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Compressible phase of a double-layer electron system
mith total Landau-level filling factor—
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Following recent work of Halperin, Lee, and Read, and Kalmeyer and Zhang, a double-layer
electron system with total Landau-level 6lling factor v = — is mapped onto an equivalent system
of fermions in zero average magnetic field interacting via a Chem-Simons gauge field. Within the
random-phase approximation a new, low-lying, diffusive mode, not present in the v = — single-
layer system, is found. This mode leads to more singular low-energy scattering than appears in
the single-layer system, and to an attractive pairing interaction between fermions in difFerent layers
which grows stronger as the layer spacing is decreased. The possible connection between this pairing
interaction and the experimentally observed fractional quantum Hall efFect in double-layer systems
is discussed.

g, (r) = g, , (r) exp
~
i/i d r'arg(r —r')p, (r')

Recently, the fractional quantum Hall effect (FQHE)
has been seen in double-layer electron systems with total
Landau-level filling factor v = 1/2. ' This observation
supports the long-held belief that incompressible, even-
denominator quantum Hall states can exist when there
are two species of fermions. However, in these systems,
as the ratio of the layer spacing d to the magnetic length
lo [—:(hc/eBo) ~, where Bo is the applied magnetic field],
is increased, the FQHE becomes weaker and eventually
disappears, indicating that the state has become com-
pressible. The v = 1/2 single-layer system, which is also
compressible, has been described by Halperin, Lee, and
Read, and Kalmeyer and Zhang, in terms of a "Fermi
liquid" of electrons bound to an even number of flux
quanta. It is the purpose of this paper to develop a simi-
lar description for the compressible phase of the v = 1/2
double-layer system, and to point out some new features
of this description which are not present in the single-
layer case.

Specifically, we consider a double-layer system in a
transverse magnetic field, Bo = 4hcn/e, where n is the
carrier density per layer (for the remainder of this paper
5 = c = 1, so that, e.g. , Bo ——San/e). The total Landau-
level filling factor is then v = 1/2, and the filling factor in
each layer is v = 1/4. Electron spins are assumed to be
fully polarized, and tunneling between layers is ignored.

In two dimensions, it is possible to continuously change
the statistics of identical particles by attaching infinitely
thin flux tubes containing fictitious flux to them. In this
paper we will refer to this fictitious flux as Chem-Simons
flux, and to the transformed particles as pseudoparticles.
In double-layer systems it is useful to introduce two types
of Chem-Simons flux. The relationship between physi-
cal electrons and pseudoparticles can then be expressed
mathematically as a "singular gauge transformation" of
the form

vga(r) = g, 2(r) exp~ i/2 d r'arg(r —r')pi(r')

+i/i d r'arg(r —r')p2(r') i,

where g, , (r) and ib, (r) are, respectively, the physi-
cal electron and pseudoparticle annihilation operators
in layer s, p, (r) is the density operator in layer s, and
arg(r —r') is the angle made by the vector r —r' and the
x direction (throughout this paper all spatial vectors are
projected into the Ty plane). A pseudoparticle in a given
layer then sees Pi flux quanta attached to particles in
that same layer, and P2 flux quanta attached to particles
in the next layer. In the absence of interlayer tunnel-
ing, the relative statistics of particles in different layers
is irrelevant, and the statistics of the pseudoparticles de-
pends only on Pi. In particular, the pseudoparticles are
bosons if Pi is odd, and fermions if Pi is even.

For the v = 1/2 double-layer system there are sev-
eral interesting choices for (Pi, P2). For example, if
(Pi, $2) = (3, 1) the pseudoparticles obey Bose statis-
tics. When the Chem-Simons flux attached to these par-
ticles is smeared out according to the standard mean-
field prescription, each pseudoboson sees an effective
average field B = Bo —2a(gi + $2)n/e = 0 and the
applied magnetic field is cancelled exactly. The pseu-
dobosons then condense and, just as for the single-layer
v = 1/3 FQHE, the resulting condensed state can be
shown to be incompressible. The wave function corre-
sponding to this condensed state is, presumably, the so-
called 331 wave function, a generalization of Laughlin's
wave function for double-layer systems. Exact diago-
nalization studies have shown that the 331 wave function
has a significant overlap with the exact ground state for
finite size systems only when d/1 4. 4' This is consis-
tent with the fact that the (3,1) scheme becomes unten-
able in the d ~ oo limit, because particles in one layer
continue to see flux attached to particles in the second
layer. To avoid this problem, but retain the mean-field
cancellation of the physical field, there is a unique choice:
(Pi, $2) = (4, 0). The pseudoparticles are then fermions,
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and, in the d ~ oo limit, the layers decouple naturally,
so that each layer is described by a compressible "Fermi
liquid" of pseudofermions. '

To study the (4,0) mean-field theory plus Gaussian
Huctuations for finite d, it is convenient to formulate the

I

problem in terms of a finite-temperature, Euclidean-time
functional integral. For (P), $2) = ($, 0), where P = 4
when v = 1/2, the Lagrangian density describing the
pseudofermions is L(r, 7) = Lp(r, 7) + I i(r, r), where
the first part of the Lagrangian is

Lp(r, 7):) l vP*(r, r) [)9) —iap (r, r)]@ (r, 7 ) + @*(r,) ) [ i V + a— (r, r) —eAp(r)] @ (r, 7)
2m/s=1)2

(2)

Here @„and (aI)'l, al'l) are, respectively, the pseudoferrnion field and a Chem-Simons gauge field in layer s, Ap(r) =
(z x r)Bp/2 is the physical vector potential describing the applied magnetic field, and mr, is the band mass of the
electrons. The second part of the Lagrangian,

I (r r)=r) ar' jr r)a. ]V x a~'~]r r)]+ ) jd r']V xa~'~(r r)]V, , ]r —r')]V x a&' ~]r', r)],
2)rg 22

s=1,2 s,s'=1,2
(8)

depends only on the Chem-Simons gauge fields. We work
in the Coulomb gauge, V . al'l(r, ) ) = 0, where the first
term in (3) is the Chem-Simons term. Integrating out
the time components of the Chem-Simons gauge fields
then enforces the constraint

2)rrt)g, (r, 7-)g, (r, )-) = z [V x a (r, )-)]

which describes attaching P fictitious al'~ flux quanta
to each pseudofermion in layer 8. The second term in

(3) is the interlayer and intralayer Coulomb repulsion,
where, following Ref. 8, the constraint (4) has been used
to rewrite this term purely in terms of the Chem-Simons
gauge fields. Finally, the Coulomb repulsion itself is

V„r (r) = 2)re /s r2 + d2(1 —b, , r ),

where r is the dielectric constant.
At the mean-field level the Chem-Simons gauge fields

take their average values, (al'l(r, r)) = 2)rgn(z x r),
and, for v = 1/2 and q) = 4, the applied magnetic

I

I

field is cancelled exactly. The pseudofermions in each
layer then form Fermi liquids with Fermi wave vector
ky = (4)rn)i~2 = (1/lq)(2/P))~2. Gaussian fluctuations
about this mean-field state can be studied by integrating
out the pseudofermion fields in (2), exponentiating the
resulting determinant, and expanding to one-loop order
in the Chem-Simons gauge fields, a procedure which is
equivalent to the random-phase approximation developed
for the anyon gas. The result is an effective action for
the Chem-Simons gauge fields,

d ) al'l (q, iu )
s,s'=l, 2
p)D=O) 1

xD, „,, (q, ia) )al' ~(—q, —ia) ), (6)

where aI'l(q, w) = z (qx [al'l(q, w) —(al'i(q, cu))]) is the
Huctuation in the transverse gauge field, and the matrix
D, „,r „(q,u) is th.e efFective propagator for the Chern-
Simons gauge fields, the inverse of which is

D, „,, „(q, iw ) =

0 q'Vi2(q)
(2)rg)

( rr'„

lip q'V»(q)

0 0 II000

Zg 0
2)rg

q V)2(q)
(2)rg)

iq
27rrt)

q Vi)(q)
(2)rg) )

0
IIOO = d k f (e),+~) —f (ek)

(2)l ) ZM~ —Eg+& +Ek'
aild

This matrix is labeled according to the scheme (s, p) =
[(1,0), (1, 1), (2, 0), (2, 1)], where s is the layer index, and
p = 0, 1 labels the time and transverse component of
the Chem-Simons gauge fields. Finally, the noninteract-
ing density and transverse-current polarization functions
appearing in (7), are, respectively,

0 d k fq x k) f(ei,+~) —f(ek)
(2)r) ( m& ) i4J E),+& + ei, '

where ei, = k /2m~ —py, py is the chemical potential,
and f (ek) is the Fermi function.

The collective modes of the system correspond to poles
in the gauge field propagator and can be found by solving
the equation det D i

(q, cu) = 0. In the limit w )) kgq/m~
the analytically continued polarization functions (8) and
(9) are Ilpp —(n/mb)(q /u ) and IIii n/mr, —
These expressions can be used to find two propagating
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modes with dispersion relations,

~l l(q) (u, + (e /2ep)q

and

(ul l(q) = (u, + (e d/ 2')q,
where w, = 2rrgn/mb is the cyclotron frequency. In the
limit q « kt, w (( ktq/mg, the polarization functions are
Ilpp —mp/2rr and II~~ = —gqq +i ky~/4rrq, where ys
(12rrmb) is the Landau diamagnetic susceptibility for
noninteracting electrons. Again there are two modes, this
time diffusive, with dispersion relations

l(q) i(4e /skag )q (12)

where

(13)

(q, cu) —[yq —i(kt w/4rrq) ]

for the symmetric and antisymmetric transverse Chern-
Simons gauge fields, respectively. At low frequencies

y = [(1+e meed)/2rrg ms] + (1/12rrms). (14)

It is interesting to compare these modes with those which
appear in the Fermi-liquid description of the v = 1/2
single-layer system. When the long-range Coulomb re-
pulsion between electrons is properly taken into account,
the collective modes of the single-layer system have the
same dispersions as modes 1 and 3, while for short-range
interactions they have the same dispersions as modes 2
and 4. This correspondence is not surprising, because in
the double-layer system modes 1 and 3 involve density
fluctuations which are in phase in the two layers, while
modes 2 and 4 involve density fluctuations which are out
of phase, and hence are unaffected by the long-range
nature of the Coulomb repulsion. We note in passing
that the high-energy propagating modes 1 and 2 are the
in-phase, and out-of-phase magnetoplasmons, or Kohn's
modes, and (10) is consistent with Kohn's theorem, ~

which requires that the energy of mode 1 go to the un-
renormalized cyclotron frequency, w, as q —+ 0. Within
the random-phase approximation, the energy of mode 2
also goes to u as q ~ 0, and while this is not required by
Kohn's theorem, which follows from translational sym-
metry and thus only applies to the in-phase mode, it
does reflect the "decoupled" nature of the (4,0) state.

As in the single-layer system, the diffusive modes 3 and
4 are the most important source of low-energy quasipar-
ticle scattering. To study these modes it is useful to de-
fine the symmetric and antisymmetric transverse Chern-
Simons gauge fields: az ——(az + az )/v 2. The re-
tarded propagators for these Gelds are found by perform-
ing the matrix inversion (7) and analytically continuing
to the real frequency axis. In the q &( ky, w « kyq/ma
limit, the resulting propagators are

Dgj;+(q, (u) —[(e~./rrqP)q —i(kt(u/4rrq)]

and long wavelengths, the effective interaction between
pseudofermions is dominated by Dqq, (all other com-
ponents of D are less singular for small q), and has the
form

1 ) (k x q) (k' x q)
) m~21, . k~~

x — yq —i
2 4vrq

(17)

where the matrix is a layer matrix. It follows from
(14) that this interaction grows stronger with decreas-
ing d. Precisely such a singular current-current inter-
action appears in the v = 1/2 single-layer system for
the physically unrealistic case of short-range electron-
electron interactions. In the double-layer system, not
only does this interaction appear even when the long-
range Coulomb repulsion is included, but, when k' = —k,
i.e., in the Cooper channel, the efj'ective interaction be

trveen Irseudofermions in difl'erent layers is attractive.
Physically, this attractive pairing interaction appears

because a& couples to pseudofermions in different layers
as if they were oppositely charged. Thus, while the coher-
ent propagation of a single pseudofermion is strongly in-
hibited by the random, path-dependent Aharonov-Bohm

phase coming from fluctuations in ai, a pair of pseu-
~ ~ (—)

dofermions, one from each layer, can propagate coher-
ently through these fluctuations, because the Aharonov-
Bohm phase seen by one pseudofermion exactly cancels
that seen by the second. The physics here is remark-
ably similar to the problem of holes constrained to hop
on the same sublattice of a quantum disordered antifer-
romagnet; a problem which can be mapped onto an ef-
fective field theory in which holes on different sublattices
interact via a fictitious gauge Geld as if they were op-
positely charged. In this problem, a pair condensate is
expected to appear, and it is interesting to note that if
a similar pseudofermion pair condensate, (/&gal) g 0,
were to appear in the v = 1/2 double-layer system,
it would correspond to a FQHE for the original elec-
trons, in the same way that the v = 1/3 single-layer
FQHE can be understood in terms of the condensation
of pseudobosons. Such a pairing scenario is similar to
that considered by Greiter, Wen, and Wilczek for the
spin-polarized v = 1/2 state, where pairing of like spin
electrons in the p-wave channel was argued to lead to a
single-layer spin-polarized v = 1/2 FQHE. However, in
the double-layer system it is unlikely that the transition
from the (4,0) "metallic" phase to the (3,1) "condensed"
phase can be understood simply in terms of the effective
pairing interaction (17), particularly because this inter-
action changes when the system becomes superconduct-
ing. In fact, the experimental evidence for a compress-
ible phase when the layer spacing is large enough indi-
cates that, in general, this pairing instability does not
occur. Nevertheless, the above arguments suggest that
there should be pairing fluctuations present in the com-
pressible phase of a v = 1/2 double-layer system; fluctu-
ations which grow stronger with decreasing d, and which,
perhaps, play some role in the eventual instability of the
(4,0) phase to the (3,1) phase.
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A rough measure of the relative importance of fluctu-

ations in a&+ and az can be found by calculating the
scattering rates due to these two types of fluctuations for
a pseudofermion with initial energy ek. Following similar
analyses in the literature, ' we use Fermi's golden rule
to obtain

1/7-„+ = (kysP /8mbe )ek

for scattering from the symmetric fluctuations, and

1/7q (3~3/32m)(8vrEy jm„y ) / ek

(18)

(19)

for scattering from the antisymmetric fluctuations. Here
Ey = kf /2m~ ——w /P is the mean-field Fermi energy.

Because az leads to more singular scattering than a&+,
there is a region around the Fermi surface, ik /2mg-
pf i

& E„ for which scattering from ai is dominant,
where

(20)

Here all dependence on the band mass has been absorbed
into ao = s/e mb, the efFective Bohr radius (ao 82 L
for GaAs). As noted in Ref. 8, in the extreme quantum
limit, where ao )) lo, the kinetic energy is completely
quenched by the applied field and the band mass should
not appear in any physically relevant low-energy quan-
tities. In this limit we expect that corrections beyond
the random-phase approximation will efFectively renor-
malize ao to lo in (20). However, for the experiments
discussed in Ref. 1, lo ao, and the system is not in the
extreme quantum limit. Accordingly in what follows we
have used (20) without modification. Table I summarizes
the parameters kfao, d/ao, Ef, and E,/Ey which char-
acterize the four samples discussed in Ref. 1. For samples
A, B, and C, which exhibit the FICHE, and which are,
presumably, in the (3,1) phase, E becomes smaller as
the observed FICHE weakens. And for sample D, which
does not show the FICHE at all, E has the smallest value
of all four samples. This is consistent with the hypoth-

TABLE I. Sample parameters from Ref. 1. ao is the ef-
fective Bohr radius, d is the layer spacing, kf and Ef are the
mean-field Fermi wave vector and energy, and E is the energy
scale defined in (20).

Sample
A
B
C
D

d/ao
2.6
2.6
2.6
3.4

kf ao (meV) (meV)
0.66 3.4 0.67
0.75 4.5 0.60
0.80 5.1 0.56
0.75 4.5 0.47

E /Ef
0.19
0.13
0.11
0.10

Strength
of v=1/2
Strongest

Strong
Weak

Absent
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esis that the out-of-phase fluctuations are related to the
instability of the (4,0) phase to the (3,1) phase.

To conclude, the compressible phase of a double-layer
electron system in a transverse magnetic field with to-
tal Landau-level filling factor v = 1/2 has been studied.
Following Halperin, Lee, and Read, and Kalmeyer and
Zhang, the system was transformed into a mathemati-
cally equivalent system of pseudofermions in zero aver-
age magnetic field interacting via a Chem-Simons gauge
field, as well as the interlayer and intralayer Coulomb re-
pulsion. The two layers decouple naturally in the d —+ oo
limit, but for finite d the interlayer Coulomb repulsion
gives rise to a new, low-lying difFusive mode. This new
mode leads both to more singular low momentum scat-
tering than occurs in the single-layer case, and to an at-
tractive pairing interaction between pseudofermions in
difFerent layers. The appearance of this attractive in-
teraction, which grows stronger with decreasing d, may
be related to the experimentally observed instability of
the compressible (4,0) phase to an incompressible FICHE
state.
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