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Integrable model describing the behavior of magnetic impurities in metals
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We present an integrable impurity model describing the exchange and the correlated hybridized in-

teractions between localized electronic states of an impurity and conduction electrons of a metal. The
impurity magnetization, the Kondo limit, and the Fermi-liquid behavior at low temperatures are treated
analytically on the basis of the Bethe ansatz solution.

I. INTRODUCTION

The continuous single-impurity models such as the
Kondo-problem and the Anderson model are solved by
Ineans of the Bethe ansatz, by invoking the one-
dimensional nature of the impurity problem. ' It
should be noted that the approximation of electrons in
metals to the fermion gas, used in these and subsequent
papers (see Refs. 4 and S and references therein) allows us
to obtain exact solutions of these models. On this as-
sumption, most of the integrable single-impurity models
have been constructed. Solutions were formulated to the
orbitally degenerate extensions of these models, namely
the Coqblin-Schrieffer ' and infinite-U Anderson mod-
els.

The nondegenerate and orbital-degenerate Anderson
models describe qualitatively the principal feature of
rare-earth compounds which are characterized by two
items: first, the almost localized electrons from the inner
shells forming the localized spin; second, the heavy-
fermion behavior of 4f electronic states. It is well known
that rare-earth systems are a possible better realization of
local moments, because the 4f shells of atoms are well lo-
calized. In the compounds and alloys the f shell of ions
hybridizes with conduction electron states. The valence
instability and large spin fluctuations are realized as a re-
sult of the interaction of conduction electrons with 4f
configurations of rare-earth atoms.

Aligia, Balseiro, and Proetto obtained the solution of
the model which includes two configurations of the im-

I

purity shell with arbitrary angular momentum Jo and J,
(where J& =Jo+—,') hybridized through the promotion of
conduction electrons. In the Tm systems so-called
intermediate-valence systems and the valence of rare-
earth ions fluctuates between electronic configurations
4f ' and 4f ' . The model is intended to describe some of
the properties of Tm, Sm, Eu, Yb, and Ce compounds
and alloys.

II. THE MODEL AND THE BETHE
ANSATZ EQUATIONS

The electrons of the 4f shell exchange their spin com-
ponent with that of conduction electrons without an ac-
tual charge transfer from the f shell to the conduction
band, therefore the s fdirect ex-change interaction takes
place. In this paper we consider an isotropic impurity
model involving both hybridization between localized
and conduction electrons and exchange contact interac-
tion between their spin components. The model offered is
a more realistic one due to the model Hamiltonian
describing both the exchange interaction and the corre-
lated hybridization of localized and conduction electronic
states. This model extends the class of integrable impuri-
ty models. ' The model consists of the conduction
states of the metal and levels of impurities, which can be
singly occupied with either an up- or down-spin electron
or a doubly occupied one. The Hamiltonian of the model
considered has the following form:

N,. N,. N,.

i g Jdx—c (x) c (x)+cd g g n; +U g n; n; +g g Jdx 5(x —X;)[Wn, c (x)d; +H c]..
o i=1 i=1 o i=1

N,.

+J g g J dx 5(x —X;)c (x)tr c (x)d;,S„.d;,
o., o', s, s' i =1

where c (x) and c (x) are the operators of the conduc-
tion electrons; d; and d; are the operators of the elec-
trons localized at an impurity with coordinate the x =X;;
ni =d, d,- is the number of spin-o. electrons localized at
the impurity (o = T, 4); sd is the energy of the one-
electron impurity level; U is the on-site Coulomb repul-

sion; 8' is the constant of the correlated hybridized in-
teraction; J is the constant of the exchange interaction of
the band electrons with electrons localized at impurities;
tr =

I o",cr, cr'I are the usual Pauli matrices;
S=

t S,S,S') are the Pauli matrices of spin- —,
' impurity;

and X,. is the number of impurity atoms.
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(2)

where ~0) is the Fock vacuum, c (x)~0) =0, d;, ~0) =0;
and k is the electron wave vector. It is considered that
the impurity occupies the origin.

The amplitudes gk (x) and yk satisfy the Schrodinger
equation &~%')k =E(k)~ql)k, which can be rewritten
in the following form:

8
i —

Pk (x)—kg'k (x)+ W'pk5(x)(5, 5 —5, 5 )

+Jo S„g'k (0)5(x)=0, (3)

(e k)yk +—W'*[lit(~ (0) gkt (0)]—=0, (4)

where s=E&+ U, and E(k) is the eigenvalue of the Ham-
iltonian (1).

The solution f'k (x) determines the scattering matrix
of conduction electrons on impurity which will now be
denoted as the R matrix

First of all, we consider the mathematical problem of
the diagonalization of the model Hamiltonian. In order
to describe the integrable of the model, let us define the
expression for the T. matrix. Let us first consider a
scattering of one conduction electron on an impurity. In
this case, a general state vector of the Hamiltonian (1)
can be written as

~%)'k = Jd x[g'k( x)c (x)dot, +5(x)5,ykdodo ]~0),

gk (x)= Ak exp(ikx),

Ak (x &0)=R„. (k)Ak, (x &0),
where Ak is an arbitrary tensor. According to Eqs. (3)
and (4) the components of the tensor Ak are indepen-
dent of spin indexes at x =0.

Substituting expression (5) into Eqs. (3) and (4) we
determine the expression for the scattering matrix of elec-
trons on impurity,

g(k; ) —iP;o
R o= . exp(i4),

g(k)= k —E+ci W'i /4
c[k —E —

I
wl'/(2J)] '

where P;0 is the spin permutation operator
P;0= ,'(1+o—;S0), c is the effective coupling constant
determined by the value of the exchange interaction
c =2J/(1 —3/4J); and N= —2 tan '(J/2).

The integrability of a single-impurity system such as
(1), such as the Kondo problem and the Anderson model,
requires two particles interacting only on the same site
and their scattering matrices satisfying the Yang-Baxter
equations. Let us consider the factorization conditions
which take place for the model (1). To do the scattering
of two electrons on impurity should be born in mind. In
accordance with (2) the general state vector of the Hamil-
tonian (1) has the following form:

~%)'k k
= J dx, dx2[f„' „(x,,x2)c (x, )c (x~)d t+gk k (X„O)5,5(x~)c (x, )do do

+gk k (O,x2)5,5(x, )ct (X2)dot dot ]~0) . (8)

Similar to the two-particle state (2), the amplitudes fk k (x„x2), gk k (x, O), and gk k (O, x) satisfy the
1 1 2 2 1 1 2 1 2 2

Schrodinger equation, which in our case has the form

. a—s fk k (x„x2)+Jcr,S„.f„',k (O, x2)5(x, )
1 1 2 2

1
1~1 2~2

. a
+Wgk k (O, x2)(5, 5 —5, 5 )5(x, )

—
~ fk k (x»x2)

+Jo. ,S„f' „,(x„O)5(x2)+Wg„„(x„O)(5,5 —5, 5 )5(x2)=(k, +k2}fk „(x„x2), (9)

. a
gk)oIk2(x&0)+(E kl k2)gklo)k2(x&0)+ ~ [fk)olk (x 0) fk)o)k

a g„„(0, )+( —k, —k )g„„(0, )+ W'*[f„" „(0, ) —f„" „(0, )]=0 .

(10)

As we know, e.g., from Wiegmann s paper, the new basis of eigenfunctions must contain an arbitrary function denoted
as Z(x) which depends on the difference in position between scattered electrons. So, we split the function into its even
and odd parts and define one in the form'

Z(x)=1/2(1+sgnx ) . (12)
Then, the corresponding solutions for the amplitudes fk k (x„x2), gk k (x, O), and gk k (O, x) of the three-

1 1 2 2 1 1 2 1 2 2
particle wave function (8) has the following solutions:

I

fk k (x 1 xp ) = I exp(ik, x, +ik2x2 )[Z(x, —x2 )5 .5,+S ' '(k „k2 )Z(x2 —x, ) ]

I—exp(ik, x2+ik2x, }[Z(x2—x, )5,5,+S '', (k„k2)Z(x, —x2)] j A„'
~1~2 ~1~2 (13)
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I

gk k (x,O)= W' g (5, 5 —5, 5 ) exp(ik, x)[Z(x)5,5,+S ','(k„ki)Z( —x)]

I

exp(ik~x)[Z( —x)5,5,+S ','(k„k~)Z(x)]
k) c

(14)

I

gk k (O, x)=&*g (5, 5 —5, 5 ) exp(ik2x)[Z( —x)5,5,+S ','(k„k2)Z(x)]

I

exp(ik, x)[Z(x)5,5,+S ','(k„k2)Z( —x )] Ak, k, , (15)
k2

I

where S,z=S ','(k„kz) is the matrix of mutual scatter-
2 2

ing of conduction electrons and Ak k is an arbitrary
1 1 2 2

tensor. At x
&

=x z
=0, components of the tensor

are independent of spin indexes and are deter-
1 1 2 2

mined from the norm calculation of the wave function
(8).

It should be noted that the form of solutions (13)—(15)
is similar to that for the Kondo problem' and the Ander-
son model. By definition, S," is a linear operator which
depends on the difference between two parameters, g(k;)
and g(k. ), and satisfies the Yang-Baxter equations

R,OR~OS', , S)~R,oR—;0 ) S,,S„S,, SJ,S)IS), (16)

These relations follow from solutions (13)—(15) and were
obtained by Wiegmann' and Andrei for the Kondo prob-
lem. The S matrix is the solution of Eqs. (16), in our case
it has the well-known form

iltonian (1) if these coefficients satisfy the following con-
ditions:

A(. . .x;&x. . . )=S; A(. . .x. &x;. . . ),
A(. . .x,. &X.. . . )=R,"A(. . .x, &X,. . . ) . (20)

The energy and the magnetization appropriate to this
wave function are

N

E= g k +N;ed HM, , —
j=1

M, =X/2 —M,

(21)

(22)

where H is the external magnetic field, N is the number of
particles, and M is the number of down-spin particles.

As usual, the periodic boundary condition can be ex-
pressed in terms of the T matrix of the considered model

T A (I)=exp(ik. L)A (I),
g(k;) —g(k ) —iP,

g(k;) —g(k. ) i— (17) where I denotes the identity in the permutation group
and the T matrix is defined as

where P," is the permutation operator of scattered elec-
trons P; =

—,'(1+o;o )..
To calculate the eigenvector of the Hamiltonian (1), we

find the amplitudes of the wave function corresponding
to the state with X, impurities with coordinates
0&X, &X, &XN and with X, conduction elec-

l

trons with coordinates XN &x&& &x&2« x&N &I.
e

and M, spina directed upward (1) (L is the chain length).
The amplitude of the N, wave function is determined in
the form of the Bethe ansatz for the present configuration
of electrons Q

Tj jj +] jj +2 S~N Rg/Rj2 RJN Sj ISj2 Sjj

(23)

The diagonalization of the T matrix is achieved by a
purely algebraic procedure based on the algebra of mono-
dromy matrices. The eigenvalue problem reduces to solv-
ing a set of N, coupled algebraic equations for the N,
quasimomenta k,

M g(k. )
—A, —i/2

exp( ikj.L +iN; 4 ) = +
, gk —A. +i 2

f(Xi)si) )Xgsg ) x$Q)cT] ) )xQg )(7g )
e e

for j=1,2, . . .X, . (24)

N
1 2 e=g ( —1) Ak . . . k' (Q/P)exp i g kI, XQ;

P j=1

The A, 's in Eq. (24) are the set of real numbers related to
the k's through

(18)

where [k~] is the set of unequal numbers; the sums are
over all permutations P =[P„.. . , PII ].

e

The wave function which was constructed with the use
of coefficients (18) is the eigenfunction of the model Ham-

A,
—g(k ) i/2 A,

—i—/2
)+./2 ~ +

A, Ap
—1

for a=1,2, . . .M .
A.p+ l

(25)
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In the next section we consider the solution of our
model in the thermodynamic limit.

III. THE GROUND STATE OF THE MODEL

p(k)= —g'(k)f dna, [A, —g(k)]cr(A, ), (26)

cr(A)+ f d, A, 'a2(A, —
A. ')cr(A, ')

—B
kF= f dk a, [A, —g(k)]p(k)+n;a, (k), (27)

where n; is the concentration of impurity.
The kernels a& and a2 of these integral equations are

given by

In the thermodynamic limit (L ~~, with n, =N, /L,
M/L, n; =N;/L are fixed) the structure of solutions of
the Bethe equations (24) and (25) for the ground-state sys-
tem includes real momenta and rapidities. Since the
function g (k) must be real the complex charge rapidities
are not realized. The ground state of the model is the
Fermi sea, characterized by two distribution functions:
p(k) is the distribution function of charge rapidities with
momentum k, and cr(X) describes the distribution of
down spins with respect to the spin-wave rapidity A, . The
"Fermi surfaces" are determined by the kF and B values,
the ground-state configuration corresponds to filling of all
states with 0 & k & kF and —B & X(~. The momenta k
vary from 0 to k„ i.e., 0&k &k, (where k, determines
the conduction band width) and rapidities A, range in the
infinite limits —oo & A, & co. According to (24) and (25)
the functions p(k) and cr(A, ) satisfy the following integral
equations:

OO 1R (x ) = dco exp(icox)
oo 1+exp co

(33)

According to (7) g(k) is the discontinuous function of
k; it is equal to + Do at k=ko+v [ko=s+

~ W~ /(2J),
v —+0]. We have two branches of values of g (k). Let us
consider the solution of Eq. (32) in the weak interaction
limit for the constant W, namely,

~ W~ /~JE~ &&1 and
~

W~ /~ J(k, —E)
~

&& 1. In this approximation the value of
g(k) is the same at k=0 and k=k, g(0)=g(k, )=1/c,
the error is 0(

~
W~ / JE~ ) or 0[ ~ W~ /~ J(k& —s)

~ ] and it is
of no interest here. %'e shall consider the solution for
p(k) assuming that it is the periodic function with period
k, (the value of k, is determined by lattice spicing).
Since the g (k) is the continuous function of k in the in-
terval from ko to ko+k„Eq. (32) can be exactly solved
for the case ko=kF [e—kF= —

~ W~ /(2J)] using stan-
dard Wiener-Hopf techniques. The value of g(k) varies
in the 1/c &g(k) & —ao limits at 0 k & kF and
~ &g(k) & 1/c for kF & k & k, . Let us determine the
kernel of the integral equation (33) as a product of the
functions which are analytic in the upper and lower corn-
plex co plane

1+exp( —co )=G+(co)G (co),

where the functions G+(co) and G (co) are the well
known

l CO/277

p(k)+g'(k) f dk'R [g(k) —g(k')]p(k')
0

1
n;—g'(k)R [g(k)] . (32)

2~

The kernel R (x) of this equation is given by

Pl 1
a„(A, ) = 2nA+( n /2,

.
)

(28) G (co) =G+ ( —co) =&2vr 1 CO

277e

1

I (1/2+ico/2')

The values of kF and B are fixed by the following equa-
tions:

f p, (k)dk =n, , (29)

f cr, (A)d A=n, /, 2 —
, JR, .

In Eqs. (29) and (30) n, is the density of conduction elec-
trons, A, ,= (N t N,~ )/2L is the —density of the magneti-
zation of conduction electrons, and the distribution func-
tions can be divided into a host and impurity part,
p(k)=p, (k)+n;p;(k) and cr(X)=o., (A. )+n;o.;(A, ). The
density of the ground-state energy of the Hamiltonian (1)
1S

(30)

6'= f kp(k)dk HJK+n; Ed, — (31)
0

where JR=(N" —N~)/2L is the total density of the mag-
netization.

Below we shall consider the case where H=O. In the
absence of magnetic field the number of electrons is the
same for each spin component. According to (30) 8 = ~
and the function p(k) may be calculated as the solution of
the following equation:

(34)

+2 ~ dco
li 2 sin(co )G+ '

( i co )exp( —co/c ),
7T 0 CO

and at c (0
n; = 1+ — tg (co/2)G+ (i co)exp(co/c) .1 oo dCO

2m

(36)

Equations (36) and (37) yield a smooth monotonic de-
crease in the valence of impurity from 2 in the nonmag-

where I (x) is the gamma function.
Using this factorization in Eq. (32) and taking into ac-

count Eq. (29) we calculate the value of the density of
conduction electrons as the kF function,

n, =k~/n —
2

—sin(co)G+ (ico)
1 ~dco
2m

kF
X f dk expIco[g(k) —1/c]] .

0

(35)

Similarly, the valence of impurity is obtained from Eq.
(32) at c & 0,
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B=1/ lrnr[T /H] . (39)

According to (27) and (39), the formula for the impurity
magnetization is given by

M, =N; — g (
—1)"1 „1

n!(n + 1/2)
n+ 1/2

netic state (0(c «1) to 1 (0& —c (&1) [according to
(1) the valence of impurity changes from 1 to 2]. The
intermediate-valence state is realized for small values of
E —k~, namely, according to (36) and (37) J—= 1 in the
weak interaction limit.

Let us consider the magnetic states of the system in a
small magnetic field. The magnetic field enters the prob-
lem through the limit of integration B, which is deter-
mined from magnetization calculation in the absence of
impurities (30). Equating the magnetic response of the
conduction electrons to the Pauli magnetization and
making the physically reasonable assumption that the
magnetic-field energies are slightly comparable to the
Fermi energy give sufhcient conditions for determining
the value of B. We have used the fact that in the small
magnetic field the corrections to p(k) are of the order of
H, therefore we can use Eqs. (28) and (29) to compare
the magnetization as a function of the magnetic field as-
suming that the distribution function of momenta p0(k) is
independent of H.

Let us define the scale, characterizing the crossover in
magnetic field as

TH =V 2m /e A ( 1 ),
kF (38)

A(z)= f dk p0(k)exp[ —mzg(k)] .

Using the definition of TH we find the relation between B
and H with the accuracy 0[ A ( 3 ) ]

Schrieffer-Wolf approximation. The localized moment of
impurity gradually vanishes at E—+kF because in this case
the intermediate-valence region is realized. According to
(7) and (42) the singular point k=k0 determines the
change in a sign of the exchange constant describing the
interaction of conduction electron with localized spin of
impurity in model (1).

IV. THE THERMODYNAMICS OF THE MODEL

j=1,2, . . . , n, 5)0 . (43)

The number I," is called string's center.
Using Yang and Yang's" method to obtain the parti-

tion function from the Bethe ansatz solution defined by
Eqs. (24) and (25), we find the following expression for the
density of the thermodynamic potential:

kI0=60+Tf dk p 0( k)l n[n[K(k)]]

+ Tf dlcr0(A)ln[n ,[Ei(A,)]], (44)

where (nc, )=[1+exp(s/T)] ' is the Fermi distribution
function, T is the temperature, o 0(A, ) is the distribution
function, and 6'0 is the density of the ground-state energy,
independent of H and T. The functions K(k) and E„(A,)
satisfy the set of coupled integral equations,

K(k)=k —kF+T f dA, s[g(k) —
A, ]ln[n[e, (A)]]

The value of g(k) depends on the electron energy,
hence the classification of the excitation spectrum is the
same as for the Kondo problem. In the thermodynamic
limit the solutions of the Bethe equations may be ar-
ranged in the so-called strings. A string of length n is
defined as

k"J=A"+i,l2(n +1—2j)+0[exp( 5L )] —.

n +1/2 (H /T )2n+ i

at H & TH, (40)

k,+Tf dk'g'(k')R[g(k) —g(k')]
0

Xl [n[n—K(k')]}, (45)

M;=N; —— — sin cu 2
1 1 oo dco

2 7TV2 0 CO

E„(A,) = —Ts*ln n[[e„+,(A, )]n [E„,(A, )] j
kl

+ T5„,f dk g'(k)s[g(k) —
A, ]ln[n[ —K(k)]],

x 6+'(iso)(TH /H)
with the boundary conditions

n 1y2y ~ ~ ~ (46)

c.—kF) i Wi c/4, c+ )0 .ci Wl'
2J(E —kF

(42)

The first inequality in (42) determines the condition of
the formation of the local magnetic moment of impurity,
because the valence of impurity is near unity at
c.—kF )0. The second one presents the constant of the
antiferromagnetic exchange interaction calculated in the

at H) TH . (41)

Expressions (40) and (41) are the same as those derived
by Wiegmann and Andrei for the Kondo problem for
S=—,'. ' According to (38), (40), and (41) the Kondo lim-

it is realized if the following inequalities are satisfied:

E0(A. ) = —~, lim E„(A,)ln =H,
n~ 00

where the symbol a*f denotes the convolution of the
functions a(A, ) and f (A, ) in accordance with

a*f(A, )= f dA, 'a(A, —
A, ')f(A, ')

and s(A, ) is given by

s(A, )= 1

2 cosh(mA, )

Equations (45) and (46) and expression (44) completely
determine the thermodynamic properties of the model.
The solutions of Eqs. (45) and (46) may be calculated in
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X ln I 1+exp[h i (x) ] ] (47)

The function h, (x) is determined by the following re-
current equations

h„(x)=s*ln( I 1+exp[h„&(x)]] I 1+exp[h„+ i(x) ]] )

—5„,exp( vrx),—

h„(x)/n =H, (48)

n ~ oo

the low-temperature limit. The charge and spin excita-
tions are usually coupled, but in the Kondo-limit the
relevant spin excitations only involve low energies while
charge fluctuations require high energies. Hence, the im-
purity part of 0 is obtained from (44) and (46) by neglect-
ing the charge excitations

0,'P = —Tn; J dx s[x+1/m ln(T/T&)]

The dimensionless functions h„(x) define the unknown
functions E„(X),

h„(x)= 1/Te„[—
A, + 1/vr ln( Tz /T) ), (49)

where Tz is the Kondo temperature Trr =22 (1).
Since the charge excitations are ignored in the above

calculations, Eqs. (47)—(49) are the same as in the Kondo
problem. '

Within the low-temperature limit 0 may be deter-
mined as a sum of the terms corresponding to spin (47)
and charge excitations. The charge term is determined
by the solution of IC (k) Let. us consider the low-
temperature behavior of the system. In low-temperature
limit Eq. (45) can be solved iteratively, defining
K(k)=KO(k)+T 5K(k), where Eo(k) is the ground-
state solution. We separate the integral equation for
6IC(k) in the form

kF
M'(k)+ f dk'g'(k')R [g(k) —g(k')]SIC(k')

0
2=—j dl, s[A, —g(k)]lnIn[Ei(A)]]+ g'(kF)~dKO(k)/dk k 'k R [g(k) —g(kF)] . (50)

Substituting the solution for 5E(k) into (44) we obtain
the low-temperature limit for the thermodynamic poten-
tial of the model. In this approach the thermodynamic
potential of the model considered and the Anderson mod-
el have a similar structure:

2 2
ch s

+imp (Ximp+Ximp)3L (51)

where g';"„and y,'" are the charge and the magnetic sus-
ceptibility, respectively.

According to (51) the impurity part of the low-
temperature specific-heat coefficient y is a universal func-
tion for impurity models

(52)

correlates with Wiegmann and Andrei's solution of the
Kondo problem. The impurity magnetization, suscepti-
bility, and the Kondo limit for the impurity part of the
thermodynamic potential in the model considered are
determined as ones in the Kondo problem for the —,

' im-

purity spin with the renormalized value of TH. On the
other hand, the Bethe equations are similar to ones in the
Anderson model. As we conclude from the exact solu-
tion, the structure of the solutions of the Bethe equations
describing the ground state of this model is completely
different from the Anderson model. Another interesting
feature of our model is the existence of the mixed-valence
region for c.~kF. Thus, this model gives other example
of the quantum integrable impurity systems.

We have constructed an integrable model describing
the interaction of band electrons of metal with occupied
levels of impurities. The model proposed is described by
three constants of interactions. The solution obtained
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