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We report numerical calculations of the spectral-weight functions for the lattice Anderson model on
small clusters of square and tetrahedral geometry by exact diagonalization. Parameters in the weak-
hybridization —strong-interaction sector are considered. The behavior of the f levels is studied as the oc-
cupancy varies from the doubly occupied limit to the nearly empty case.

I. INTRODUCTION

There are many physical systems in which wide bands
of weakly interacting electron states coexist with strongly
interacting, possibly nearly localized electrons in unfilled
atomic shells: transition-metal oxides, rare-earth metals,
and heavy-fermion systems. A remarkable range of prop-
erties can be found among the diverse members of this
large class: ferromagnetism; antiferromagnetism, some-
times with large, nearly atomic moments, sometimes with
quite small ordered moments, high-temperature and low-
temperature superconductivity; mixed valence, enormous
electron specific heat at low temperatures and so on. The
lattice Anderson model is w&dely believed to incorporate
much of the essential physics of these materials.

An extensive amount of literature exists on this model.
At this point, we cite three reviews of aspects of the
theory. '

The theoretical study begins with a band description of
the electrons in extended, weakly interacting states
(denoted c states). These bands could be obtained from
first-principles local-density band calculations but it is
often more convenient to consider a parametrized band
model. In addition, one has a set of localized orbitals
(denoted f). In the atomic limit these are highly degen-
erate, but several effects, including term structure, spin-
orbit coupling, and crystal-field splittings limit the degen-
eracy under experimentally realizable conditions. The lo-
calized and extended orbitals are allowed to hybridize:
this gives some itinerancy to the localized electrons while
increasing the interaction between electrons in the ex-
tended states.

Our objective here is to explore single-particle levels in

systems of this type by numerical calculations in which
exact solutions are obtained for clusters with a small
number of sites (exact diagonalization). This kind of
study has been very informative in applications to the
Hubbard and t —J models. We list below a few refer-
ences to such calculations, rather arbitrarily selected,
from an already voluminous literature.

Exact diagonalization calculations are inherently limit-
ed to small clusters by the extremely rapid growth of the
dimensionality of the relevant Hilbert space with system
size. This problem is even more serious in the case of the
Anderson model than in the more frequently studied
Hubbard model because of the need to consider more
than one orbital per site. In order, to have a manageable
calculation, we have to drop one of the essential features
of real f electron systems: the high degeneracy due to or-
bital angular-momentum components. It is necessary to
limit consideration to a nondegenerate f band. We have
an f and a c orbital on each site. In this case, the dimen-
sionality of the Hamiltonian is the same as in the case of
a simple Hubbard model with twice the number of sites.

There is another complication: the Lanczos method
which is commonly employed to extract a few low-lying
eigenvalues of large matrices is inadequate in this case for
many interesting values of the parameters. This may
occur if there is a large difference in energy between c and
f levels. We have observed that the Lanczos method
may not give accurate results over a large enough range
of energies to describe all the interesting features of the
spectral-weight function. As a result, we have to employ
a method which obtains all the eigenvalues. These con-
siderations have limited our calculations so far to four-
site systems (equivalent to an eight-site simple Hubbard
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model). If one is willing to limit the f orbitals to single
occupancy (similarly to the t —J approximation to the
Hubbard model), one has the Kondo lattice model, and
somewhat larger systems (six sites) can probably be stud-
ied. We have preferred, however, not to do this, as this
would prohibit us from considering interesting satellite
structure associated with doubly occupied or completely
empty f states.

We have considered four-site systems with two
different geometries: a single square and a tetrahedron.
The tetrahedron can be considered a better approxima-
tion to a three-dimensional structure; and the comparison
between results for these two systems gives some insight
into what are generic properties of the model, and what
may be sensitive to the small size of the system contin-
ued.

This paper is organized as follows. The lattice Ander-
son model is defined in Sec. II and some general features
of its behavior as determined from previous exact diago-
nalization calculations are discussed. Some of the
methods of our computations are discussed in Sec. III.
Our results are presented in Sec. IV, and Sec. V contains
concluding remarks.

II. THE MQDEL

We consider here the nondegenerate lattice Anderson
model in a basis in which there are two orthogonal orbit-
als on each site. In a standard notation, the Hamiltonian
1S

H= tgc, c, —+E~gn~; +V+(c, f) +f, c; )

+Urn~;tn~;t .

The first term of (I) describes c electron hopping be-
tween nearest-neighbor sites. In some of our applica-
tions, the hybridization interaction has been restricted to
electrons on the same site. These restrictions are im-
posed in order to reduce the number of free parameters of
the problem: they are easy to remove if desired. The
minus sign in the first term means that the lowest c level
will have zero wave vector.

The ground-state and thermodynamic properties of
this model were studied through exact diagonalization
calculations for a four-site tetrahedral cluster in Ref. 9.
Similar calculations also involving spectral-weight func-
tions and including Coulomb repulsion between f elec-
trons were reported by Reich and Falicov. ' Other nu-
merical calculations have been presented concerning
difterent geometries. ' ' We shall focus attention here
on the strong-interaction —weak-hybridization sector of
parameter space; U & t & V (but we do not consider
infinite U). In this sector, the distinction between c and f
states remains clear in the interacting system except for
ranges of parameter values where strong hybridization
occurs.

It will be helpful in understanding the results of the
calculations described below to indicate different regions
of behavior as E& is increased from a large negative
value. (Only positive values of U are considered. ) Let

E,' ' denote the lowest energy of the c states.
(i) E&+ U & E,' '. In this region, we have doubly occu-

pied f states. If the number of electrons is greater than
that required to fill all the f levels, some c states will be
occupied; otherwise they are empty.

(ii) E,' ' & E&+ U & E,'". Mixed valence behavior
occurs as the system varies from f ' ' configurations on
each site to f"'. In the model, mixed valence will persist
until E& has risen to the point at which the c levels below
E&+ U can accommodate enough electrons so the f band
is only half full with one f electron per site. For exam-
ple, if there are two electrons per atom, in case (i) both
will be in f states, and mixed valence will persist until
one electron per atom has been transferred to c states. At
this point, we suppose that c states are occupied up to
E(&)

C

(iii) E&+ U &E,'" and E& &E,'". This is the Kondo
region in which one electron per atom is in f states, and
one in c states. The system avoids large repulsive energy
by forming local moments on each site. The c electrons
couple with these moments. Both the c and f bands are
nearly half full.

(iv) E, &E& &E, '. This is the upper mixed valence
in which sit'es transform from f~" to f ' ', and which per-
sists until E& rises to an energy E, at which all f elec-
trons have transferred to c states.

(v) E~&E,' . All f states are empty.
We shall, in considering the spectral-weight function,

follow mainly the procedures of Ref. 5. Since the object
of the work is to see what happens to single-particle
states in the presence of interactions, we begin by di-
agonalizing the Hamiltonian with U =O. This can be
done analytically. In this way, we obtain the single-
particle eigenstates

~y, &= g a,,~fi &+ gP, ~ci &, (2)

k=(0, 0), E = ,' [E& 2t+[(E&+2—r)+—4V2)'~~), (3a)

k=(~, 0) and (0,~) (doubly degenerate),

E = ,' [E~+[E +4V )'i—) (3b)

k=(vr, vr), E =
—,
' [E~+2t+[(E~—2t)~+4V ]'~~) . (3c)

We have considered the tetrahedron for hybridization

in which ~fi)(~ci)) is a single-particle state in which
there is a single f (c) electron on site i, and y is an index
which combines "band" and wave vector. The notation
which is commonly employed in the case of the one-band
Hubbard model in which the single-particle states are
specified by k only is not adequate here: there are two
single-particle states of each k. We use the states ~yz) to
define the creation and annihilation operators c, c&.

We have considered in this paper two systems: A
square and a tetrahedron. In the case of the square, we
have considered only single-site hybridization, as this en-
ables us to avoid introduction of an additional free pa-
rameter. In this case, the single-particle states and their
energies are
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(strength V) on nearest-neighbor sites, and with t —in the
first term of (1) replaced by +t. These choices maintain
continuity with our previous work described in Ref. 8. In
this case, there are only two states, one not degenerate
with I, symmetry corresponding to k=(0, 0,0),

n (E)= g A (E) .

As a convention, we will actually consider only a single
spin, omitting a factor of 2. We then define a related
quantity Z (no index) by

E = '[Ef+—3t+[(Ef—3t) +36V ]' (4a) (8)

and the other, triply degenerate case of symmetry I 4,
corresponding to k =(m, 0,0); (O, vr, O) and (0,0, m ), We note that

E =,' I Ef t+[(—Ef+t)'+4V']'"] . (4b) f A (E)dE = gZ (E )=1, (9)

lf V is negligible, the f levels are at Ef. The c levels of
the square are located at —2t, 0, and 2t for Eqs. (3a), (3b),
and (3c), respectively. The I, c level for the tetrahedron
is at 3t, and the I'4 is at —t.

from commutation relations. The integral must include
all energies. However, because grc~cr is the operator
representing the total number of particles the summed
quantity Z(E) sums to N for electron and hole states sep-
arately. The chemical potential p is determined from

III. CALCULATIONAL PROCEDURES p= —,'[E (N+1) Es(N ——1)] . (10)

The spectral-weight function is given by

A, .(E)=g t/(@

X5[E E(N)+E—(N —1)+p]
+ ~~y&+i~, t

X5[E E(N+—1)+E~(N)+p]] . (5)

In this equation, g designates the ground state of the N-
particle system, and m designates an arbitrary state of ei-
ther the X —1- or %+1-particle system. The quantity p
is the chemical potential and y designates a single-
particle state, including both k and band index (i.e., c or
f). Here, we will number the single-particle states in or-
der of increasing energy according to Eqs. (3) and (4).
For a four-site system with two orbitals per site, y runs
from 1 to 8. In the present problem, 2 does not depend
on spin o., so we will drop that label.

In an infinite system, the sum over m becomes an in-
tegral, and 2 is continuous. For a small system, 2 obvi-
ously cannot be plotted directly, and many authors sim-
ply replace the 5 function by a Lorentzian of unit area
and some small, arbitrary width. Although we see no ob-
jection to this procedure, a different representation is
used here which focuses on the matrix elements in (5).
We use the notation

Z (E)=~(f+ i~c ~g ) [

for holes and

Z (E)= [(gP+ ~ct ~q ) [

(6a)

(6b)

for electrons. The energy E referenced in Eqs. (6) is
determined by the relevant 5 function in Eq. (5), and thus
implicitly incorporates the m index. The Zr are residues
of the single-particle Green's function. Each Z is a pos-
itive quantity ~ 1. The limiting case Z =1 corresponds
to the concentration of the entire spectral weight on a
single state m, which is characteristic of a system of
noninteracting particles.

Frequently, one wishes to consider the density of states

Our procedure is to investigate only a limited set of
values of U and V, but to vary Ef so that the system
passes through the different regions mentioned in Sec. II.
Variation of Ef causes the number of c and f electrons to
vary, even though the total number of electrons is fixed
(N=8 for all the calculations reported here), and thus
has effects somewhat similar to variation of the occupan-
cy or "doping" in one-band Hubbard model calculations.

IV. RESULTS

We describe our results in each of the five regions men-
tioned in Sec. II. In all cases, the initial occupancy is half
full (eight electrons). The ground sate of the half-full sys-
tem is always a spin singlet; the first excited state is al-
ways a triplet. The excitation energy of this state can be
considered to specify a spin gap. It is always smaller
than the excitation energy of the lowest singlet excited
state, which can be regarded as defining a charge gap.
The ground state of both the N —1(7) and N+1(9) elec-
tron systems has S =

—,'. The charge gap refers to the
lowest excited state with this spin, and the spin gap to the
excitation energy of the lowest state with S =

—,'. In most
cases, the charge gap is smaller than the spin gap (the
N =9 case for the tetrahedron offers some exceptions).

(i) Full f bands. We made calculations for Ef = —9,
U=5, V=0. 1, and V=0.5 for the square. The spin and
charge gaps are large, and nearly equal because both spin
and charge excitations require promotion of an electron
into the c states above the f bands. We find sharp elec-
tron, quasiparticle peaks, with negligible subsidiary struc-
ture, located close to but slightly above the positions
determined from Eqs. (3). The states of a single hole also
give rise to strong quasiparticle peaks, located at energies
approximately Ef + U. There is no significant subsidiary
structure close to the principal peaks. Equations (3) and
(4) do not accurately describe the location of the peaks
since they are displaced upward by U from Ef, but if Ef
is replaced by Ef + U in Eqs. (3) and (4), the actual peak
position and those estimated in a single-particle approxi-
mation agree rather well. The result is that a single-



11 548 J. CALLAWAY, J. W. KIM, L. TAN, AND H. Q. LIN 48

particle picture of f band holes is valid, provided EI is
suitably corrected.

Weak structure in the density of states which is strong-
ly hybridization dependent is found, well separated from
the quasiparticle peaks, at excitation energies about

~ Ef ~

+
~ E, ~

(measured with respect to p ). This structure
was not apparent in our results for V =0. 1 but is present
for V=0.5. Apparently, as the hybridization increases,
the ground state has some probability of having virtual f
holes and excited c electrons. A single-particle removal
can then lead to a state in which two f holes are present
on the same site (and a c electron is present as well).

(ii) Lower mixed valence region. In this region, the
upper half of the Hubbard split f band increasingly over-
laps the c states. We made calculations for the square at
E&= —7 and —5, V =0. 1 and 0.5, U =5 for the square,
and E&= —6, V=0.5, U =5 for the tetrahedron.

In the square, for E&= —7, the k =0 lowest c state of
E = —2 is degenerate with the upper half of the f levels;
consequently there is strong hybridization between the f
and c levels with k =0. A similar situation occurs in the
tetrahedron, except that it is the triply degenerate c levels
at E = —1 which are degenerate with the upper f levels,
so that these levels mix. Strong quasiparticle peaks are
associated with the hybridized level and the other f levels
on the hole side; on the electron side there are quasiparti-
cle peaks associated with the upper hybridized level and
the remaining c levels. Perhaps the most interesting
feature is that the lower Hubbard band at E& can be seen,
although the peaks are rather weak. The normal ground
state has only a single hole in the f levels. When an addi-
tional electron is removed, there are both normal states in
which the f holes avoid each other, and other states in
which two f holes are on the same site. These states
form the lower Hubbard band. Approximately 10% of
the hole spectral weight is associated with this band.
Also, it is quite narrow, the width being only about
10—20% of what would be expected from single-particle
c fhybridization acc-ording to Eqs. (3).

The electron states for this choice of parameter are
quite simple. There are three (the expected number)
strong quasiparticle peaks with only very weak subsidiary
structure. The one closest to the Fermi energy is a
strongly hybridized c fcombination; the u-pper two are
only weakly hybridized and are located at the expected
positions from Eqs. (3).

When EI is increased to —5 (for the square) the c
states with k=(~, 0), (0,~) hybridize strongly with the
corresponding states in the upper half of the split f band.
The positions and strengths of the peaks in the density of
states are shown in Fig. 1.

In this, and other graphs to follow, the zero of energy
is taken at the chemical potential; hole states appear at
negative energies, and electron states at positive energies.
The quantity

~
E~ is the excitation energy: the amount of

energy that has to be added to the system to remove an
electron, or to add one. Starting at large negative ener-
gies we see states around E = —5 which are associated
with the lower f band; i.e., states in which two holes are
on the same site. Approximately 30% of the hole spec-
tral weight is in this band. The lowest c state appears at

1.3—

1.0—

0.5—

-6 -5
, & I, I,

-2 -1 0
E/t

ih I

1 2

FIG. 1. Bar graph representation of the density of states in
terms of the quantity Z [Eqs. (6) and (8}]. The separation in en-

ergy of some closely spaced contributions has been increased for
clarity of presentation. Square geometry, E~ = —5.0, V =0.5,
U =5.

E = —1.62. This state, which has k=0, is represented by
a strong quasiparticle peak of strength near maximum. It
is accompanied by two weak peaks of different sym-
metries which can quantitatively be regarded as
representing weak interaction broadening the peak.

Around E =0, we find several states which involve the
strongly hybridized c and f states of k=(m. , 0) and (0, m. ).
In addition, there are more weakly hybridized (mostly f)
states of the other symmetries. There is a small gap at
the Fermi energy which separates electron and hole
states. This is quite close in size to the charge gap in the
states of the half-filled system, and substantially larger
than the spin gap. It is proportional to V as one expects
from a hybridization-induced splitting of a degeneracy.
In the case of an added hole, the c fcomplex contain-s
only one electron; so that we have a relatively conven-
tional quasiparticle picture with both strongly hybridized
and upper f band states available in a narrow energy
range. An added electron appears to lead to a more
strongly interacting situation in which the available states
are spread over a wider range of energies. A simple
quasiparticle picture is then more questionable.

At higher energies (E =2.5), we encounter the upper c
state [k=(m, vr)]. There is a. single strong quasiparticle
peak of nearly maximum strength with weak subsidiary
structure spread over a fairly wide range.

The lower mixed valence region situation we investi-
gated in the tetrahedron seems to be qualitatively entirely
consistent with the picture presented above for the
square. We do not describe it in detail.

(iii) Kondo region: the lower f band is fully occupied,
and the c states are half full. Because of the degeneracies
of the partly filled c states, both square and tetrahedral
geometries would be expected to correspond to metallic
systems. However, there is a gap at the Fermi energy be-
tween electron and hole states which is approximately
proportional to V . The formation of a hybridization in-
duced gap at the Fermi energy seems to be consistent
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FIG. 2. Density of states in the Kondo region. Square
geometry, E&= —2.4, V=0.5, V=5.

with theoretical expectations. ' ' The n =8 half filled
ground state shows in both cases strong antiferromagnet-
ic first-neighbor f-spin correlations (stronger in the
square), while the same site spin correlations between c
and f electrons are in both cases strongly antiferromag-
netic. The analog of the Kondo temperature in these
small systems is probably the-excitation energy of the first
triplet state, the spin gap. It was shown in Ref. 8 that the
antiferromagnetic spin correlations are disrupted on this
energy scale; while the high density of spin rearrange-
ment states at low energies will produce incoherent
behavior at high temperatures. Here we consider only the
ground (coherent) state of the parent system.

In this case, we show the density of states for both the
square (with EI= —2.4, V=0.5, U =5) in Fig. 2, and
the tetrahedron (with E&= —3.0, V=O. S, U =5) in Fig.
3. The positions of the major peaks in the spectral weight
and the residues Zz are listed for the square with the pa-
rameters above in Table I. We did not choose symmetric
values (E&=—U/2) in order to try to avoid features
specific to that case. In both cases, the spin gap is small
(0 0075t i.n the square, 0.220 in the tetrahedron). The
charge gap is larger (0.185, square; 0.332, tetrahedron).
In both cases, as the energy E is increased one first en-
counters the lower half of the Hubbard split f band; then
some c states (the Fermi energy falls in this range), while
at higher energies one encounters both additional, empty
c states, and the upper half of the split f band. We num-

2.00—

1.00—

0.50—

0.20—

0.10—

0.05-

0.02-

0.01
-3

I i I

2
E/t

FIG. 3. Density of states in the Kondo region. Tetrahedral
geometry, E&= —3.0, V=0.5, U=5.

ber the spectral weight functions in order of increasing
energy of the underlying hybridized single-particle states
according to Eqs. (3).

Inspection of Table I shows that the spectral weights
associated with the single-particle eigenstates are not re-
stricted to a single energy. Each eigenstate is present to
some extent in both hole and electron regions of energy,
although the proportions are quite diC'erent. The lowest
eigenstate (1) emphasizes holes, the highest (8) electrons,
while the other are significantly distributed over both.
The most strongly hybridized states (1 and 5) have sub-
stantial residues at energies corresponding to both c and
f levels. If we combine contributions from the different
single-particle states, to give a representation of the den-
sity of states (Figs. 2 and 3) we see that there are strong
peaks at energies corresponding to the c states, with
significant subsidiary structure corresponding to interac-
tion broadening. We interpret this as supporting a quasi-
particle description of c states. However, the picture in
the upper and lower f band regions is not so clear. There
is, in each of the two f band regions, a predominant peak
for each k. The energy separations of the peaks are rath-
er small, corresponding, as expected, to narrow bands. In
some cases there is substantial subsidiary structure which
suggests the possibility of larger broadening. It is not
clear whether dispersing features would be observable in
angle-resolved measurements of photoemission satellite
peaks from similar bulk systems. About 40% of the hole
spectral weight is associated with the lower f band for
the parameters considered in both the square and the
tetrahedron. The same proportion applies to the electron
spectral weight in the upper f band in the square while
this proportion is about 20% in the tetrahedron.
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TABLE I. Energies and residues Z~ [Eqs. (6a) and (6b)]. Square geometry, Ff = —2.4, V=0.5, U =5.

3.127
3.119
2.975
2.080
1.739
0.164

—0.192
—1.862
—2.081
—2.690
—2.982

k=(0, 0)
Zl

0.011
0.013
0.234
0.032
0.066
0.068

0.037
0.432
0.026
0.047
0.030

Z5

0.003
0.004
0.068
0.008
0.016
0.010

0.004
0.304
0.114
0.366
0.097

3.145
2.999
2.865
2.256
2.106
2.094
1.955
0.183

—0.184
—1.919
—2.076
—2.225
—2.699
—2.883
—3.004

k=(~, 0)
Z2

0.043
0.018
0.327
0.006
0.007
0.009
0.032
0.153
0.012
0.032
0.010
0.010
0.276
0.010
0.037

Z6

0
0
0.002
0
0
0
0
0.397
0.538
0.008
0.002
0.002
0.044
0.002
0.005

3.378
3.128
3.111
2.857
2.112
1.889
0.191

—0.164
—1.701
—2.042
—2.832
—2.979

k=(m, ~)
Z4

0.013
0.115
0.003
0.314
0.013
0.008
0.035

0.070
0.092
0.051
0.264
0.023

Z8

0
0.011
0
0.062
0.106
0.782
0.006

0.009
0.006
0.003
0.013
0.001

(iv) Upper mixed valence region. As Ef increases,
electrons transfer from the lower f band into the c states.
The number of states in the upper f band gradually di-
rninishes. We have made several calculations in this re-
gion: for the square with U=5 and V=0.5, we have
considered Ef =0, 1, and 2, and in the tetrahedron with
the same U and V, we have considered Ef =0, 1, 2, and 3.
The results have many similarities, and we consider it
sufficient to discuss only two cases.

First, we consider the tetrahedron with Ef =0. The
residues Zr(E) relating to the individual spectral weights
for k=(0, 0,0) (labeled I, ) and k=(n, 0,0) (labeled I 4,
this case is triply degenerate) are given in Table II. The
single-particle states are numbered in order of increasing
energy. The lowest single-particle state is a hybridized I 4
with energy, measured from p, of —1.34. The spectral
function for the case shows a strong peak close to this en-
ergy with additional structure near the energy of the
upper I 4 and a weaker peak near that of the upper I &.

Finally, there is a peak at considerably higher energy
( —U) in the upper f band. The upper I 4 has peaks in
the same positions with different amplitude. The spectral
weight of the lowest I

&
is strongly concentrated on two

states at energies close to those obtained from (4a); the
upper I, has, in addition, a strong peak in the upper f
band. We note that the upper f band corresponds to

states with two f electrons on the same site. About 17%
of the electron spectral weight is in these levels. Our re-
sults for this geometry agree qualitatively with those of
Reich and Falicov' (who considered different occupan-
cies and parameters).

In Fig. 4 we show a representation of the density of
states for square geometry with Ef =1.0. In this case
also there are major peaks near the energies of single-
particle states obtained from Eqs. (3a) and (3b), measured
with respect to p (here, @=1.16). The four groups of
peaks can be accounted for in this way. All k values are
represented in closely spaced peaks in the upper f band
(E —p- U). The subsidiary structure associated with the
major quasiparticle peaks is rather weak (peak height of
10% or less than the principal ones). Roughly 20% of
the electron spectral weight is associated with the upper
f band.

(v) Empty f bands. When Ef is such that the f levels
are higher than the c states, we return to a simple situa-
tion, as was also the case when the f levels were full. We
made calculations for Ef =3.0 for the square and
Ef =4.0 for the tetrahedron (both with V=0. 5 and
U =5). The results show strong quasiparticle peaks for
both holes and electrons at energies close to those ob-
tained from Eqs. (3) and (4). The hole peaks differ by less
than 1% from unit magnitude. The electron peaks are a

TABLE II. Energies and residues Z~ [Eqs. (6a) and (6b)]. Tetrahedral geometry, Ef =0.0, V=0.5,
U =5.

5.988
4.197
3.116
0.352

—1.084
—1.325
—1.898

r,
Zl

0.096
0.009
0.056
0.409
0.022
0.353
0.030

Z5

0.024
0.002
0.018
0.311
0.224
0.394
0.001

5.533
4.190
3.232

—0.352
—1.901

I,
Z4

0.004
0.005
0.529

0.443
0.017

Z8

0.260
0.022
0.284

0.373
0.025
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FIG. 4. Density of states in the upper mixed valence region.
Square geometry, E& = 1.0, V =0.5, U =5.

few percent less than unity. In this case there are weak
peaks, most probably strongly dependent on the hybridi-
zation strength at higher energies.

There are two general features of the results presented
in detail above that deserve additional comment: (1) the
relative spectral intensity associated with the upper and
lower portions of the split f band, and (2) the adequacy of
the single-particle description of c fhybridizat-ion used
in Eqs. (3) and (4).

In regard to the division of spectral intensity we ob-
serve that the sum rules mentioned in Sec. III specify a
fixed value (N) for the sum of the quantities Zr over all
energies and single-particle states for electrons and holes
separately, regardless of the values of any of the system
parameters. In regions (i) and (v) (full and empty f
bands), these sum rules are essentially exhausted by a sin-
gle state for each y, as one expects for a noninteracting
system. However in both mixed valence regions and the
Kondo region, the f band is split by (roughly) U. In the
lower mixed valence region the upper f band hybridizes
with c states; while the lower f band can be regarded as a
satellite. As E& increases, the number of f holes in-
creases, and spectral weight is transferred from the hybri-
dized "normal" band to the satellite as the number of op-
portunities to have more than one f hole on a given site
increases. In the Kondo region, the lower f band is close
to full, and the upper, empty. The spectral weight associ-
ated with the single-particle eigenstates is distributed
over a large range of energies. Then, as one moves into
the upper mixed valence region, the lower f band hybri-
dizes and the upper one is empty. The spectral weight as-
sociated with the upper f band gradually diminishes as
the f state occupancy in the hybridized band decreases
with increasing E&.

A major objective of exact diagonalization many-body
calculations is to give some indication of the importance
of corrections to a noninteracting single-particle theory.
In the present proble:m, we would consider a noninteract-
ing single-particle picture to be valid if the spectral-
weight function for each single-particle state were to
show a single peak of unit magnitude (Zr —1) at an ener-

gy determined from Eqs. (3) and (4). This is essentially
what occurs in the erapty f band region (v). In the full f
band region (i), we see immediately that we must replace
E& by E&+ U in Eqs. (3) and (4). This gives quite good al-
though not exact resi. its for the peak positions.

However, in the mixed valence and Kondo regions
there are serious prc~blems. As we see in the tables the
two spectral functions with the same k have peaks at the
same energies, in both electron and hole regions of ener-
gy, and also in the 1c~wer and (or) upper Hubbard split f
bands. One has to conclude that the single-particle
description of hybridized bands has broken down, al-
though a quasipartic. .e description of the excitations may
still be useful. The single-particle approach is guaranteed
to be correct as U —+ 3, but in this work we are concerned
with relatively large U. A first approximation as to the
essential physics seems to be to consider hybridization
with two f levels (at E& and E. &+ U), i.e., to take account
first of the Hubbard splitting. This is certainly reason-
able since, in the moclel sector considered here, U ))V.

We have tested c;calculations of this type, and found
that a reduced V(V-~V/V2) is desirable. In this way,
we can come much closer to reproducing the positions of
the main peaks. Bitt we have not found quantitative
agreement. The question modification of hybridization in
the presence of U is a very important one for the band
theory of cerium, r;ire earth, and actinide meta1s and
compounds. It has l)een extensively discussed previous-
ly. ' We hope that the availability of exact results, al-
though restricted to small systems, will be a stimulus to
further investigations.

V. CONCLUSIONS

We have investigated the spectral-weight function of
the nondegenerate la,ttice Anderson model defined on
small (four site) clusters of square and tetrahedral
geometries through exact diagonalization calculations.
We emphasize the strong-interaction —weak-hybridiza-
tion sector. A half-filled band situation was considered.
We vary the f electr~m energy for fixed U, V so that five
different regions of b~:havior are obtained. The difFerences
between the results I:or the different geometries are not
major, and seem to result from differences in the single-
particle level structur e.

When the f band:& are either empty or full, there is
strong evidence not only that a quasiparticle picture is
valid but that a one-~:lectron calculation can give quanti-
tatively accurate ene& gies. The situation is more complex
in both mixed valence regions and in the Kondo region.
Then the f band is always split by roughly U. In the
lower mixed valence region, the upper half of the split f
band hybridizes with the c levels; the lower part, which
contains states in which two f holes are on the same site,
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is a satellite of the sort observed in photoemission experi-
ments. In the Kondo region, the lower f band is full, the
upper is empty, and the c levels are also half full. There
are strong quasiparticle peaks near the Fermi energy;
away from it there is a subsidiary structure suggesting
broadening in a large system. In the upper mixed valence
region, the lower f band hybridizes with the c levels; the
upper band, where there would be two f electrons on a
site, contains possible excited states. The number of
states in this band decreases with the number of f elec-
trons in the lower band. In these ranges one finds a small
gap at the Fermi energy whose magnitude increases as
the hybridization V if there is a degeneracy of levels in
the absence of V, and as V (for small V) otherwise.

We observe that a single-particle calculation of hybrid-
ization does not accurately locate the position of quasi-

particle peaks in the mixed valence and Kondo region,
and does not accurately describe the hybridization evi-
dent in the spectral-weight function. The important
problem of the modification of hybridization by the elec-
tron interaction requires further quantitative investiga-
tion.
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