z(r, ) are somewhat smaller than the C,2(r, ) obtained
within the Monte Carlo calculations, which are input
parameters in Ref. 20. For instance, we obtain
C&2(r, =5)=1.58, C& (r,2=10)=1.84, C&2(r, =20)
=2. 15, and C,2(r, =40)=2.50, while the Monte Carlo
parameters, from G(q) given in Ref. 20, are determined
as C&2(r, =5)=1.71, C&2(r, =10)=1.98, C&z(r, =20)
=2.44, and C&2(r, =40) =3.01. Smaller values for
C,2(r, ) indicate a larger effect of the LFC and, therefore,
a smaller plasmon energy. This is shown in Fig. 13 for

FIG. 12. Solid lines: plasmon energy co~ vs wave number q
for r, = 10, 20, and 40 for two dimensions according to (46). The
dotted lines represent the RPA results. The shaded area
represents the particle-hole spectrum. The arrows indicate qEH.

r, =20. The plasmon energy for r, =16, for large wave
numbers, is about 5% larger than the plasmon energy ob-
tained in the STLS approach. Of course, the difference
between our results and the exact results for the LFC and
the plasmon dispersion becomes smaller for decreasing r, .

VII. INSTABILITY IN LAYERED STRUCTURES

A charge-density-wave (CDW) instability has been dis-
cussed for electronic double-quantum-well structures. '

In a recent paper we argued that exchange and correla-
tion effects induce a CDW instability in all layered quan-
tum liquids of ferrnions and bosons. We described the
effect by a Anite LFC, and discussed Fermi quantum
liquids with exchange and Bose quantum liquids with
correlation. In the following we apply the LFC calculat-
ed within the sum-rule version of the STLS approach to
give more accurate results for the instability point for
electrons in a double-plane structure, now including
correlation effects.

For two layers with distance a, the static susceptibility
y+(q) is written as '

LI

3 2

rs co~0(Ry* ) cop (q2 ) /capo q2 /kF q2a qEH /kF 0
0 0.6 1.2 1.8

5
6
7
8

10
15
20

0.310
0.236
0.187
0.153
0.110
0.060
0.039

0.999
0.995
0.992
0.984
0.968
0.927
0.893

~0
0.32
0.43
0.52
0.63
0.82
0.93

~0
0.101
0.118
0.124
0.121
0.105
0.089

0.86
0.94
0.98
1.01
1.08
1.19
1.27

q/kF

FIG. 13. Solid lines: plasmon energy co~ vs wave number q
for r, =16 and 20 for two dimensions according to (46). The
dashed lines represent results from Ref. 20 for r, =20 and from
Ref. 4 for r, =16. The shaded area represents the particle-hole
spectrum.
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xo(q)
x~(q) =

1+I V(q)[1 —G(q)]+V, (q)]y (q)
(49)

30

with Viz(q)= V(q)exp( —qa) as the interlayer Coulomb-
interaction potential, and V(q) =2me /sL q the intralayer
Coulomb-interaction potential. For a two-layer system
two plasmon modes exist. The two plasmon modes corre-
spond to in-phase and out-of-phase oscillations of the two
layers.

The CDW instability is characterized by 1/y (q
=q, ~0)=0 (Ref. 21) or co (q=q, ~0)=0. For the
critical distance a„we find

0.431r,

10

6

3 6 10 30 SQ &00

e, HF/a*=0. 30r, —0.5 . (51)

Because of C,z(r, ) & C, z H„(r, ) we conclude that the
correlation effects increase a, compared to the result in
the HFA. For small r, correlation effects are unimpor-
tant, and a, is determined by exchange effects. From the
strong-coupling results for the correlation energy [deter-
mined by Ciz(r, )] we conclude that for large r, the
enhancement of u, by correlation effects is given by a fac-
tor of about 2.

For r, = 10 and 20, with (50) we obtain a, =4.53a * and
10.4a*, respectively. The corresponding values found
numerically in Ref. 21 for two quantum wells with a finite
width L are a, =4.7a* (for L =100 A) and 9.6a* (for
L =200 A). We note that a dependence of a, on the oc-
cupation number was discussed in Ref. 21. In our theory
we used the Fermi-Dirac occupation. The value

0
a, =4.7a* (for L =100 A) for r, =10 represents the
Fermi-Dirac occupation. %'ith the Monte Carlo occupa-
tion a critical distance a, =3.2a* (for L =100 A) for
r, = 10 was reported in Ref. 21.

The results for a, /a* versus r, according to (50) and
(51) are shown in Fig. 14. The instability region is in-
creased by correlation effects. The numerical results ac-
cording to (50) and shown in Fig. 14 can be approximated
by

a, /a =0.24r ' (52)

For fixed a the critical RPA parameter r„defines the
critical electron density Kz, . Equation (52) can be rewrit-
ten in terms of the critical electron density as
Xz,a =0.10[a,/a*] ' .

The static susceptibility y (q) becomes singular for
x, =q, /qo. With (49), x, is given by

For a & a, the electron gas is stable, and for n & a, we
find an instability of the electron gas. In the HFA we
derive

FIG. 14. Critical layer distance a, vs RPA parameter r, .
The solid line corresponds to (50). The dotted line represents
the results in the HFA [(51)]. The stability region for the Fermi
liquid (FL) and the instability region for the charge-density
wave (CDW) are indicated. Numerical results for a, accord-
ing to (53) are shown as solid dots.

xL =r, G(xl )yo(xL )/pF .

For ql »2k~, we derive the analytical result

qL 5/9 1.582
c 1 /3F 22

(54)

(55)

C3
U

a- Q.5

according to (50). For q, =q, +=q, (see Fig. 15), a
exhibits a maximum o., ; we find a, =5.25a* and
a, =4.53a* for r, = 10. a, defines the stability regime
of the Fermi liquid, and some numerical values are shown
in Fig. 14 as solid dots. With Fig. 14 it is clear that (50)
is an excellent analytical expression for the instability.

Our analytical result in (50) was derived within the as-
sumption that q, /qo «1. Indeed, in Fig. 15 we see that
the instability already occurs for cx, & a, . However, for
q, /qo «1 our analytical result for a, is a very good
approximation. Similar results have been found for bo-
son double-layer structures. For r, =10 we notice that
q, =0.9kF. For r, =20 we find a, = 12.Sa * and
e, = 10.29a *, and the critical wave number is

q, =1.14k~. q, Ikz versus r, is shown in Fig. 16, and
we conclude that q, & 2kF.

Finally, we discuss the behavior of q, for ex=0. For
a~O with (53) and for qL =q, (a=O), we find

x, =r, [G(x, )+exp( —2x, a/a'r, ~
) 1]yo(x, )/p~ .—

(53)

0
0

I

3
ex&a

5

We note that k~ =qo/(2'~ r,'~ ). Numerical values for q,
versus a for r, = 10 are shown in Fig. 15. We find a small
region with two solutions q, +. q, =0 corresponds to a,

FIG. 15. Solid line: q, vs cz for r, = 10 according to (53). The
arrow for a, indicates the analytical solution according to (50).
The dashed line corresponds to (53), with go(0 q & ~ )=pF.
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suits for the correlation for r, « 1. For r, « 1 the calcu-
lation of c., becomes numerically difficult because of
int ~ex and ~c ~int ex int' It is this numerical
problem which did not allow calculations in the high-
density limit within the STLS approach within a limited
computer time (see Refs. 3 and 4). In the sum-rule ver-
sion this numerical problem is less expensive. In the fol-
lowing we present some results for c,, for 0.001 & r, & 1.
In order to obtain c, for r, &0.001 we used the self-
consistently calculated C,2(r, ) and C»(r, ) for
r & 1X10

FIG. 16. Solid dots: q, vs r, according to (53). The dashed
line is a guide to the eye.

and in the HFA (55) corresponds to qL HF/k+ =1.12r,'

For r, = 10 with (55), we obtain qL
=3. 12k+, and this

value is in good agreement with our numerical result
shown in Fig. 15. With (55) we conclude that for large r„
qL, &2kF. For qL, (2k+ we argue that ql is defined by
x =r i G(xL ).

VIII. CORRELATIONS FOR r, & 1

While the kinetic and exchange parts of the ground-
state energy are given as analytical results, at least for the
three- and ideally two-dimensional electron gases, the
correlation energy is more difficult to calculate. For
r, & 1 the correlation effects are small if compared with
the exchange and kinetic energies. In all applications of
the STLS approach to the interacting electron gas the re-
gime r, &0.5 has been studied. While in ordinary metals
the 1 & r, & 10 regime is the most important, doped semi-
conductors in two and three dimensions appear in general
in the 0. 1&r, &3 regime. It was recently found that
quantum effects are important in white dwarfs with
0.001 & r, &0.01. Therefore, we believe that a systemat-
ic study of the correlation effects within the STLS ap-
proach for r, & 1 is an important issue.

However, is it really possible to compare the results ob-
tained in the sum-rule version of the STLS approach with
exact results available for the correlation energy for
r, ~07 We used an analytical expression for the SSF, and
it is not evident that this approximation gives good re-

I

A. Correlation in three dimensions

The correlation energy in three dimensions is given by

0.916 ". , C13,HF( ) C13(
E, (r, )/R*= — '

dr, '

r, 0
' C 3(r')

(56)

We note that C&3 HF(r, ) —Ci3(r, ) must be calculated very
accurately in order to get reliable numbers for the corre-
lation energy. Note that the factor 1/r, in (56) is 10" for
r, =0.01, while E, (r, =0.01)/R *——0.3 and Ci3(r,
=0.01)-0.3. This analysis clearly shows that C»(r, )

must be calculated with high accuracy. We add that in
order to calculate E,(r, ) the coefficients C,3(r, ) are deter-
mined more precisely than in Table I.

Numerically, for r, « 1 we find

Ci3(r, )=Ci3 HF(r, )[1+b,r, [2 ln(r, )+ 1 ]—2b2r, }

(57)
With (56) the correlation energy is expressed
as E, (r, « 1)/R *=0.916[biln(r, ) b2]. Usin—g r, =5
X10 and 1X10, from our numerical results for
C,3(r, ) we obtain the parameters b, =0.062 and
b2 =0. 14. For the correlation energy we find
E,(r, « 1)/R *=0.057 ln(r, ) —0. 13. Indeed, such a
power series for the three-dimensional electron gas was
derived by Gell-Mann and Brueckner:
e, (r, « 1)/R *=0.0622 ln(r, ) —0.094.

Following earlier work an analytical expression for the
correlation energy in the full density (0 & r, (100) range
was proposed very recently' as

s, (r, )/R ' = —4~, (1+~2r, )jn 1+ 1

2a i(Pir +P2r +Ar +P4r
(58)

for r, «1, and

+0.01328r, ln(r, ) —0.020 86r, (59a)

E,(r, )/R„*= —0.867/r, +2.8816/r, (59b)

with ~, =0.03109, x@=0.21370, P, =7.5957, P2=3. 5876,
P3 1 .6382, and P~= 0.492 94. The asymptotic laws, de-
rived with (58), are written as'

s, (r, ) /R *=0.0622 ln(r, ) —0.0932

for r, ))1. We conclude that E;„,(r, )/e, „(r,)=1.95 for
r, )) 1 (see Fig. 2).

We compared the correlation energy obtained for the
three-dimensional electron gas within the sum-rule ap-
proach with the analytical result (58). We found perfect
agreement ( ( 1% deviation) for 0.01 & r, & 1. For
0.0001 &r, &0.004 our numerical results are about 5%
larger than the analytical result according to (59a).

The good agreement of the correlation energy accord-
ing to (58) with our numerical results supports our claim
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that the sum-rule version of the STLS approach can be
used to obtain the ground-state energy even for
0.001&r, &1. Indeed, this was never demonstrated in
the literature for the large density range. For r, ) 1 we
have already compared the correlation energy within the
sum-rule approach with the Monte Carlo results in
Table II and Fig. 2, and we found good agreement for
r, &20. We conclude that the sum-rule version of the
STLS approach gives quantitatively correct results for
the correlation energy for 0.001 & r, &20. For r, )3, we
suggest a one-sum-rule approach in Sec. IX.

as

B. Correlation in two dimensions

For two dimensions the correlation energy is expressed

1 2004 ", C|z HF(r, ) —Ctz(r, ')
E, (r, )/R'= — '

dr,'
r, 0 C,~(r,')

(60)

We mention again that C,z(r, ) was calculated more pre-
cisely than indicated in Table III. We also note that for
all r, studied (0.001 & r, & 200) we found C,z H„(r, ))C,z(r, ). We conclude with (60) that E, (r, )

& 0, in agreement with general arguments. '

From our numerical results, for r, « 1 we derive

C,~(r, ) =Cia HF(r, )[1 bq, ] .— (61)

1+a]p

E, (r, )/R *=a0
1+a&r,' +azr, +a&r,

(62)

was given in Ref. 8 with ao= —0.3568, a& =1.1300,
a&=0.9052, and a~=0.4165. For r, ~0 one gets from
(62) that e, (r, —+0)/R» = —0.3568, which is near to the
predicted values E, (r, —+0)/R *=—0.38 (Ref. 25) and
—0.39. For r, ~0 the analytical result

e, (r, )/R = —0.38 —0. 172r, ln(r, ) (63)

With (60) we conclude that E, (r, =O)= 0 60hz —F.or.
r, =3X 10, with C&z 0 we obtain b& =0.93 and
E, (r, =0)/R»* = —0.555. However, with C,z we find
b ~

=0.64 and e, ( r, =0) /R *= —0.385. This calculation
clearly shows that for r, =3X 10 the finite LFC in the
expression for the SSF is still important for the calcula-
tion of c, We conclude that even for r, ~0 the finite
LFC is important for a correct determination of the
correlation energy. Within the STLS approach this is
quite a surprising fact: one could believe that the LFC is
unimportant for a small RPA parameter. For the corre-
lation energy we have shown that this is not the case.

For the ideally two-dimensional electron gas the ex-
pression

—Q.2—

P 3
4)

—p4—
103

I

102
I

1O' 1PO

FIG. 17. Solid line: correlation energy E, (r, ) vs RPA param-
eter r, for two dimensions. The dashed line represents the
analytical result according to (62), and the dotted line represents
(63).

energy c., versus r, for 0.001 & r, & 1 and for two dimen-
sions. Equations (62) and (63) are shown as the dashed
and dotted lines, respectively. Our numerical results for
0.001 & r, & 1 are in good agreement with (62). For r, & 1

we have compared the results of the sum-rule approach
with the Monte Carlo calculations in Table III and Fig.
5, and we found good agreement for r, &20. On the oth-
er hand, we conclude that the analytical expression for
c„as proposed in Ref. 29 for r, )2'~, is not in agree-
ment with the Monte Carlo results.

IX. SIMPLIFIED APPROACH FOR r, & 3

TABLE VIII. Parameters C» g(r, ) for two dimensions and
C l 3 g ( r, ) for three dimensions calculated within the one-sum-
rule approximation for small wave numbers with G(q ~ ~ ) = 1

and g(0) =0.

In two dimensions we found for r, ) 3 a small negative
pair-correlation function. This means that the effective
potential V,z(q ~~ ) = V(q —& ~ )[1—G (q ~ oo ) ] is neg-
ative for r, )3 and large wave numbers. In some calcula-
tions, where the LFC enters, this defect in the theory
might be acceptable; for instance, for q integrals over the
dielectric function containing the LFC. However, it is
clear that in other calculations, where one directly uses
G(q), this behavior of the LFC might be unacceptable.
A possible solution for this problem is to determine
Czz(r, ) in such a way that g (0)=0, and to use the one-
sum-rule version of the STLS approach to determine
C,~(r, ).

With the sum-rule approach and using
Cqqs(r, )=1.402r, for two dimensions, which leads to
G (q ~~ ) = 1 and g (0)=0, we find the coefficient
C,~ (r, ), calculated with (22), numerically similar to the
full two-sum-rule approach (compare Tables VIII and
III). Of course, this one-sum-rule approximation can
only be applied for r, )3, where the Monte Carlo results

was given in Ref. 25. For small density, (62) implies
c,(r, )= —0.986/r, and E;„,(r, )/E, „(r,)=1.81 for r, &)1
(see Fig. 5). In connection with the CDW instability in
Sec. VIII, we interpreted this factor 1.81 as a factor 2 for
the enhancement due to correlations.

In Fig. 17 we have shown our calculated correlation

4
10
40

100

Clq g(r, )

1.570
1.897
2.596
3.280

Cl3 g(~, )

1.106
1.229
1.447
1.644
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indicate a very small value for g(0). For r, &3 where
G (q ~~ ) & 1, the two-sum-rule version of the STLS ap-
proach must be used.

For three dimensions and for r, & 3, we use
C23 g ( r, ) =0.846r, , corresponding to G ( q ~ ~ ) = 1 and
g (0)=0, and we solve this with Eq. (8). Some results for
C,3 g(r, ) are given in Table VIII and are numerically
very similar to the values calculated within the two-sum-
rule approach (compare Tables I and VIII).

We conclude that for r, ~ 3 the one-sum-rule approach
is a very useful approximation if the condition
G(q~~)=1, resulting in g(0)=0, is necessary. We
mention that a discussion such as performed in this sec-
tion cannot be performed in the full STLS approach, be-
cause there one does not work with an analytical form of
the LFC. The numerical values of the coefficients
C, 3 g(r, ) and Ci2 g(r, ) do not change much compared to
C,3(r, ) and C,2(r, ), respectively, derived within the two-
sum-rule approach. Therefore, we argue that for r, &20
the correlation energy is not in agreement with the
Monte Carlo results. On the other hand, we believe that
this defect of our theory might in fact not be a strong lim-
itation to applications; for dynamical effects it is much
more important that G(q) 1, in order to avoid artificial
singularities. We want to mention that for large r„
G(q-2. 5kF)) 1 (see Ref. 20). This behavior cannot be
described by our approach.

X. DISCUSSION

It is known that the STLS approach is not exact; the
pair-correlation function g(r) for r =0 is negative for
large values of r, . However, in the STLS approach
g (r =0) is only slightly negative, even for very large r, as
was shown in this paper. The frequency dependence of
the LFC was also neglected in the STLS approach. In
Ref. 20 a theory for the dynamical behavior of the repul-
sion hole in the interacting electron gas was developed.
However, this theory uses the static LFC calculated
within the Monte Carlo approach as input. Therefore, we
believe that an efficient method to calculate the LFC is
useful. BackAow corrections' are also neglected in the
STLS approach and in our sum-rule version as well. An
extensive discussion of the STLS approach and the results
obtained within this approach was given in Ref. 5.

For the three-dimensional electron gas an analytical
expression for the LFC was proposed in Ref. 30:
G (q) = A [1—exp( —Bq /kF )], with 2 and 8 as density-
dependent parameters. However, in Ref. 30 the (some-
what modified) STLS equations have been solved and the
numerical results have been fitted with this analytical ex-
pression. We use an analytical expression in order to
solve the STLS equations in the limit of small wave num-
bers and in the limit of small wavelength.

Why does the analytical new SSF describe so well the
transition between exchange effects for small r, to ex-
change correlation effects for large r, ? The integral in the
STLS approach for the LFC is essentially a q integral be-
tween 0 and 2k~. For small r, we argue that kF~~,
and the SSF is determined by So(q); collective effects are

unimportant and the important contribution to the in-
tegral comes from large q. For large r„on the other
hand, we find that kF~0 and the SSF is determined by
the collective effects via S (q): exchange effects are as
important as correlation effects. This can be concluded
from the q dependence of the SSF in the MSA.

Our results for the plasmon dispersion of the two-
dimensional electron gas are in qualitative agreement
with a recent theory for the repulsion hole which uses
the exact G(q) from Monte Carlo calculations as input
function. We repeat that for 1 & r, &20 the ground-state
energy calculated within the sum-rule version is in aston-
ishingly good agreement with quasiexact Monte Carlo
computations. The good agreement found for the corre-
lation energy for 0.001 & r, & 1 indicates that the ground-
state energy of interacting systems can be calculated
within the sum-rule version of the STLS approach. The
sum-rule version makes this task simple enough to do this
calculation with a personal computer.

Essential for the CDW instability in the layered elec-
tron gas is the behavior of the LFC for small wave num-
bers. The LFC for small wave numbers is determined by
C,z(r, ). The behavior of Ci2(r, ) was tested by compar-
ing the LFC and the correlation energy in the sum-rule
version of the STLS approach with the results obtained
by Monte Carlo calculations, and good agreement was
found for r, &20.

It is true that not all aspects of the LFC in the STLS
approach for large r, are reliable from a quantitative
point of view. The peak in G(q) near q-2k~ found in
the numerical work for three and two dimensions' is
not found in the sum-rule version of the STLS approach.
On the other hand, we believe that it is a very transparent
feature of the STLS approach that for q~ao the LFC
approaches G(q~ao )=—,

' within the HFA. For r, ))1
the correlation effects lead to G (q ~ oo ) = 1. The
enhancement for G(q~0) [C,2(r, )&C,2H„(r, )] due to
correlation effects is a very transparent result.

A Wigner transition to an electron crystal cannot be
described by the STLS approach. The Wigner crystal is
expected to occur for r, —100 in three dimensions, and
for r, -40 (Ref. 8) in two dimensions. Therefore, our re-
sults for the LFC for very large r, are physically not
relevant. Nevertheless, a systematic study of the pair-
correlation function for small r, &0.5 and large r, &20
within the STLS approach has never been published.
Moreover, finite width effects in the two-dimensional
electron gas will shift the regime of the Wigner crystal to
larger r, . '

From our results it becomes clear that the STLS ap-
proach is a powerful method for studying correlations in
interacting systems. The exchange contribution to
many-body effects is given in terms of a simple integra-
tion over the SSF of the noninteracting system. ' We be-
lieve that the sum-rule approach will serve as a numerical
tool to study many-body effects in interacting systems
with more complex interaction potentials than studied in
this paper. We mention the recent study of a repulsive
hard-core potential for two-dimensional electrons within
the STLS approach.
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XI. EXPERIMENTS

In this paper we compared our results obtained within
the sum-rule version of the STLS approach extensively
with numerical Monte Carlo results in order to show in
which density regime our approach gives quantitatively
correct results. In the following we discuss some recently
published experimental results where many-body effects
are important or where many-body effects could be stud-
ied. For a recent review on correlation effects in solids,
see Ref. 33.

A. Compressibility

In a very recent experiment the compressibility of a
quantum well with I.=2a * has been measured, and neg-
ative values for r, &r, =1.7 have been found. We be-
lieve that the experiment is qualitatively correct; howev-
er, the small-r, * value, where the compressibility becomes
negative, is not in agreement with our theory. Actually,
in the density range of the experiment the HFA can be
applied, and then it is quite clear that finite width effects
must increase the r,* compared to r,*=2.22 for an ideally
two-dimensional electron gas. Therefore, we believe that
the value r,*= 1.7 found in Ref. 34 is too small.

We suppose that the small-r, limit of the measured
compressibility was fixed with the results for the ideally
two-dimensional electron gas. From our Fig. 6 one clear-
ly sees that this is a wrong procedure and that the inverse
compressibility of a quantum well is larger than for an
ideal system. This can be discussed within the HFA: for
r, & 10 the exchange energy of a quantum well is strongly
different from the exchange energy of the ideally two-
dimensional electron gas for large density (see Fig. 9 and
Ref. 4). Nevertheless, the experiment is very interesting
because it allows, at least in principle, an experimental
determination of many-body effects.

B. Plasmon dispersion

Far-infrared measurements have already been used to
study exchange effects in the two-dimensional elec-
tron gas in heterostructures as realized with
Al„Ga, As/GaAs. However, in this experiment the
density was large (r, -0.7) and the many-body effects
were small. The q quantum correction of two-
dimensional magnetoplasmons, similar to the q correc-
tion given in (47), has been studied in Ref. 36, though
only in the r, & 1 regime.

With Raman experiments the plasmon dispersion in
doped semiconductors can be measured, (see Refs. 37 and
38). In GaAs with a *=100A the accessible q range for
Raman measurements is 0.05 & qa & 0.3. The
dispersion of the coupled plasmon —LO-phonon modes in
n-GaAs with N3 —8 X 10' cm (r, -0.7) was studied in
light-scattering experiments. We suggest studying
many-body effects in semiconductors with light-
scattering experiments for r, & 1.

For GaAs the predicted values for q2a
' (see Table VII

and Fig. 11) are in the accessible range for Raman experi-
ments. We find that q2 disappears already for r, &5, in

agreement with Ref. 3. Therefore, we conclude that the
electron density must be small in order to observe the ro-
ton structure. However, for a small electron density the
Fermi energy is small, and in order to study a degenerate
electron gas in a semiconductor the measurements must
be performed at low temperature T«TF. Moreover,
disorder effects might be large at low densities.

Plasmons in metals have been explored with electron-
energy-loss spectroscopy. ' Recent experiments studied
the plasmon dispersion in such simple metals as Al (Ref.
42) and Na, K, Rb, and Cs. For small wave numbers
we express (47) as

co (q)/co o= 1+P(r, )q a* +O(q ) . (64)

P(r, ) versus r, is shown in Fig. 18 together with experi-
mental results from Refs. 42 and 43. We mention that
for r, & 3 the validity range of the q law becomes small
(see Fig. 11). It is surprising that Cs (r, =5.62) showed a
weak roton structure with rn& ( q g ) /ct)&o 0.97 and

qz/k+-0. 77. In Rb (r, =5.20) a roton structure has
not been observed. From these experimental results we
conclude that rotons appear for r, & 5.5. This is in agree-
ment with our results (see Fig. 18 and Table VII). Given
the simple mode (jellium model) we use, where band-
structure effects and core polarization effects ' are
neglected, we find this qualitative agreement with the pre-
diction of a roton structure for r, & 5 very astonishing.
We mention that the experiments ' have been analyzed
theoretically in Ref. 46 on the basis of exchange and
correlation.

XII. CONCLUSION

The local-field corrections for the three- and two-
dimensional electron gases have been calculated within a
sum-rule version of the STLS approach. An analytical
expression for the static structure factor was used, where
the transition between exchange effects for small r, and
exchange-correlation effects for large r, is taken into ac-
count. We derived analytical formulas for the LFC in
three dimensions and for the LFC in two dimensions,
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(J)

CQ-

-05

0 2

FIG. 18. Solid line: P(r, ) vs RPA parameter r, for three di-

mensions according to (64). The bars represent experimental re-
sults from Refs. 42 and 43.
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which can be used as input in more complex calculations
and which define the dielectric function including the
local-field correction. The correlation energy calculated
within this approach is in good agreement with results
calculated within the Monte Carlo approach for
1&7; &20.

For the two-dimensional electron gas a roton structure
in the plasmon dispersion for r, &45 has been found. A
charge-density-wave instability in a layered system of
electrons has been discussed. We found that correlation
effects increase the instability region of a layered electron
gas. Finite width effects in the two-dimensional electron
gas reduce the exchange and correlation effects. We have
calculated the finite width effect for the compressibility of
a two-dimensional electron gas; see also Ref. 47.

For r, & 1 we found good agreement between our re-
sults for the correlation energy with analytical results,

and we claim that the sum-rule version of the STLS ap-
proach can also be used to study the parameter range
r, & 1. Finally, we mention the numerical simplicity of the
sum-rule approach: the density range 0.001 & r, & 100 of
the STLS approach has been studied within the sum-rule
version. For large r, the one-sum-rule approach might be
more appropriate for certain applications of our theory.
Our results for quantum wells and heterostructures indi-
cate that the sum-rule approach can be used to obtain the
corresponding numbers for exchange effects and correla-
tion effects of structures as used in real experiments.
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